Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T08:43:23.108Z Has data issue: false hasContentIssue false

7 - Hypnotic Effect: Inducing Unconsciousness and Emergence from Anaesthesia

from Section 2 - Targeting Effects

Published online by Cambridge University Press:  03 December 2019

Pedro L. Gambús
Affiliation:
Hospital Clinic de Barcelona, Spain
Jan F. A. Hendrickx
Affiliation:
Aalst General Hospital, Belgium
Get access

Summary

General anaesthesia (GA) is a reversible drug-induced state of altered arousal required for more than 60,000 surgical procedures each day in the USA alone, making it one of the most common manipulations of the brain and central nervous system [1]. It comprises several specific behavioural and physiological end-points – unconsciousness, amnesia, analgesia and akinesia – with concomitant stability of the autonomic, cardiovascular, respiratory and thermoregulatory systems [2, 3].

Type
Chapter
Information
Personalized Anaesthesia
Targeting Physiological Systems for Optimal Effect
, pp. 103 - 116
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Flores, FJ et al: Thalamocortical synchronization during induction and emergence from propofol-induced unconsciousness. Proc.Natl.Acad.Sci.USA. 2017; 201700148.CrossRefGoogle Scholar
Brown, EN, Lydic, R, Schiff, ND: GA, sleep, and coma. N.Engl.J.Med. Dec. 2010; 363 (27): 2638–50.Google Scholar
Brown, EN, Purdon, PL, Van Dort, CJ: GA and altered states of arousal: a systems neuroscience analysis. Annu.Rev.Neurosci. 2011; 34: 601–28.CrossRefGoogle Scholar
Mashour, GA: Top-down mechanisms of anesthetic-induced unconsciousness. Front.Syst.Neurosci. 2014 June; 8: 110.Google Scholar
Garcia, PS, Kolesky, SE, Jenkins, A: General anesthetic actions on GABA A receptors. Curr.Neuropharmacol. 2010; 8: 29.CrossRefGoogle ScholarPubMed
Hendrickx, JFA, Eger, EI, Sonner, JM, Shafer, SL: Is synergy the rule? A review of anesthetic interactions producing hypnosis and immobility. Anesth.Analg. 2008; 107 (2):494506.Google Scholar
Schüttler, J, Schwilden, H (eds.). Modern Anesthetics, 182. Berlin, Heidelberg: Springer, 2008.Google Scholar
Edelman, GM, Gally, JA: Degeneracy and complexity in biological systems. Proc.Natl.Acad.Sci.USA. 2001; 98 (24): 13763–8.CrossRefGoogle ScholarPubMed
Jordan, D, Ilg, R, Riedl, V, Schorer, A, Grimberg, S: Simultaneous electroencephalographic and functional magnetic resonance imaging indicate impaired cortical top-down processing in association with anesthetic-induced unconsciousness. Anesthesiology. 2013; 119 (5):1031–42.Google Scholar
Mashour, GA, Hudetz, AG: Bottom-up and top-down mechanisms of general anesthetics modulate different dimensions of consciousness. Front.Neural.Circuits. 201; 11 : 44.Google Scholar
Alkire, MT, Hudetz, AG, Tononi, G: Consciousness and anesthesia. Science. Nov. 2008; 80 (322):876–80.Google Scholar
Barttfeld, P, Bekinschtein, TA, Salles, A, Stamatakis, EA, Adapa, R, Menon, DK, Sigman, M: Factoring the brain signatures of anesthesia concentration and level of arousal across individuals. NeuroImage.Clin. 2015; 9: 385–91.Google Scholar
Rudolph, U, Antkowiak, B: Molecular and neuronal substrates for general anaesthetics. Nat.Rev.Neurosci. 2004; 5 (9): 709–20.Google Scholar
Gambús, PL, Trocóniz, IF: Pharmacokinetic-pharmacodynamic modelling in anaesthesia. Br.J.Clin.Pharmacol. 2015; 79 (1):7284.Google Scholar
Engbers, FH, Sutcliffe, N, Kenny, G, Schraag, S: Pharmacokinetic models for propofol: defining and illuminating the devil in the detail. Br.J.Anaesth. Feb. 2010; 104 (2):261–4.CrossRefGoogle ScholarPubMed
