Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-18T10:35:18.494Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  29 April 2019

David B. Tanner
Affiliation:
University of Florida
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Clerk Maxwell, J., “A dynamical theory of the electromagnetic field,” Phil. Trans. Royal Soc. (London) 155, 459512 (1865).Google Scholar
[2] Jackson, J.D., Classical Electrodynamics (John Wiley & Sons, New York, 1975).Google Scholar
[3] Landau, L.D. and Lifshitz, E.M., Electrodynamics of Continuous Media (Pergamon, New York, 1960).Google Scholar
[4] Heald, M.A. and Marion, J.B., Classical Electromagnetic Radiation (Saunders College Publishing, Philadelphia, 1995).Google Scholar
[5] Griffiths, D.J., Introduction to Electrodynamics (Prentice Hall, Upper Saddle River, New Jersey, 1999).Google Scholar
[6] Smythe, W.R., Static and Dynamic Electricity (McGraw-Hill, New York, 1950).Google Scholar
[7] Klein, M.V. and Furtak, T.E., Optics (Wiley, New York, 1986).Google Scholar
[8] Born, M. and Wolf, E., Principles of Optics (Pergamon, Oxford, 1970).Google Scholar
[9] Veselago, V.G., “The electrodynamics of substances with simultaneously negative values of E and μ,” Soviet Physics Uspekhi 10, 509514 (1968).CrossRefGoogle Scholar
[10] McCall, M.W., Lakhtakia, A., and Weiglhofer, W.S., “The negative index of refraction demystified,” Eur. J. Phys. 23, 353359 (2002).CrossRefGoogle Scholar
[11] Pendry, J., “Optics: Positively negative,” Nature 423, 2223 (2003).CrossRefGoogle ScholarPubMed
[12] Ramakrishna, S.A., “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449521 (2005).CrossRefGoogle Scholar
[13] Shalaev, V.M., “Optical negative-index metamaterials,” Nat. Photon. 1, 4148 (2007).CrossRefGoogle Scholar
[14] Shelby, R.A., Smith, D.R., and Schultz, S., “Experimental verification of a negative index of refraction,” Science 292 7779 (2001).CrossRefGoogle ScholarPubMed
[15] Schiff, L.I., Quantum Mechanics (McGraw-Hill, New York, 1968).Google Scholar
[16] Drude, P., “Zur Elektronentheorie der Metalle” (“The electron theory of metals”), Ann. Phys. (Leipzig) 1, 566 (1900).Google Scholar
[17] www.pdi-berlin.de/outreach/paul-drude. His important papers and books published in German in 1890, 1894, 1900, 1902, and 1904 are listed here. See also Drude, Paul, The Theory of Optics (Dover, Mineola, 2005).Google Scholar
[18] Johnston, D.C., “The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides,” Adv. Phys., 59, 8031061 (2010).CrossRefGoogle Scholar
[19] Ashcroft, N.W. and Mermin, N.D., Solid State Physics (Holt, Rinehart and Winston, Philadelphia, 1976).Google Scholar
[20] Hagen, E. and Rubens, H., “Über die Beziehung des Reflexions- und Emissionsvermögens der Metalle zu ihrem elektrischen Leitvermögen” (“On the relation of reflectivity and emissivity of metals with their electrical conductivity”), Ann. Phys. (Leipzig) 4, 873 (1903).Google Scholar
[21] Landauer, R., in Electrical Transport and Optical Properties of Inhomogeneous Media, edited by Garland, J.C. and Tanner, D.B. (The American Institute of Physics, New York, 1978), p. 1.Google Scholar
[22] Henke, B.L., Gullikson, E.M., and Davis, J.C., “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92,” Atom. Data Nucl. Data Tables 54, 181342 (1993).CrossRefGoogle Scholar
[23] Burns, G., Solid State Physics (Academic Press, San Diego, 1985).Google Scholar
[24] Kittel, C., Introduction to Solid State Physics (Wiley, New York, November 2004). The 3rd and 5th editions are worth looking at also.Google Scholar
[25] Spaldin, N.A., “A beginner’s guide to the modern theory of polarization,” J. Solid State Chem. 195, 210 (2012).CrossRefGoogle Scholar
[26] Vanderbilt, D., “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Phys. Rev. B, 41, 7892 (1990).CrossRefGoogle Scholar
[27] Laasonen, K., Pasquarello, A., Car, R., Lee, C., and Vanderbilt, D., “Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials,” Phys. Rev. B, 47, 10142 (1993).CrossRefGoogle ScholarPubMed
[28] Tinkham, M., Group Theory and Quantum Mechanics (Dover, Mineola, New York, 2003).Google Scholar
[29] Burns, G., Introduction to Group Theory with Applications (Academic Press, New York, 1977).Google Scholar
[30] Dresselhaus, M.S., “Applications of Group Theory to the Physics of Solids,” MIT (2002). web.mit.edu/course/6/6.734j/www/group-full02.pdf.Google Scholar
[31]Wikipedia, the free encyclopedia, “Pole–zero plot,” (2018). http://en.wikipedia.org/wiki/Pole-zero plot.Google Scholar
[32] Lyddane, R., Sachs, R., and Teller, E., “On the polar vibrations of alkali halides,” Phys. Rev. 59, 673676 (1941).CrossRefGoogle Scholar
[33] Cochran, W. and Cowley, R.A., “Dielectric constants and lattice vibrations,” J. Phys. Chem. Solids 23, 447450 (1962).CrossRefGoogle Scholar
[34] Barker, A.S. Jr., “Long-wavelength soft modes, central peaks, and the Lyddane- Sachs-Teller relation,” Phys. Rev. B 12, 40714084 (1975).CrossRefGoogle Scholar
[35] Sievers, A.J. and Page, J.B., “Generalized Lyddane-Sachs-Teller relation and disor- dered solids,” Phys. Rev. B 41, 34553459 1990.CrossRefGoogle Scholar
[36] Barker, A.S. and Tinkham, M., “Far-infrared ferroelectric vibration mode in SrTiO3,” Phys. Rev. 125, 15271530 (1962).CrossRefGoogle Scholar
[37] Spitzer, W.G., Miller, R.C., Kleinmann, D.A., and Howarth, L.E., “Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2,” Phys. Rev. 126, 1710–1721 (1962). 20CrossRefGoogle Scholar
[38] Kamarás, K., Barth, K.-L., Keilmann, F., Henn, R., Reedyk, M., Thomsen, C., Cardona, M., Kircher, J., Richards, P.L., and Stehlé, J.-L., “The low-temperature infrared optical functions of SrTiO3 determined by reflectance spectroscopy and spectroscopic ellipsometry,J. Appl. Phys. 78, 12351240 (1995).CrossRefGoogle Scholar
[39] Henn, R., Wittlin, A., Cardona, M., and Uchida, S., “Dynamics of the c-polarized infrared-active modes in La2−x Srx CuO4,Phys. Rev. B 56, 62956301 1997.CrossRefGoogle Scholar
[40] Sanderson, R.B., “Far infrared optical properties of indium antimonide,” J. Phys. Chem. Solids 26, 803810 (1965).CrossRefGoogle Scholar
[41] Shenstone, A.G., “The arc spectrum of silver,” Phys. Rev. 57, 894 (1940).CrossRefGoogle Scholar
[42] Pickering, J.C. and Zilio, V., “New accurate data for the spectrum of neutral silver,” Eur. Phys. J. D 13, 181 (2001).CrossRefGoogle Scholar
[43] Palik, E.D., Handbook of Optical Constants of Solids I and II (Academic Press, Orlando, Florida, 1985 and 1991).Google Scholar
[44] Taft, E.A. and Philipp, H.R., “Optical constants of silver,” Phys. Rev. 121, 11001103 1961.CrossRefGoogle Scholar
[45] Ehrenreich, H. and Philipp, H.R., “Optical properties of Ag and Cu,” Phys. Rev. 128, 1622 (1962).CrossRefGoogle Scholar
[46] Bennett, H., Silver, M., and Ashley, E., “Infrared reflectance of aluminum evaporated in ultra-high vacuum,” J. Opt. Soc. Am. 53, 10891095 (1963).CrossRefGoogle Scholar
[47] Bennett, J.M., Ashley, E.J., “Infrared reflectance and emittance of silver and gold evaporated in ultrahigh vacuum,” Appl. Optics 4, 221224 (1965).CrossRefGoogle Scholar
[48] Dold, B. and Mecke, R., “Über Gangsmetallen und deren Legierungen im Infrarot” (“About transition metals and their alloys in the infrared”), Optik 22, 435 (1965).Google Scholar
[49] Irani, G., Huen, T., and Wooten, F., “Optical constants of silver and gold in the visible and vacuum ultraviolet,” J. Opt. Soc. Am. 61, 128129 (1971).CrossRefGoogle Scholar
[50] Hagemann, H.J., Gudat, W., and Kunz, C., “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,J. Opt. Soc. Am. 65, 742 (1975). See also DESY Report SR-74/7, Hamburg, 1974.CrossRefGoogle Scholar