Struys, LFM, Versichelen, MM, Mortier, EP, Sc, D., Dumortier, FJE: Comparison of plasma compartment versus two methods for effect compartment-controlled target-controlled infusion for propofol. Anesthesiology. 2000; 92 (2): 399406.CrossRefGoogle ScholarPubMed
Masui, K, Upton, R, Doufas, A, Coetzee, J, Kazama, T: The performance of compartmental and physiologically based recirculatory pharmacokinetic models for propofol: a comparison using bolus, continuous, and target-controlled infusion data. Anesth.Analg. 2010; 111 (2): 368–79.Google Scholar
Yasuda, N, Lockhart, S, Eger, E, Weiskopf, R, Liu, J: Comparison of kinetics of sevoflurane and isoflurane in humans. Anesth.Analg. Mar. 1991; 72 (3):316–24.Google Scholar
Gentilini, A, Rossoni-Gerosa, M, Frei, C, Wymann, R, Morari, M: Modeling and closed-loop control of hypnosis by means of bispectral index (BIS) with isoflurane. IEEE.Trans.Biomed.Eng. 2001; 48 (8): 874–89.CrossRefGoogle ScholarPubMed
Olofsen, E, Dahan, A: The dynamic relationship between end-tidal sevoflurane and isoflurane concentrations and bispectral index and spectral edge frequency of the electroencephalogram. Anesthesiology. May 1999; 90 (5): 1345–53.Google Scholar
Kreuer, S, Bruhn, J, Wilhelm, W, Bouillon, T: Pharmacokinetic-pharmacodynamic models for inhaled anaesthetics. Anaesthetist. 2007; 56 (6):538–56.Google Scholar
McKay, IDH, Voss, LJ, Sleigh, JW, Barnard, JP, Johannsen, EK: Pharmacokinetic-pharmacodynamic modeling of the hypnotic effect of sevoflurane using the spectral entropy of the electroencephalogram. Anesth.Analg. 2006; 102 (1):91–7.Google Scholar
Diz, JC, Del Río, R, Lamas, A, Mendoza, M, Durán, M, Ferreira, LM: Analysis of pharmacodynamic interaction of sevoflurane and propofol on bispectral index during general anaesthesia using a response surface model. Br.J.Anaesth. 2010; 104 (6): 733–9.Google Scholar
Domino, EF: Taming the ketamine tiger. Anesthesiology. 2010; 113 (3): 678–86.CrossRefGoogle ScholarPubMed
Schüttler, J, Stanski, DR, White, PF, Trevor, AJ, Horai, Y, Verotta, D, Sheiner, LB: Pharmacodynamic modeling of the EEG effects of ketamine and its enantiomers in man. J.Pharmacokinet.Biopharm. 1987: 15 (3): 241–53.Google Scholar
Voss, LJ, Ludbrook, G, Grant, C, Upton, R, Sleigh, JW: A comparison of pharmacokinetic/pharmacodynamic versus mass-balance measurement of brain concentrations of intravenous anesthetics in sheep. Anesth.Analg. 2007; 104 (6): 1440–6.CrossRefGoogle ScholarPubMed
Dahan, A., Olofsen, E., Sigtermans, M., Noppers, I., Niesters, M., Aarts, L., Sarton, E: Population pharmacokinetic-pharmacodynamic modeling of ketamine-induced pain relief of chronic pain. Eur.J.Pain. 2011; 15 (3): 258–67.Google Scholar
Weerink, MAS, Struys, MMRF, Hannivoort, LN, Barends, CRM, Absalom, AR, Colin, P: Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin.Pharmacokinet. 2017; 26 (5):335–46.Google Scholar
Colin, PJ, Hannivoort, LN, Eleveld, DJ, Reyntjens, KMEM, Absalom, AR, Vereecke, HEM, Struys, MMRF: Dexmedetomidine pharmacokinetic-pharmacodynamic modelling in healthy volunteers: 1. Influence of arousal on bispectral index and sedation. Br.J.Anaesth. Aug. 2017; 119 (2): 200–10.Google Scholar
Colin, PJ, Hannivoort, LN, Eleveld, DJ, Reyntjens, KMEM, Absalom, AR, Vereecke, HEM, Struys, MMRF: Dexmedetomidine pharmacodynamics in healthy volunteers: 2. Haemodynamic profile. Br.J.Anaesth. Aug. 2017; 119 (2):211–20.Google Scholar
Kaneda, K, Yamashita, S, Woo, S, Han, TH: Population pharmacokinetics and pharmacodynamics of brief etomidate infusion in healthy volunteers. J.Clin.Pharmacol. 2011; 51 (4): 482–91.Google Scholar
Moller Petrun, A, Kamenik, M: Bispectral index-guided induction of general anaesthesia in patients undergoing major abdominal surgery using propofol or etomidate: a double-blind, randomized, clinical trial. Br.J.Anaesth. 2013; 110 (3): 388–96.Google Scholar
Koopmans, R, Dingemanse, J, Danhof, M, Horsten, GPM, van Boxtel, CJ: Pharmacokinetic-pharmacodynamic modeling of midazolam effects on the human central nervous system. Clin.Pharmacol.Ther. Jul. 1988; 44 (1): 1422.Google Scholar
Brown, EN, Lydic, R, Schiff, ND: GA, sleep, and coma. N.Engl.J.Med. Dec. 2010; 363 (27): 2638–50.Google Scholar
Warnaby, CE, Seretny, M, Ní Mhuircheartaigh, R, Rogers, R, Jbabdi, S, Sleigh, J, Tracey, I: Anesthesia-induced suppression of human dorsal anterior insula responsivity at loss of volitional behavioral response. Anesthesiology. April 2016; x: 1.Google Scholar
Bosch, L, Fernández-Candil, J, León, A, Gambús, PL: Influence of general anaesthesia on the brainstem. Rev. Española.Anestesiol.Reanim. (English Ed.). 2017; 64 (3): 157–67.Google ScholarPubMed
Leslie, K, Sessler, DI, Smith, WD, Larson, MD, Ozaki, M, Blanchard, D, Crankshaw, DP: Prediction of movement during propofol/nitrous oxide anesthesia. Performance of concentration, electroencephalographic, pupillary, and hemodynamic indicators. Anesthesiology. 1996: 84 (1): 5263.Google Scholar
Purdon, PL, Pierce, ET, Mukamel, EA, Prerau, MJ, Walsh, JL, Wong, KFK, Brown, EN: Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc.Natl.Acad.Sci.USA. 2013; 110 (12): E1142-51.Google Scholar
Ní Mhuircheartaigh, R, Warnaby, C, Rogers, R, Jbabdi, S, Tracey, I: Slow-wave activity saturation and thalamocortical isolation during propofol anesthesia in humans. Sci.Transl.Med. 2013; 5 (208): 208ra148.CrossRefGoogle ScholarPubMed
Schneider, G, Jordan, D, Schwarz, G, Bischoff, P, Kalkman, CJ, Kuppe, H: Monitoring depth of anesthesia utilizing a combination of electroencephalographic and standard measures. Anesthesiology. 2014; 120 (4): 819–28.Google Scholar
Urban, BW, Bleckwenn, M: Concepts and correlations relevant to general anaesthesia. Br.J.Anaesth. 2002; 89 (1): 316.Google Scholar
Aranake, A, Mashour, GA, Avidan, MS: Minimum alveolar concentration: ongoing relevance and clinical utility. Anaesthesia. 2013; 68 (5):512–22.Google Scholar
Avidan, MS, Mashour, GA: Prevention of intraoperative awareness with explicit recall: making sense of the evidence. Anesthesiology. 2013; 118 (2):449–56.Google Scholar
Punjasawadwong, Y, Phongchiewboon, A, Bunchungmongkol, N: Bispectral index for improving anaesthetic delivery and postoperative recovery. In The Cochrane Database of Systematic Reviews. 6, 6, Y. Punjasawadwong, Ed. Chichester, UK: John Wiley & Sons Ltd, 2014.Google Scholar
Friedman, EB, Sun, Y, Moore, JT, Hung, HT, Meng, QC, Perera, P, Kelz, MB: A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS.One. 2010; 5 (7):.Google Scholar
Miller, RD: Miller’s Anesthesia, 8th ed. Amsterdam: Elsevier, 2015.Google Scholar
Sanders, RD, Tononi, G, Laureys, S, Sleigh, JW: Unresponsiveness ≠ unconsciousness. Anesthesiology. 2012; 116 (4): 946–59.CrossRefGoogle ScholarPubMed
Whyte, SD, Booker, PD: Monitoring depth of anaesthesia by EEG. Contin.Educ.Anaesth.Crit.Care Pain. 2003; 3 (4):106–10.CrossRefGoogle Scholar
Aho, AJ, Kamata, K, Jäntti, V, Kulkas, A, Hagihira, S, Huhtala, H: Comparison of bispectral index and entropy values with electroencephalogram during surgical anaesthesia with sevoflurane. Br.J.Anaesth. 2015; 115:258–66.Google Scholar