[51] Winsemius, P., van Kampen, F.F., Lengkeek, H.P., and van Went, C.G., “Temperature dependence of the optical properties of Au, Ag, and Cu,” J. Phys. F, 6, 1583 (1976).CrossRefGoogle Scholar
[52] Leveque, G., Olson, C.G., and Lynch, D.W., “Reflectance spectra and dielectric functions for Ag in the region of interband transitions,” Phys. Rev. B 27, 4654 (1983).CrossRefGoogle Scholar
[53] Yang, H.U., D’Archangel, J., Sundheimer, M.L., Tucker, E., Boreman, G.D., and Raschke, M.B., “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).CrossRefGoogle Scholar
[54] Wooten, F., Optical Properties of Solids (Academic Press, New York, 1972).Google Scholar
[55] Roberts, S., “Optical properties of copper,” Phys. Rev. 118, 1509 (1960).CrossRefGoogle Scholar
[56] Rakić, A.D., Djurišic, A.B., Elazar, J.M., and Majewski, M.L., “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 52715283 (1998).CrossRefGoogle ScholarPubMed
[57]Optical constants of Cu, Ag, and Au revisited,” Babar, S. and Weaver, J. H., Appl. Opt. 54, 477481 (2015).CrossRefGoogle Scholar
[58] Canfield, L.R., Hass, G., and Hunter, W.R., “The optical properties of evaporated gold in the vacuum ultraviolet from 300 Å to 2000 Å,” J. de Physique 25, 124 (1964).CrossRefGoogle Scholar
[59] Ehrenreich, H., Philipp, H.R., and Segall, B., “Optical properties of aluminum,” Phys. Rev. 132, 19181928 (1963).CrossRefGoogle Scholar
[60] Shiles, E., Sasaki, T., Inokuti, M., and Smith, D.Y., “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: Applications to aluminum,” Phys. Rev. B 22, 1612 (1980).CrossRefGoogle Scholar
[61] Smith, D.Y. and Segall, B., “Intraband and interband processes in the infrared spectrum of metallic aluminum,” Phys. Rev. B 34, 51915198 (1986).CrossRefGoogle ScholarPubMed
[62] Brust, D., “Electronic structure effects in the Drude and interband absorption of aluminum,” Phys. Rev. B 2, 818825 (1970).CrossRefGoogle Scholar
[63] Li, H.H., “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561658 (1980).CrossRefGoogle Scholar
[64] Edwards, D.F. and Ochoa, E., “Infrared refractive index of silicon,” Appl. Optics 19, 41304131 (1980).CrossRefGoogle ScholarPubMed
[65] Thurber, W.R., Mattis, R.L., Liu, Y.M., and Filliben, J. J., “Resistivity-dopant density relationship for phosphorus-doped silicon,” J. Electrochem. Soc. 127, 18071812 (1980).CrossRefGoogle Scholar
[66] Philipp, H.R. and Taft, E.A., “Optical constants of silicon in the region 1 to 10 eV,” Phys. Rev. 120, 3738 (1960).CrossRefGoogle Scholar
[67] Philipp, H.R. and Ehrenreich, H.. “Optical properties of semiconductors,” Phys. Rev. 129, 15501560 (1963).CrossRefGoogle Scholar
[68] Aspnes, D.E. and Studna, A.A., “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 9851009 (1983).CrossRefGoogle Scholar
[69] Jellison, G.E. Jr., “Optical functions of silicon determined by two-channel polariza- tion modulation ellipsometry,” Opt. Mat. 1, 4147 (1992).CrossRefGoogle Scholar
[70] Herzinger, C.M., Johs, B., McGahan, W.A., Woollam, J.A., and Paulson, W., “Ellip- sometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 33233336 (1998).CrossRefGoogle Scholar
[71] Chandler-Horowitz, D. and Amirtharaj, P.M., “High-accuracy, midinfrared (450 cm−1ω ≤ 4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97, 123526/ 1–8 (2005).Google Scholar
[72] Ehrenreich, H., Philipp, H.R., and Phillips, J.C., “Interband transitions in groups 4, 3-5, and 2-6 semiconductors,” Phys. Rev. Lett. 8, 5961 (1962).CrossRefGoogle Scholar
[73] Phillips, J.C., “Band structure of silicon, germanium, and related semiconductors,” Phys. Rev. 125, 19311936 (1962).CrossRefGoogle Scholar
[74] Brust, D., “Electronic spectra of crystalline germanium and silicon,” Phys. Rev. 134, A1337–A1353 (1964).CrossRefGoogle Scholar
[75] Walter, J.P. and Cohen, M.L.Frequency- and wave-vector-dependent dielectric function for silicon,” Phys. Rev. B 5, 31013110 (1972).CrossRefGoogle Scholar
[76] Chelikowsky, J.R. and Cohen, M.L., “Electronic structure of silicon,” Phys. Rev. B 10, 50955107 (1974).CrossRefGoogle Scholar
[77] Heavens, O.S., Optical Properties of Thin Solid Films (Dover, Mineola, NY, 1955).Google Scholar
[78] Blodgett, K.B., “Interference colors in oil films on water,” J. Opt. Soc. Am. 24, 313315 (1934).CrossRefGoogle Scholar
[79] Shevtsova, E., Hansson, C., Janzen, D.H., and Kjærandsen, J., “Stable structural color patterns displayed on transparent insect wings,” Proc. Nat. Acad. Sci. 108, 668673 (2011).CrossRefGoogle ScholarPubMed
[80] Abbott, B.P. et al. (LIGO Scientific Collaboration), “LIGO: The Laser Interferometer Gravitational-wave Observatory,Rep. Prog. Phys. 72, 076901/1–25 (2009).CrossRefGoogle Scholar
[81] Kogelnik, H. and Li, T., “Laser beams and resonators,” Appl. Optics, 5, 15501567 (1966).CrossRefGoogle ScholarPubMed
[82] Siegman, A.E., Lasers (University Science Books, Mill Valley, Calif., 1986).Google Scholar
[83] Abelés, F., “La théorie générale des couches minces,” (“The general theory of thin films,”), J. Phys. Radium 11, 307310 (1950).CrossRefGoogle Scholar
[84] Glover, R.E. and Tinkham, M., Phys. Rev., 107, 844 (1956); ibid., Phys. Rev. B 108, 1175 (1957).Google Scholar
[85] Palmer, L.H. and Tinkham, M., Phys. Rev. 165, 588 (1968).CrossRefGoogle Scholar
[86] Karecki, D.R., Carr, G.L., Perkowitz, S., Gubser, D.U., and Wolf, S.A., Phys. Rev. B 27, 5460 (1983).CrossRefGoogle Scholar
[87] Gao, F., Carr, G.L., Porter, C.D., Tanner, D.B., Williams, G.P., Hirschmugl, C.J., Dutta, B., Wu, X.D., and Etemad, S., “Quasiparticle damping and the coherence peak in YBa2 Cu3O7−δ,Phys. Rev. B 54, 700710 (1996).CrossRefGoogle Scholar
[88] Tashiro, H., Graybeal, J.M., Tanner, D.B., Nicol, E.J., Carbotte, J.P., and Carr, G.L., “Unusual thickness dependence of the superconducting transition of α-MoGe thin films,Phys. Rev. B 78, 014509/1–7 (2008).CrossRefGoogle Scholar
[89] Sommerfeld, A. and Bethe, H., “Elektronentheorie der Metalle” (“Electron Theory of Metals”), Handbuch der Physik 24, 333622 (1933).Google Scholar
[90] Mott, N.F. and Jones, H., The Theory of the Properties of Metals and Alloys (Oxford University Press, London and New York, 1936).Google Scholar
[91] Wilson, A.H., The Theory of Metals (Cambridge University Press, Cambridge, 1953).Google Scholar
[92] Holstein, T., Phys. Rev., 96, 535 (1954); Ann. Phys. (N.Y.) 29, 410 (1964).CrossRefGoogle Scholar
[93]Handbook of Electronic Tables and Formulas; www.powerstream.com/Wire_Size.htm.Google Scholar
[94] Debye, P., “Zur Theorie der spezifischen Wärme,” (“The theory of specific heat”), Ann. der Physik (Leipzig) 39, 789 (1912).Google Scholar
[95] Tanner, D.B. and Larson, D.C., “Electrical resistivity of silver films,” Phys. Rev., 166, 652655 (1968).CrossRefGoogle Scholar
[96] Cochran, J. and Yaqub, M., “The mean free path of electrons in very pure gallium,” Phys. Lett. 5, 307309 (1963).CrossRefGoogle Scholar
[97] Huang, K., Statistical Mechanics, 2nd ed. (John Wiley & Sons, New York, 1987).Google Scholar
[98] Cohen, M.L. and Louie, S.G., Fundamentals of Condensed Matter Physics (Cambridge University Press, Cambridge, 2016).CrossRefGoogle Scholar
[99] Marder, M.P., Condensed Matter Physics (John Wiley & Sons, New York, 2010).CrossRefGoogle Scholar
[100] Ziman, J.M., Principles of the Theory of Solids, 2nd ed. (Cambridge University Press, Cambridge, 1972).CrossRefGoogle Scholar
[101] Ziman, J.M., Electrons and Phonons: The Theory of Transport Phenomena in Solids (Clarendon Press, Oxford, 1960).Google Scholar