Constant, I, Sabourdin, N: The EEG signal: a window on the cortical brain activity. Paediatr.Anaesth. 2012; 22 (6):539–52.Google Scholar
Robinson, N, Vinod, AP, Ang, KK, Tee, KP, Guan, CT: EEG-based classification of fast and slow hand movements using wavelet-CSP algorithm. IEEE.Trans.Biomed.Eng. 2013; 60 (8):2123–32.Google Scholar
Soehle, M, Kuech, M, Grube, M, Wirz, S, Kreuer, S, Hoeft, A, Ellerkmann, RK: Patient state index vs bispectral index as measures of the electroencephalographic effects of propofol. Br.J.Anaesth. 2010105: 172–8.Google Scholar
Lindholm, ML, Träff, S, Granath, F, Greenwald, SD, Ekbom, A, Lennmarken, C, Sandin, RH: Mortality within 2 years after surgery in relation to low intraoperative bispectral index values and preexisting malignant disease. Anesth.Analg. 2009; 108 (2): 508–12.Google Scholar
Monk, TG, Saini, V, Weldon, BC, Sigl, JC: Anesthetic management and one-year mortality after noncardiac surgery. Anesth.Analg. 2005; 100 (1): 4–10.Google Scholar
Leslie, K, Myles, PS, Forbes, A, Chan, MTV: The effect of bispectral index monitoring on long-term survival in the B-aware trial. Anesth.Analg. 2010; 110 (3): 816–22.CrossRefGoogle ScholarPubMed
Sessler, D. I., Sigl, J. C., Kelley, S. D., Chamoun, N. G., Manberg, P. J., Saager, L., Greenwald, S: Hospital stay and mortality are increased in patients having a ‘triple low’ of low blood pressure, low bispectral index, and low minimum alveolar concentration of volatile anesthesia. Anesthesiology. 2012; 116 (6): 1195–1203.Google Scholar
Dahaba, AA: Different conditions that could result in the bispectral index indicating an incorrect hypnotic state. Anesth.Analg. 2005; 101 (3): 765–73.Google Scholar
Schuller, PJ, Newell, S, Strickland, PA, Barry, JJ: Response of bispectral index to neuromuscular block in awake volunteers. Br.J.Anaesth., 2015; 115: I95I103.Google Scholar
Mashour, GA, Orser, BA, Avidan, MS: Intraoperative awareness. Anesthesiology. 2011; 114 (5):1218–33.Google Scholar
Mashour, GA, Avidan, MS: Intraoperative awareness: controversies and non-controversies. Br.J.Anaesth. 2015; 115: I20I26.Google Scholar
Kelz, MB, Sun, Y, Chen, J, Cheng Meng, Q, Moore, JT, Veasey, SC, Dixon, S, Thornton, M, Funato, H, Yanagisawa, M: An essential role for orexins in emergence from GA. Proc.Natl.Acad.Sci.USA. 2008; 105 (4): 1309–14.CrossRefGoogle Scholar
Kenny, J. D., Chemali, J. J., Cotten, J. F., Van Dort, C. J., Kim, S. E., Ba, D., Solt, K: Physostigmine and methylphenidate induce distinct arousal states during isoflurane GA in rats. Anesth.Analg. 2016; 123 (5): 1210–19.Google Scholar
Dahaba, AA, Bornemann, H, Rehak, PH, Wang, G, Wu, XM, Metzler, H: Effect of flumazenil on bispectral index monitoring in unpremedicated patients. Anesthesiology. 2009; 110 (5): 1036–40.Google Scholar
Ferreira, A, Nunes, CS, Castro, A, Ferreira, AL, Pedrosa, S, Amorim, P: Propofol requirements for anesthesia induction show wide individual variability, independently of age, gender, weight and height [abstract]. In The Anesthesiology Annual Meeting, 2015.Google Scholar
Nunes, CS, Mendonca, T, Bras, S, Ferreira, DA, Amorim, P: Modeling anesthetic drugs’ pharmacodynamic interaction on the bispectral index of the EEG: the influence of heart rate. In the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 6479–82.Google Scholar
Kazama, T, Ikeda, K, Morita, K, Kikura, M, Ikeda, T, Kurita, T, Sato, S: Investigation of effective anesthesia induction doses using a wide range of infusion rates with undiluted and diluted propofol. Anesthesiology. 2000; 92 (4): 1017–28.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×