[102] Kronig, R. de L., “On the theory of the dispersion of X-rays,J. Opt. Soc. Am. 12, 547557 (1926).CrossRefGoogle Scholar
[103] Kramers, H.A., “La diffusion de la lumiere par les atomes” (“The diffusion of light by atoms”), J. Atti Cong. Intern. Fisici, (Transactions of Volta Centenary Congress) Como 2, 545557 (1927); “Die dispersion und absorption von Röntgenstrahlen” (“The dispersion and absorption of X-rays”), Phys. Z. 30, 522–523 (1929).Google Scholar
[104] Kittel, C. Elementary Statistical Physics (Wiley, New York, 1958).Google Scholar
[105] Dressel, M. and Grüner, G., Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, Cambridge, 2002).CrossRefGoogle Scholar
[106] Toll, J.S., “Causality and the dispersion relation: Logical foundations,” Phys. Rev. 104, 17601770 (1956).CrossRefGoogle Scholar
[107] Kubo, R. and Ichimura, M., “Kramers-Kronig relations and sum rules,” J. Math. Phys. 13, 1454 (1972).CrossRefGoogle Scholar
[108] Hu, B.Y.-K., “Kramers-Kronig in two lines,” Am. J. Phys. 57, 821821 (1989).CrossRefGoogle Scholar
[109] Peiponen, K.-E. and Vartiainen, E.M., “Kramers-Kronig relations in optical data inversion,” Phys. Rev. B 44, 8301 (1991).CrossRefGoogle ScholarPubMed
[110] Milton, G.W., Eyre, D.J., and Mantese, J.V., “Finite frequency range Kramers-Kronig relations: Bounds on the dispersion,” Phys. Rev. Lett. 79, 30623065 (1997).CrossRefGoogle Scholar
[111] King, F.W., “Efficient numerical approach to the evaluation of Kramers-Kronig transforms,” J. Opt. Soc. Am. B 19, 24272436 (2002).CrossRefGoogle Scholar
[112] King, F.W., “Alternative approach to the derivation of dispersion relations for optical constants,” J. Phys. A: Math. Gen. 39, 10427 (2006).CrossRefGoogle Scholar
[113] Peiponen, K.-E. and Saarinen, J.J., “Generalized Kramers-Kronig relations in nonlin- ear optical- and THz-spectroscopy,” Rep. Prog. Phys. 72, 056401 (2009).CrossRefGoogle Scholar
[114] Bohren, C.F., “What did Kramers and Kronig do and how did they do it?Eur. J. Phys. 31, 573577 (2010).CrossRefGoogle Scholar
[115] Cauchy, A.L., “Oeuvres complètes,” Ser. 1, 4, Paris (1890).Google Scholar
[116] Jahod, F.C., “Fundamental absorption of barium oxide from its reflectivity spectrum,” Phys. Rev. 107, 12611265 (1957).CrossRefGoogle Scholar
[117] Phillip, H.R. and Taft, E.A., “Kramers-Kronig analysis of reflectance data for diamond,” Phys. Rev. 136, A1445–A1448 (1964).CrossRefGoogle Scholar
[118] Taft, E.A. and Philipp, H.R., “Optical properties of graphite,” Phys. Rev. 138, A197– A202 (1965).CrossRefGoogle Scholar
[119] Tongay, S., Hwang, J., Pal, H.K., Tanner, D.B., Maslov, D., and Hebard, A.F., “Super- metallic conductivity in bromine-intercalated graphite,” Phys. Rev. B 81, 115428/1–6 (2010).CrossRefGoogle Scholar
[120] Jacobsen, C.S., Tanner, D.B., Garito, A.F., and Heeger, A.J., “Single-crystal reflectance studies of tetrathiofulvalene tetracyanoquinodimethane,” Phys. Rev. Lett. 33, 15591562 (1974).CrossRefGoogle Scholar
[121] Jacobsen, C.S., Tanner, D.B., and Bechgaard, K., “Dimensionality crossover in the organic superconductor tetramethyltetraselenafulvalene hexafluorophosphate [(TMTSF)2PF6],” Phys. Rev. Lett. 46, 11421145 (1981).CrossRefGoogle Scholar
[122] Dressel, M., Schwartz, A., Grüner, G., and Degiorgi, L., “Deviations from Drude response in low-dimensional metals: electrodynamics of the metallic state of (TMTSF)2PF6,” Phys. Rev. Lett. 77, 398402 (1996).CrossRefGoogle ScholarPubMed
[123] Beal, A.R. and Hughes, H.P., “Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2,J. Phys. C: Solid State Phys. 12, 881 (1979).CrossRefGoogle Scholar
[124] Greene, L.H., Tanner, D.B., Epstein, A.J., and Miller, Joel S., “Optical properties of the cation-deficient platinum chain salt K1.75Pt(CN)4 · 1.5H2O,Phys. Rev. B 25, 13311338 (1982).CrossRefGoogle Scholar
[125] Challener, W.A. and Richards, P.L., “Far infrared optical properties of NbSe3,” Solid State Comm. 52, 117121 (1984).CrossRefGoogle Scholar
[126] Fincher, C.R. Jr, Ozaki, M., Tanaka, M., Peebles, D., Lauchlan, L., Heeger, A.J., and MacDiarmid, A.G.. “Electronic structure of polyacetylene: Optical and infrared studies of undoped semiconducting (CH)x and heavily doped metallic (CH)x,Phys. Rev. B 20, 15891598 (1979).CrossRefGoogle Scholar
[127] Stafström, S., Brédas, J.L., Epstein, A.J., Woo, H.S., Tanner, D.B., Huang, W.S., and MacDiarmid, A.G., “Polaron lattice in highly conducting polyaniline: Theoretical and optical studies,” Phys. Rev. Lett. 59, 14641467 (1987).CrossRefGoogle ScholarPubMed
[128] Lee, K., Cho, S., Park, S.H., Heeger, A.J., Lee, C.-W., and Lee, S.-H., “Metallic transport in polyaniline,” Nature 441, 6568 (2006).CrossRefGoogle ScholarPubMed
[129] Bonn, D.A., Greedan, J.E., Stager, C.V., Timusk, T., Doss, M.G., Herr, S.L., Kamarás, K., and Tanner, D.B., “Far-infrared conductivity of the high-Tc supercon- ductor YBa2 Cu3O7,Phys. Rev. Lett. 58, 22492250 (1987).CrossRefGoogle Scholar
[130] Reedyk, M., Bonn, D.A., Garrett, J.D., Greedan, J.E., Stager, C.V., Timusk, T., Kamarás, K., and Tanner, D.B., “Far-infrared optical properties of Bi2Sr2CaCu2O8,” Phys. Rev. B 38, 11,981–11,984 (1988).CrossRefGoogle ScholarPubMed
[131] Kamarás, K., Herr, S.L., Porter, C.D., Tache, N., Tanner, D.B., Etemad, S., Venkate- san, T., Chase, E., Inam, A., Wu, X.D., Hegde, M.S., and Dutta, B., “In a clean high-Tcsuperconductor you do not see the gap,Phys. Rev. Lett. 64, 8487 (1990).CrossRefGoogle Scholar
[132] Cooper, S.L., Thomas, G.A., Orenstein, J., Rapkine, D.H. Millis, A.J., Cheong, S.-W., Cooper, A.S., and Fisk, Z., “Growth of the optical conductivity in the Cu-O planes,” Phys. Rev. B 41, 11,605–11,608 (1990).CrossRefGoogle ScholarPubMed
[133] Gao, F., Romero, D.B., Tanner, D.B., Talvacchio, J., and Forrester, M.G., “Infrared properties of epitaxial La2−x Srx CuO4 thin films in the normal and superconducting states,Phys. Rev. B 47, 10361052 (1993).CrossRefGoogle Scholar
[134] Cooper, S.L., Reznik, D., Kotz, A., Karlow, M.A., Liu, R., Klein, M.V., Lee, W.C., Giapintzakis, J., Ginsberg, D.M., Veal, B., and Paulikas, A.P., “Optical studies of the a-, b-, and c-axis charge dynamics in YBa2 Cu3O6+x,Phys. Rev. B 47, 82338248 (1993).CrossRefGoogle Scholar
[135] Homes, C.C., Timusk, T., Liang, R., Bonn, D.A., and Hardy, W.N., “Optical conductiv- ity of c axis oriented YBa2Cu3O6.70: Evidence for a pseudogap,Phys. Rev. Lett.71, 1645 (1993).CrossRefGoogle Scholar
[136] Basov, D.N., Puchkov, A.V., Hughes, R.A., Strach, T., Preston, J., Timusk, T., Bonn, D.A., Liang, R., and Hardy, W.N., “Disorder and superconducting-state conductivity of single crystals of YBa2Cu3O6.95,” Phys. Rev. B 49, 12,165–12,169 (1994).CrossRefGoogle ScholarPubMed
[137] Basov, D.N., Liang, R., Bonn, D.A., Hardy, W.N., Dabrowski, B., Quijada, M., Tanner, D.B., Rice, J.P., Ginsberg, D.M., and Timusk, T., “In-plane anisotropy of the penetration depth in YBa2Cu3O7−x and YBa2Cu4O8 superconductors,Phys. Rev. Lett. 74, 598601 (1995).CrossRefGoogle ScholarPubMed
[138] Quijada, M.A., Tanner, D.B., Kelley, R.J., Onellion, M., and Berger, H., “Anisotropy in the ab-plane optical properties of Bi2Sr2CaCu2O8 single-domain crystals,Phys. Rev. B 60, 14,917–14,934 (1999).CrossRefGoogle Scholar
[139] Puchkov, A.V., Fournier, P., Timusk, T., and Kolesnikov, N.N., “Optical conductivity of high Tc superconductors: From underdoped to overdoped,” Phys. Rev. Lett. 77, 1853 (1996).CrossRefGoogle ScholarPubMed
[140] Kaplan, S.G., Quijada, M.A., Drew, H.D., Tanner, D.B., Xiong, G.C., Ramesh, R., Kwon, C., and Venkatesan, T., “Optical evidence for the dynamic Jahn-Teller effect in Nd0.7Sr0.3MnO3,” Phys. Rev. Lett. 77, 20812084 (1996).CrossRefGoogle ScholarPubMed
[141] Murakami, Y., Kawada, H., Kawata, H., Tanaka, M., Arima, T., Moritomo, Y., and Tokura, Y.Direct observation of charge and orbital ordering in La0.5Sr1.5MnO4,” Phys. Rev. Lett. 80, 19321935 (1998).CrossRefGoogle Scholar
[142] Kim, K.H., Jung, J.H., and Noh, T.W., “Polaron absorption in a perovskite manganite La0.7Ca0.3MnO3,” Phys. Rev. Lett. 81, 15171520 (1998).CrossRefGoogle Scholar
[143] Li, G., Hu, W.Z., Dong, J., Li, Z., Zheng, P., Chen, G.F., Luo, J.L., and Wang, N.L., “Prob- ing the superconducting energy gap from infrared spectroscopy on a Ba0.6K0.4Fe2 As2 single crystal with Tc = 37 K,Phys. Rev. Lett. 101, 107004 (2008).CrossRefGoogle Scholar
[144] Lucarelli, A., Dusza, A., Pfuner, F., Lerch, P., Analytis, J.G., Chu, J.-H., Fisher, I.R., and Degiorgi, L., “Charge dynamics of Co-doped BaFe2As2,New J. Phys. 12, 073036 (2010).CrossRefGoogle Scholar
[145] Barišić, N., Wu, D., Dressel, M., Li, L. J., Cao, G. H., and Xu, Z. A., “Electrodynamics of electron-doped iron pnictide superconductors: Normal-state properties,” Phys. Rev. B 82, 054518 (2010).CrossRefGoogle Scholar
[146] Cheng, B., Hu, B.F., Chen, R.Y., Xu, G., Zheng, P., Luo, J.L., and Wang, N.L., “Electronic properties of 3d transitional metal pnictides: A comparative study by optical spectroscopy,” Phys. Rev. B 86, 134503 (2012).CrossRefGoogle Scholar
[147] Dai, Y.M., Xu, B., Shen, B., Wen, H.H., Hu, J.P., Qiu, X.G., and Lobo, R.P.S.M., “Pseudogap in underdoped Ba1−x Kx Fe2As2 as seen via optical conductivity,Phys. Rev. B 86, 100501(R) (2012).CrossRefGoogle Scholar
[148] Moon, S.J., Schafgans, A.A., Tanatar, M.A., Prozorov, R., Thaler, A., Canfield, P.C., Sefat, A.S., Mandrus, D., and Basov, D.N., “Interlayer coherence and superconducting condensate in the c-axis response of optimally doped Ba(Fe1−x Cox)2As2 high- Tc superconductor using infrared spectroscopy,Phys. Rev. Lett. 110, 097003/1–4 (2013).CrossRefGoogle Scholar
[149] Dai, Y.M., Xu, B., Shen, B., Wen, H.H., Qiu, X.G., and Lobo, R.P.S.M., “Optical conductivity of Ba0.6K0.4Fe2As2: The effect of in-plane and out-of-plane doping in the superconducting gap,” Europhys. Lett. 104, 47006 (2013).CrossRefGoogle Scholar
[150] Bonn, D.A., Garrett, J.D., and Timusk, T. “Far-infrared properties of URu2Si2, Phys. Rev. Lett. 61, 1305–1308 (1988).CrossRefGoogle ScholarPubMed
[151] Pimenov, A., Rudolf, T., Mayr, F., Loidl, A., Mukhin, A.A., and Balbashov, A.M., “Cou- pling of phonons and electromagnons in GdMnO3,Phys. Rev. B 74, 100403(R) (2006).CrossRefGoogle Scholar
[152] Xu, X.S., Angst, M., Brinzari, T.V., Hermann, R.P., Musfeldt, J.L., Christianson, A.D., Mandrus, D., Sales, B.C., McGill, S., Kim, J.-W., and Islam, Z., “Charge order, dynamics, and magnetostructural transition in multiferroic LuFe2O4,” Phys. Rev. Lett. 101, 227602 (2008).CrossRefGoogle ScholarPubMed
[153] Miller, K.H., Stephens, P.W., Martin, C., Constable, E., Lewis, R.A., Berger, H., Carr, G.L., and Tanner, D.B., “Infrared phonon anomaly and magnetic excitations in single- crystal Cu3Bi(SeO3)2O2Cl,” Phys. Rev. B 86, 174104/1–11 (2012).CrossRefGoogle Scholar
[154] Miller, K.H., Xu, X.S., Berger, H., Craciun, V., Xiaoxiang, Xi, Martin, C., Carr, G.L., and Tanner, D.B., “Infrared phonon modes in multiferroic single-crystal FeTe2O5Br,Phys. Rev. B 87, 224108/1–8 (2013).CrossRefGoogle Scholar
[155] LaForge, A.D., Frenzel, A., Pursley, B.C., Lin, T., Liu, X., Shi, J., and Basov, D.N., “Optical characterization of Bi2Se3 in a magnetic field: Infrared evidence for magnetoelectric coupling in a topological insulator material,Phys. Rev. B 81, 125120 (2010).CrossRefGoogle Scholar
[156] Akrap, Ana, Tran, Michaël, Ubaldini, Alberto, Teyssier, Jérémie, Giannini, Enrico, van der Marel, Dirk, Lerch, Philippe, and Homes, Christopher C.Optical properties of Bi2Te2Se at ambient and high pressures,Phys. Rev. B 86, 235207 (2012).CrossRefGoogle Scholar
[157] Martin, C., Mun, E.D., Berger, H., Zapf, V.S., and Tanner, D.B., “Quantum oscilla- tions and optical conductivity in Rashba spin-splitting BiTeI,Phys. Rev. B 87, 041104(R)/1–5 (2013).CrossRefGoogle Scholar
[158] Roessler, D.M., “Kramers-Kronig analysis of non-normal incidence reflection,” Br. J. Appl. Phys. 16, 1359 (1965).Google Scholar
[159] Ahrenkiel, R.K., “Modified Kramers-Kronig analysis of optical spectra,” J. Opt. Soc. Am. 61, 16511655 (1971).CrossRefGoogle Scholar
[160] Bardwell, J.A. and Dignam, M.J., “Extensions of the Kramers-Kronig transformation that cover a wide range of practical spectroscopic applications,” J. Chem. Phys. 83, 54685478 (1985).CrossRefGoogle Scholar
[161] Lucarini, V., Saarinen, J.J., Peiponen, K.-E., and Vartiainen, E.M. Kramers-Kronig Relations in Optical Materials Research (Springer-Verlag, Berlin Heidelberg, 2005).Google Scholar
[162] Kuzmenko, A.B., “Kramers-Kronig constrained variational analysis of optical spec- tra,” Rev. Sci. Instrum. 76, 083108 (2005).CrossRefGoogle Scholar
[163] Crandles, D., Eftekhari, F., Faust, R., Rao, G., Reedyk, M., and Razavi, F., “Kramers- Kronig-constrained variational dielectric fitting and the reflectance of a thin film on a substrate,” Appl. Opt. 47, 42054211 (2008).CrossRefGoogle Scholar
[164] Plaskett, J.S. and Schatz, P.N., “On the Robinson and Price (Kramers-Kronig) method of Interpreting reflection data taken through a transparent window,” J. Chem.Phys. 38, 612 (1963).CrossRefGoogle Scholar
[165] Andermann, G., Caron, A., and Dows, David A., “Kramers-Kronig dispersion analysis of infrared reflectance bands.” J. Opt. Soc. Am. 55, 12101212 (1965).CrossRefGoogle Scholar
[166] Tanner, D.B., “Use of x-ray scattering functions in Kramers-Kronig analysis of reflectance,” Phys. Rev. B 91, 035123 (2015).CrossRefGoogle Scholar
[167]“X-Ray Interactions With Matter,” http://henke.lbl.gov/optical_constants/.Google Scholar
[168] Doyle, P.A. and Turner, P.S., “Relativistic Hartree-Fock X-ray and electron scattering factors,” Acta Cryst. A24, 390397 (1968).CrossRefGoogle Scholar
[169] Cromer, D.T. and Mann, J.B., “X-ray scattering factors computed from numerical Hartree-Fock wave functions,” Acta Cryst. A 24, 321324 (1968); Los Alamos Report LA–3816CrossRefGoogle Scholar
[170] Hubbell, J.H., Veigele, W.J., Briggs, E.A., Brown, R.T., Cromer, D.T., and How- erton, R.J., “Atomic form factors, incoherent scattering functions, and photon scattering cross sections,” J. Phys. Chem. Ref. Data 4, 471538 (1975).CrossRefGoogle Scholar
[171] Henke, B.L., “Low energy x-ray interactions: Photoionization, scattering, specular and Bragg reflection,” in Low Energy X-ray Diagnostics edited by Attwood, D.T. and Henke, B.L. (American Institute of Physics Conf. Proc. 75, New York, 1981), pp. 146155.Google Scholar
[172] Dreier, P., Rabe, P., Malzfeldt, W., and Niemann, W., “Anomalous X-ray scattering factors calculated from experimental absorption spectra,” J. Phys. C: Solid State Phys. 17, 31233136 (1984).CrossRefGoogle Scholar
[173] Henke, B.L., Davis, J.C., Gullikson, E.M., and Perera, R.C.C., “A preliminary report on x-ray photoabsorption coefficients and atomic scattering factors for 92 elements in the 10–10,000 eV region,” Lawrence Berkeley National Laboratory Report LBL- 26259 (1988).CrossRefGoogle Scholar
[174] Burge, R.E., “The interaction of x-rays,” in X-ray Science and Technology edited by Michette, A.G. and Buckley, C.J. (Institute of Physics, Bristol, 1993), Chapter 5, pp. 160–206.Google Scholar
[175] Chantler, C.T., “Detailed Tabulation of Atomic Form Factors, Photoelectric Absorp- tion and Scattering Cross Section, and Mass Attenuation Coefficients in the Vicinity of Absorption Edges in the Soft X-Ray ?Z = 30–36, Z = 60–89, E = 0.1 keV–10 keV?, Addressing Convergence Issues of Earlier Work,” J. Phys. Chem. Ref. Data 29, 5971048 (2000).CrossRefGoogle Scholar
[176] Kozima, K., Suetaka, W., and Schatz, P.N., “Optical constants of thin films by a Kramers-Kronig method,” J. Opt. Soc. Am. 56, 181184 (1966).CrossRefGoogle Scholar
[177] Romero, D.B., Porter, C.D., Tanner, D.B., Forro, L., Mandrus, D., Mihaly, L., Carr, G.L., and Williams, G.P., “Quasiparticle damping in Bi2Sr2CaCu2O8 and Bi2Sr2CaCuO6,Phys. Rev. Lett. 68, 15901593 (1992).CrossRefGoogle Scholar
[178] Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamarás, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F., and Rinzler, A.G., “Transparent, conductive nanotube Films,” Science 305, 12731276 (2004).CrossRefGoogle ScholarPubMed
[179] Borondics, F., Kamarás, K., Nikolou, M., Tanner, D.B., Chen, Z.H., and Rinzler, A.G., “Study of charge dynamics in transparent single-walled carbon nanotube films,” Phys. Rev. B 74, 045431/1–6 (2006).CrossRefGoogle Scholar
[180] Martin, P.C.Sum rules, Kramers-Kronig relations, and transport coefficients in charged systems,” Phys. Rev. 161, 143155 (1967).CrossRefGoogle Scholar
[181] Saslow, W.M., “Two classes of Kramers-Kronig sum rules,” Phys. Lett. 33, 157158 (1970).CrossRefGoogle Scholar
[182] Altarelli, M., Dexter, D.L., Nussenzveig, H.M., and Smith, D.Y., “Superconvergence and sum rules for the optical constants,” Phys. Rev. B 6, 45024509 (1972).CrossRefGoogle Scholar
[183] Altarelli, M. and Smith, D.Y.Superconvergence and sum rules for the optical constants: Physical meaning, comparison with experiment, and generalization,” Phys. Rev. B 9, 12901298 (1974).CrossRefGoogle Scholar
[184] Smith, D.Y. and Shiles, E., “Finite-energy f-sum rules for valence electrons,” Phys. Rev. B 17, 4689 (1978).CrossRefGoogle Scholar
[185] King, F.W., “Some bounds for the absorption coefficient of an isotropic nonconduct- ing medium,” Phys. Rev. B 25, 1381 (1982).CrossRefGoogle Scholar
[186] Lévque, G., “Augmented partial sum rules for the analysis of optical data,” Phys. Rev. B 34, 5070 (1986).CrossRefGoogle ScholarPubMed
[187] Onnes, H.K., “Further experiments with liquid Helium G. On the electrical resistance of pure metals, etc. VI. On the sudden change in the rate at which the resistance of mercury disappears,” Comm. Phys. Lab. Univ. Leiden 122 b, 818 (1911).Google Scholar
[188] Berlincourt, T.G. and Hake, R.R., “Superconductivity at high magnetic fields,” Phys. Rev. 131, 140 (1963).CrossRefGoogle Scholar
[189] Matthias, B.T., Geballe, T.H., Geller, S., Corenzwit, E. Phys. Rev. 95, 1435 (1954).CrossRefGoogle Scholar
[190] Bednorz, G. and Mueller, K.A., “Possible high TC superconductivity in the Ba-La- Cu-O system,” Z. Physik B. 64, 189193 (1986).CrossRefGoogle Scholar
[191] Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J., “Supercon- ductivity at 39 K in magnesium diboride,” Nature 410, 63 (2001).CrossRefGoogle Scholar
[192] Jerome, D., Mazaud, A., Ribault, M. and Bechgaard, K., J. Phys. Lett. 41, L95 (1980).CrossRefGoogle Scholar
[193] Walatka, V.V. Jr. Labes, M. M., and Perlstein, J.H., “Polysulfur Nitride—A one- dimensional chain with a metallic ground state,” Phys. Rev. Lett. 31, 11391142 (1973).CrossRefGoogle Scholar
[194] Eisenstein, Julian, “Superconducting elements,” Rev. Mod. Phys. 26, 277–291 (1954).CrossRefGoogle Scholar
[195] Matthias, B.T., “Superconductivity in the periodic system,” Prog. Low Temp. Phys. 2, 138150 (1957).CrossRefGoogle Scholar
[196] Matthias, B., Geballe, T., and Compton, V., “Superconductivity,” Rev. Mod. Phys. 35, 122 (1963).CrossRefGoogle Scholar
[197] Roberts, B.W., “Survey of superconductive materials and critical evaluation of selected properties,” J. Phys. Chem. Ref. Data 5, 581 (1976).CrossRefGoogle Scholar
[198] Jerome, D. and Schultz, H.J., Adv. Phys. 51, 293479 (2002).CrossRefGoogle Scholar
[199] Singleton, John and Mielke, Charles, “Quasi-two-dimensional organic superconduc- tors: A review,” Contemp. Phys. 43, 63–96 (2002).CrossRefGoogle Scholar
[200] Geballe, T.H., “The never ending search for high temperature superconductivity,” J. Supercond. Nov. Magn. 19, 261276 (2006).CrossRefGoogle Scholar
[201] Lebed, A.G. (Ed.), “The Physics of Organic Superconductors and Conductors,” (Springer Series in Materials Science, Vol. 110, 2008).CrossRefGoogle Scholar
[202] Kordyuk, A.A., “Iron-based superconductors: Magnetism, superconductivity, and electronic structure,” Low Temp. Phys., 38, 888899 (2012).CrossRefGoogle Scholar
[203] Kitazawa, K., “Superconductivity: 100th anniversary of its discovery and its future,” Jap. J. Appl. Phys. 51, 010001/1–14 (2012).CrossRefGoogle Scholar
[204] Li, Y., Hao, J., Liu, H., Li, Y., and Ma, Y., “The metallization and superconductivity of dense hydrogen sulfide,” J. Chem. Phys. 140, 174712 (2014).CrossRefGoogle ScholarPubMed
[205] Duan, D. et al., “Pressure-induced metallization of dense (H2S)2sb2 with high-Tc superconductivity.” Sci. Rep. 4, 6968 (2014).CrossRefGoogle Scholar
[206] Drozdov, A., Eremets, M., Troyan, I., Ksenofontov, V., and Shylin, S., “Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system,” Nature 525, 7376 (2015).CrossRefGoogle ScholarPubMed
[207] Capitani, F., Langerome, B., Brubach, J.-B., Roy, P., Drozdov, A., Eremets, M. I., Nicol, E. J., Carbotte, J. P., and Timusk, T., “Spectroscopic evidence of a new energy scale for superconductivity in H3S,” Nat. Phys. 14, 000000 (2017).Google Scholar
[208] Meissner, W., “Messungen mit Hilfe von fliissigem Helium. V. Supraleitfähigkeit von Kupfersulfid” (“Measurements with the aid of liquid helium. V. Superconductivity of copper sulfide”), Z. fur Phys., 58, 570 (1929).CrossRefGoogle Scholar
[209] Meissner, W. and Ochsenfeld, R., “Ein neuer Effekt bei Eintritt der Supraleitfähigkeit” (“A new effect at the onset of superconductivity”), Naturwissenschaften 21, 787788 (1933).CrossRefGoogle Scholar
[210] Bardeen, J., Cooper, L.N., and Schrieffer, J.R., “Theory of superconductivity,” Phys. Rev. 108, 1175 (1957).CrossRefGoogle Scholar
[211] Robert Schrieffer, J. Theory of Superconductivity (W.A. Benjamin, New York, 1964; Perseus Books, 1999).Google Scholar
[212] Landau, L.D. and Ginzburg, V.L., “On the theory of superconductivity,” Pis’ma Zh. Eksp. Teor. Fiz. 20, 1064 (1950).Google Scholar
[213] Gennes, P.G. de, Superconductivity of Metals and Alloys (W.A. Benjamin, New York. 1966; Perseus Books 1999).Google Scholar
[214] Gorkov, L.P., “Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivity,” Sov. Phys. JETP, 9, 13641367 (1959).Google Scholar
[215] Tinkham, Michael Introduction to Superconductivity (McGraw-Hill, New York, 1975; Robert E. Krieger, Malabar, 1980)Google Scholar
[216] Townsend, P. and Sutton, J., “Investigation by electron tunneling of the superconduct- ing energy gaps in Nb, Ta, Sn and Pb,” Phys. Rev. 128, 591595 (1962).CrossRefGoogle Scholar
[217] Frank, R.L., Hainzl, C., Seiringer, R., and Solovej, J.P., “Microscopic derivation of Ginzburg-Landau theory,” J. Amer. Math. Soc., 25, 667 (2012).CrossRefGoogle Scholar
[218] London, F. and London, H., “The electromagnetic equations of the supraconductor,” Proc. Roy. Soc. A149, 7188 (1935).Google Scholar
[219] Pippard, A.B., “The surface energies of superconductors,” Math. Proc. Camb. Phil. Soc., 47, 617625 (1951); A.B. Pippard, Proc. Roy. Soc. A216, 547 (1953).CrossRefGoogle Scholar
[220] Fulton, T.A. and Dolan, G.J., “Observation of single-electron charging effects in small tunnel junctions,” Phys. Rev. Lett. 59, 109112 (1987).CrossRefGoogle ScholarPubMed
[221] Xi, X.X., Hwang, J., Martin, C., Tanner, D.B., and Carr, G.L., “Far-infrared conduc- tivity measurements of pair breaking in superconducting Nb0.5Ti0.5N thin-films induced by an external magnetic field,” Phys. Rev. Lett. 105, 257006/1–4 (2010).CrossRefGoogle Scholar
[222] Mattis, D.C. and Bardeen, J., “Theory of the anomalous skin effect in normal and superconducting metals,” Phys. Rev. 111, 412417 (1958).CrossRefGoogle Scholar
[223] Nam, S.B., “Theory of electromagnetic properties of superconducting and normal systems. I,” Phys. Rev. 156, 470486 (1967).CrossRefGoogle Scholar
[224] Nam, S.B., “Theory of electromagnetic properties of strong-coupling and impure superconductors. II,” Phys. Rev. 156, 487–93 (1967).CrossRefGoogle Scholar
[225] Miller, P.B., “Surface impedance of superconductors,” Phys. Rev. 118, 928934 (1960).CrossRefGoogle Scholar
[226] Skalski, S., Betbeder-Matibet, O., and Weiss, P.R., “Properties of superconducting alloys containing paramagnetic impurities,” Phys. Rev. 136, A1500–A1518 (1964).CrossRefGoogle Scholar
[227] Zimmermann, W., Brandt, E.H., Bauec, M., Seider, E., and Genzel, L., “Optical conductivity of BCS superconductors with arbitrary purity,” Phys. C: Supercond. 183, 99104 (1991).CrossRefGoogle Scholar
[228] Tilley, D.R. and Tilley, J., Superfluidity and Superconductivity (Adam Hilger Ltd, Bristol, 1990).Google Scholar
[229] Xi, X.X., Conventional and Time-Resolved Spectroscopy of Magnetic Properties of Superconducting Thin Films (Thesis, University of Florida, 2011).Google Scholar
[230] Scalapino, D.J., “A common thread: The pairing interaction for unconventional superconductors,” Rev. Mod. Phys. 84, 13831417 (2012).CrossRefGoogle Scholar
[231] Norman, M.R., “The challenge of unconventional superconductivity,” Science 332, 196200 (2011).CrossRefGoogle ScholarPubMed
[232] Stewart, G.R., “Unconventional superconductivity,” Adv. Phys. 66, 75196 (2017).CrossRefGoogle Scholar
[233]M.K Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, , and Chu, C.W., “Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure,” Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
[234] Timusk, T. and Tanner, D.B., “Infrared properties of high-Tc superconductors,” in Physical Properties of High Temperature Superconductors I, edited by Ginsberg, D.M. (World Scientific, Singapore, 1989) p. 339.Google Scholar
[235] Tanner, D.B. and Timusk, T., “Optical properties of high-temperature superconduc- tors,” in Physical Properties of High Temperature Superconductors III, edited by Ginsberg, D.M. (World Scientific, Singapore, 1992) p. 363.Google Scholar
[236] Timusk, T., “Infrared properties of exotic superconductors,” Physica C 317–318, 1829, 1999.CrossRefGoogle Scholar
[237] Basov, D.N. and Timusk, T., “Electrodynamics of high-Tc superconductors,” Rev. Mod. Phys. 77, 721 (2005).CrossRefGoogle Scholar
[238] Tanner, D.B., “Optical properties of one-dimensional systems,” in Extended Linear Chain Compounds, Vol. 2, edited by Miller, Joel S. (Plenum Press, New York, 1982) pp. 205–258.Google Scholar
[239] Degiorgi, L., “The electrodynamic response of heavy-electron compounds,” Rev. Mod. Phys. 71: 687734, 1999CrossRefGoogle Scholar
[240] Ishiguro, T., Yamaji, K., and Saito, G.. Organic Superconductors (Springer-Verlag, Heidelberg, 2002).Google Scholar
[241] Dressel, M. and Drichko, N., “Optical properties of two-dimensional organic con- ductors: Signatures of charge ordering and correlation effects,” Chem. Rev. 104, 56895716 (2004).CrossRefGoogle Scholar
[242] Johnston, D.C., “The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides,” Adv. Phys. 59, 8031061 (2010).CrossRefGoogle Scholar
[243] Hirschfeld, P.J., Korshunov, M.M., and Mazin, I.I., “Gap symmetry and structure of Fe-based superconductors,” Rep. Progress Phys. 74, 124508 (2011).CrossRefGoogle Scholar
[244] Reedyk, M., Bonn, D.A., Garrett, J.D., Greedan, J.E., Stager, C.V., Timusk, T., Kamarás, K., and Tanner, D.B., “Far-infrared optical properties of Bi2Sr2CaCu2O8,” Phys. Rev. B, 38, 11,981 (1988).CrossRefGoogle ScholarPubMed
[245] Puchkov, A., Fournier, P., Basov, D.N., Timusk, T., Kapitulnik, A., amd Kolesnikov, N.N., “Evolution of the pseudogap state of high-Tc superconductors with doping,” Phys. Rev. Lett. 77, 3212 (1996).CrossRefGoogle ScholarPubMed
[246] Puchkov, A.V., Basov, D.N., and Timusk, T., “The pseudogap state in high-Tc superconductors: An infrared study,J. Phys.: Condens. Matter 8, 10049 (1996).Google Scholar
[247] Hwang, J., Carbotte, J.P., and Timusk, T., “Evidence for a pseudogap in underdoped Bi2Sr2CaCu2O8+δ and YBa2Cu3O6.50 from in-plane optical conductivity measure- ments,” Phys. Rev. Lett. 100, 177005 (2008).CrossRefGoogle Scholar
[248] Allen, P.B., Pickett, W.E., and Krakauer, H., “Band-theory analysis of anisotropic transport in La2CuO4-based superconductors,” Phys. Rev. B 36, 3926 (1987).CrossRefGoogle Scholar
[249] Umezawa, A., Crabtree, G.W., Liu, J.Z., Moran, T.J., Malik, S.K., Nunez, L.H., Kwok, W.L., and Sowers, C.H., “Anisotropy of the lower critical field, magnetic penetra- tion depth, and equilibrium shielding current in single-crystal YBa2Cu3O7−δ,” Phys. Rev. B 38, 2843 (1988).CrossRefGoogle Scholar
[250] Kamarás, K., Herr, S.L., Porter, C.D., Tache, N., Tanner, D.B., Etemad, S., Venkate- san, T., Chase, E., Inam, A., Wu, X.D., Hegde, M.S., and Dutta, B., “In a clean high-Tcsuperconductor you do not see the gap,” Phys. Rev. Lett. 64, 8487 (1990).CrossRefGoogle Scholar
[251] Pankove, J.I., Optical Processes in Semiconductors (Dover, New York, 1971).Google Scholar
[252] Yu, P.Y. and Cardona, M., Fundamentals of Semiconductors: Physics and Materials Properties (Springer, New York, 1996).CrossRefGoogle Scholar
[253] Peierls, R.E., Quantum Theory of Solids (Clarendon Press, Oxford, England, 1955).Google Scholar
[254] Grundmann, M. The Physics of Semiconductors, An Introduction including Nanophysics and Applications (Springer, Heidelberg, 2016).CrossRefGoogle Scholar
[255]Wikipedia, the free encyclopedia, “List of semiconductor materials,” http://en.wikipedia.org/wiki/List of semiconductor materials.Google Scholar
[256] Ohring, M., Reliability and Failure of Electronic Materials and Devices (Academic Press, San Diego, 1998), p. 310.Google Scholar
[257] Tao, Y., Boss, J.M., Moores, B.A., and Degen, C.L., “Single-crystal diamond nanome- chanical resonators with quality factors exceeding one million,” Nat. Comm. 5, 3638 (2014).CrossRefGoogle Scholar
[258] Abass, A.K. and Ahmad, N.H., “Indirect band gap investigation of orthorhombic single crystals of sulfur,”J. Phys. Chem. Solids 47, 143 (1986).CrossRefGoogle Scholar
[259] Evans, D.A., McGlynn, A.G., Towlson, B.M., Gunn, M., Jones, D., Jenkins, T.E., Winter, R., Poolton, N.R.J., “Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy,” J. Phys.: Cond. Matt. 20, 75233 (2008).Google Scholar
[260] Klingshirn, C.F. Semiconductor Optics (Springer, Heidelberg, 1997), p. 127.Google Scholar
[261] Banerjee, S. et al. “Physics and chemistry of photocatalytic titanium dioxide: Visualization of bactericidal activity using atomic force microscopy,” Curr. Sci. 90, 1378 (2006).Google Scholar
[262] Madelung, O., Rössler, U., Schulz, M. (ed.), “Cuprous oxide (Cu2O) band structure, band energies.” in Group III Condensed Matter. Numerical Data and Functional Relationships in Science and Technology. 41C: Non-Tetrahedrally Bonded Elements and Binary Compounds I. doi:10.1007/10681727 62.CrossRefGoogle Scholar
[263] Yacobi, B.G., Semiconductor Materials: An Introduction to Basic Principles (Springer, 2003) ISBN 0-306-47361-5; C. Hodes; Ebooks Corporation, Chemical Solution Deposition of Semiconductor Films (CRC Press, 2002), p. 319.Google Scholar
[264] Rajakarunanayake, Y.N., Optical Properties of Si-Ge Superlattices and Wide Band Gap II-VI Superlattices, Dissertation (Ph.D.), California Institute of Technology, 1991Google Scholar
[265] Ehrenreich, H., “Band structure and electron transport of GaAs,” Phys. Rev. 120, 19511963 (1960).CrossRefGoogle Scholar
[266] Rohlfing, M., Krüger, P., and Pollmann, J., “Quasiparticle band-structure calculations for C, Si, Ge, GaAs, and SiC using Gaussian-orbital basis sets,” Phys. Rev. B 48, 1779117805 (1993).CrossRefGoogle Scholar
[267] Richard, S., Aniel, F., and Fishman, G., “Energy-band structure of Ge, Si, and GaAs: A thirty-band k · p method,” Phys. Rev. B 70, 235204 (2004).CrossRefGoogle Scholar
[268] Spitzer, W.G. and Whelan, J.M., “Infrared absorption and electron effective mass in n-type gallium arsenide,” p. 114, 59–63 (1959).Google Scholar
[269] Sturge, M.D., “Optical absorption of gallium arsenide between 0.6 and 2.75 eV,” Phys. Rev. 127, 768773 (1962).CrossRefGoogle Scholar
[270] Casey, H.C., Sell, D.D., and Wecht, K.W., “Concentration dependence of the absorp- tion coefficient for n- and p- type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys.46, 250 (1975).CrossRefGoogle Scholar
[271] Aspnes, D.E., Kelso, S.M., Logan, R.A., and Bhat, R., “Optical properties of Alx Ga1−x As,J. Appl. Phys. 60, 754767 (1986).CrossRefGoogle Scholar
[272] Brust, D., Phillips, J. C., and Bassani, F., “Critical points and ultraviolet reflectivity of semiconductors,” Phys. Rev. Lett. 9, 9497 (1962).CrossRefGoogle Scholar
[273] Kane, E.O., “Energy band structure in p-type germanium and silicon,” J. Phys. Chem. Solids 1, 8299 (1956).CrossRefGoogle Scholar
[274] Cardona, M. and Pollak, F.H., “Energy-band structure of germanium and silicon: The k· p method”, Phys. Rev. 142, 530543 (1966).CrossRefGoogle Scholar
[275] Kane, E.O., “Band structure of silicon from an adjusted Heine-Abarenkov calcula- tion,” Phys. Rev. 146, 558567 (1966).CrossRefGoogle Scholar
[276] Saslow, W., Bergstresser, T.K., and Cohen, Marvin L., “Band structure and optical properties of diamond,” Phys. Rev. Lett. 16, 354357 (1966).CrossRefGoogle Scholar
[277] Zakharchenya, B.P. and Selsyan, R.P.Diamagnetic excitons in semiconductors,” Sov. Phys. Uspekhi 12, 70 (1969).CrossRefGoogle Scholar
[278] Seisyan, R.P., “Spectroscopy of Diamagnetic Excitons,” Science, Moscow (1984).Google Scholar
[279] Baumeister, P.W., “Optical absorption of cuprous oxide,” Phys. Rev. 121, 359 (1961).CrossRefGoogle Scholar
[280] Faulkner, R.A., “Higher donor excited states for prolate-spheroid conduction bands: A reevaluation of silicon and germanium,” Phys. Rev. 184, 713 (1969).CrossRefGoogle Scholar
[281] Baldereschi, A. and Lipari, N.O., “Spherical model of shallow acceptor states in semiconductors,” Phys. Rev. B 8, 2697 (1973).CrossRefGoogle Scholar
[282] Baldereschi, A. and Lipari, N.O.Cubic contributions to the spherical model of shallow acceptor states,” Phys. Rev. B 9, 1525 (1974).CrossRefGoogle Scholar
[283] Allen, J.W. and Mikkelsen, J.C., “Optical properties of CrSb, MnSb, NiSb, and NiAs,” Phys. Rev. B 15, 2952 (1977).CrossRefGoogle Scholar
[284] Götze, W. and Wölfle, P., “Homogeneous dynamical conductivity of simple metals,” Phys. Rev. B 6, 1226 (1972).CrossRefGoogle Scholar
[285] Littlewood, P.B. and Varma, C.M., “Phenomenology of the normal and superconduct- ing states of a marginal Fermi liquid,” J. Appl. Phys. 69, 4979 (1991).CrossRefGoogle Scholar
[286] Carbotte, J.P., Schachinger, E., and Hwang, J., “Boson structures in the relation between optical conductivity and quasiparticle dynamics,” Phys. Rev. B 71, 054506 (2005).CrossRefGoogle Scholar
[287] Hwang, J., Timusk, T., and Gu, G.D., “Doping dependent optical properties of Bi2Sr2CaCu2O8+δ,J. Phys.: Cond. Matt. 19, 125208 (2007).Google Scholar
[288] Allen, P.B., “Electron self-energy and generalized Drude formula for infrared conductivity of metals,” Phys. Rev. B 92, 054305 (2015).CrossRefGoogle Scholar
[289] Gurzhi, R.N., “Mutual electron correlations in metal optics,” Sov. Phys. JETP 8, 673675 (1959).Google Scholar
[290] Gurzhi, R.N., “Hydrodynamic effects in solids at low temperature,” Sov. Phys. Uspekhi 11, 255270 (1968).CrossRefGoogle Scholar
[291] Smith, J.B. and Ehrenreich, H., “Frequency dependence of the optical relaxation time in metals,” Phys. Rev. B 25, 923930 (1982).CrossRefGoogle Scholar
[292] Rosch, A., “Optical conductivity of clean metals,” Ann. Phys. 15, 526534 (2006).CrossRefGoogle Scholar
[293] Maslov, D.L. and Chubukov, A.V., “First-Matsubara-frequency rule in a Fermi liquid. II. Optical conductivity and comparison to experiment,” Phys. Rev. B 86, 155137 (2012).CrossRefGoogle Scholar
[294] Berthod, C., Mravlje, J., Deng, X., van der Marel, D., and Georges, A., “Non-Drude universal scaling laws for the optical response of local Fermi liquids,” Phys. Rev. B87, 115109 (2013).Google Scholar
[295] Maslov, D.L. and Chubukov, A.V., “Optical response of correlated electron systems,” Rep. Prog. Phys. 80, 026503 (2016).Google ScholarPubMed
[296] Varma, C.M., Littlewood, P.B., Schmitt-Rink, S., Abrahams, E., and Ruckenstein, A.E., “Phenomenology of the normal state of Cu-O high-temperature superconductors,” Phys. Rev. Lett. 63, 1996 (1989).CrossRefGoogle ScholarPubMed
[297] Slakey, F., Cooper, S.L., Klein, M.V., Rice, J.P., Bukowski, E.D., and Ginsberg, D.M., “Gap anisotropy and phonon self-energy effects in single-crystal YBa2Cu3O7−δ,” Phys. Rev. B 38, 11,934 1989.Google Scholar
[298] Olson, C.G., Liu, R., Lynch, D.W., List, R.S., Arko, A.J., Veal, B.W., Chang, Y.C., Jiang, P.Z. and Paulikas, A.P., “High-resolution angle-resolved photoemission study of the Fermi surface and the normal-state electronic structure of Bi2Sr2CaCu2O8,” Phys. Rev. B 42, 381 (1990).CrossRefGoogle ScholarPubMed
[299] Hwu, Y., Lozzi, L., Marsi, M., La Rosa, S., Winokur, M., Davis, P., Onellion, M., Berger, H., Gozzo, F., Lévy, F., and Margaritondo, G., “Electronic spectrum of the high- temperature superconducting state,” Phys. Rev. Lett. 67, 2573 (1991).CrossRefGoogle ScholarPubMed
[300] Gurvitch, M. and Fiory, A.T., “Resistivity of La1.825Sr0.175CuO4 and YBa2Cu3O7 to 1100 K: Absence of saturation and its implications,” Phys. Rev. Lett. 59, 13371340 (1987).CrossRefGoogle ScholarPubMed
[301] Martin, S., Fiory, A.T., Fleming, R.M., Schneemeyer, L.F., and Waszczak, J.V., “Temperature dependence of the resistivity tensor in superconducting Bi2Sr2.2Ca0.8Cu2O8crystals,” Phys. Rev. B 41, 846 (1990).Google Scholar
[302] Hubbard, J., “Electron correlation in narrow energy bands,” Proc. Roy. Soc. (London) A276, 238257 (1963).Google Scholar
[303] Mott, N.F., “Metal-insulator transition,” Rev. Mod. Phys. 40, 677683 (1968).CrossRefGoogle Scholar
[304] Lieb, E.H. and Wu, F.Y., “Absence of Mott transition in an exact solution of the short- range one-band model in one dimension,” Phys. Rev. Lett. 20, 14451448 (1968).CrossRefGoogle Scholar
[305] Hubbard, J., “Generalized Wigner lattices in one dimension and some applications to tetracyanoquinodimethane (TCNQ) salts,” Phys. Rev. B 17, 494 (1978).CrossRefGoogle Scholar
[306] Tanner, D.B., Jacobsen, C.S., Bright, A.A., and Heeger, A.J., “Infrared studies of the energy gap and electron-phonon interaction in potassium-tetracyanoquinodimethane (K-TCNQ),” Phys. Rev. B 16, 32833290 (1977).CrossRefGoogle Scholar
[307] Rice, M.J.. “Towards the experimental determination of the fundamental microscopic parameters of organic ion-radical compounds,” Solid State Commun. 31, 9398 (1979).CrossRefGoogle Scholar
[308] Brooks Harris, A. and Lange, Robert V.. “Single-particle excitations in narrow energy bands,” Phys. Rev. 157, 295314 (1967).CrossRefGoogle Scholar
[309] Painelli, A. and Girlando, A., “Electron-molecular vibration (e-mv) coupling in charge-transfer compounds and its consequences on the optical spectra: A theoretical framework,” J. Chem. Phys. 84, 56555671 (1986).CrossRefGoogle Scholar
[310] Hopfield, J.J., “Infrared properties of transition metals (Electron phonon coupling and IR optical constants relationship to superconductivity in transition metals),” in Superconductivity in d- and f- band metals, edited by Suhl, H. and Maple, M.B. (Plenum, New York, 1972).Google Scholar
[311] Hopfield, J.J., “Infrared properties of transition metals,” AIP Conference Proceedings 4, 358366 (1972).CrossRefGoogle Scholar
[312] Allen, P.B., “Electron-phonon effects in the infrared properties of metals,” Phys. Rev. B 3, 305320 (1971).CrossRefGoogle Scholar
[313] Joyce, R.R. and Richards, P.L., “Phonon contribution to the far-infrared absorptivity of superconducting and normal lead,” Phys. Rev. Lett. 24, 10071011 (1970).CrossRefGoogle Scholar
[314] Brändli, G. and Sievers, A.J., “Absolute measurement of the far-infrared surface resistance of Pb,” Phys. Rev. B 5, 3550 (1972).CrossRefGoogle Scholar
[315] Farnworth, B. and Timusk, T., “Far-infrared measurements of the phonon density of states of superconducting lead,” Phys. Rev. B 10, 27992802 (1974).CrossRefGoogle Scholar
[316] Farnworth, B. and Timusk, T., “Phonon density of states of superconducting lead,” Phys. Rev. B 14, 5119 (1976).CrossRefGoogle Scholar
[317] Shaw, W. and Swihart, J.C., “Theory of phonon contribution to infrared absorptivity of superconducting and normal metals,” Bull. Am. Phys. Soc. 16, 352 (1971).Google Scholar
[318] Scher, H., “Far-infrared absorptivity of normal lead,” Phys. Rev. Lett. 25, 759762 (1970).CrossRefGoogle Scholar
[319] Rice, M.J., “Organic linear conductors as systems for the study of electron-phonon interactions in the organic solid state,” Phys. Rev. Lett. 37, 3639 (1976).CrossRefGoogle Scholar
[320] Rice, M.J., Pietronero, L., and Brüesch, P., “Phase phonons and intramolecular electron-phonon coupling in the organic linear chain semiconductor TEA(TCNQ)2,” Solid State Commun. 21, 757760 (1977).CrossRefGoogle Scholar
[321] Rice, M.J., Lipari, N.O., and Strässler, S., “Dimerized organic linear-chain conductors and the unambiguous experimental determination of electron-molecular-vibration coupling constants,” Phys. Rev. Lett. 39, 13591362 (1977).CrossRefGoogle Scholar
[322] Rice, M.J., Yartsev, V.M., and Jacobsen, C.S., “Investigation of the nature of the unpaired electron states in the organic semiconductor N-methyl-N- ethylmorpholinium-tetracyanoquinodimethane,” Phys. Rev. B 21, 34373446 (1980).CrossRefGoogle Scholar
[323] Brau, A., Brüesch, P., Farges, J.P., Hinz, W., and Kuse, D., “Polarized optical reflection spectra of the highly anisotropic organic semiconductor TEA(TCNQ)2,” Phys. Stat. Sol. (b) 62, 615623 (1974).CrossRefGoogle Scholar
[324] Tanner, D.B., Deis, J.E., Epstein, A.J., and Miller, J.S., “Optical properties of the semiconducting’metal-like’ complex (NMe3H)(I)(TCNQ),” Solid State Commun. 31, 671675 (1979).CrossRefGoogle Scholar
[325] McCall, R.P., Tanner, D.B., Miller, J.S., and Epstein, A.J., “Optical properties of the 1:2 compound of dimethylferrocenium with tetracyanoquinodimethanide: [(Me2Fc)(TCNQ)2],” Phys. Rev. B 35, 92099217 (1987).CrossRefGoogle Scholar
[326] Musfeldt, J.L., Homes, C.C., Almeida, M., and Tanner, D.B., “Temperature depen- dence of the infrared and optical properties of N -dimethyl thiomorpholinium- (tetracyanoquinodimethane)2,Phys. Rev. B 46, 87778789 (1992).CrossRefGoogle Scholar
[327] Mele, Eugene J. and Rice, Michael J.. “Vibrational excitations of charged solitons in polyacetylene,” Phys. Rev. Lett. 45, 926–929 (1980).CrossRefGoogle Scholar
[328] Etemad, S., Pron, A., Heeger, A. J., MacDiarmid, A. G., Mele, E. J., and Rice, M. J., “Infrared-active vibrational modes of charged solitons in (CH)x and (CD)x,Phys. Rev. B 23, 51375141 (1981).CrossRefGoogle Scholar
[329] Ehrenfreund, E., Vardeny, Z., Brafman, O., and Horovitz, B., “Amplitude and phase modes in trans-polyacetylene: Resonant Raman scattering and induced infrared activity,” Phys. Rev. B 36, 15351553 (1987).CrossRefGoogle ScholarPubMed
[330] Kim, Y.H., and Heeger, A.J., “Infrared-active vibrational modes of heavily doped ‘metallic’ polyacetylene,” Phys. Rev. B 40, 83938398 (1989).CrossRefGoogle ScholarPubMed
[331] Fu, Ke-Jian, Karney, William L., Chapman, Orville L., Huang, Shiou-Mei, Kaner, Richard B., Diederich, François, Holczer, Károly, and Whetten, Robert L.Giant vibrational resonances in A6C60 compounds,” Phys. Rev. B 46, 1937 (1992).CrossRefGoogle ScholarPubMed
[332] Choi, H.-Y. and Rice, M.J., “Infrared absorption by charged phonons in doped C60,” in Electronic Properties of High-Tc Superconductors (Springer, Berlin Heidelberg, 1993) pp. 501–506.Google Scholar
[333] Timusk, T. and Tanner, D.B., “Evidence for strong bound-electron phonon interaction at 52 meV in YBa2 Cu3O7,Physica C 169, 425428 (1990).CrossRefGoogle Scholar
[334] Timusk, T., Porter, C.D., and Tanner, D.B., “Strong electron-phonon interaction in the high-Tc superconductors: Evidence from the infrared,” Phys. Rev. Lett. 66, 663666 (1991).CrossRefGoogle ScholarPubMed
[335] Rice, M.J., Yartsev, V.M. and Jacobsen, C.S., “Investigation of the nature of the unpaired electron states in the organic semiconductor N-methyl-N- ethylmorpholinium-tetracyanoquinodimethane,” Phys. Rev. B 21, 3437 (1980).CrossRefGoogle Scholar
[336] Iida, Y., “Electronic spectra and charge-transfer absorption of solid anion radical salts of 2,3-dicyano-p-benzoquinone and 2,3-dichloro-5,6-dicyano-p-benzoquinone,” Bull. Chem. Soc. Jap. 51, 631632 (1978).CrossRefGoogle Scholar
[337] Tanaka, J., Tanaka, M., Kawai, T., Takabe, T. and Maki, O., “Electronic spectra and electronic structure of TCNQ complexes,” Bull. Chem. Soc. Jap. 49, 2358 (1976).CrossRefGoogle Scholar
[338] Pippard, A.B., “The surface impedance of superconductors and normal metals at high frequencies. II. The anomalous skin effect in normal metals,” Proc. R. Soc. Lond. A 191, 385399 (1947).Google Scholar
[339] Chambers, R.G., “Anomalous skin effect in metals,” Nature 165, 239240 (1950).CrossRefGoogle Scholar
[340] Casimir, H.B.G. and Ubbink, J., “The skin effect: II. The skin effect at high frequencies,” Philips Tech. Rev. 28, 300315 (1967).Google Scholar
[341] Land, E.H., “Some aspects on the development of sheet polarizers,” J. Opt. Soc. Am. 41, 957963 (1951).CrossRefGoogle Scholar
[342] Abbott, B.P. et al. (LIGO Scientific Collaboration), “LIGO: The Laser Interferometer Gravitational-wave Observatory,” Rep. Prog. Phys. 72, 076901/1–25 (2009).CrossRefGoogle Scholar
[343] Bickel, W.S. and Bailey, W.M., “Stokes vectors, Mueller matrices, and polarized scattered light,” Am. J. Phys. 53, 468 (1985).CrossRefGoogle Scholar
[344] Savenkov, S.N., “Jones and Mueller matrices: Structure, symmetry relations and information content,” Light Scatter. Rev. 4, 71 (2009).CrossRefGoogle Scholar
[345]“The Physics Hypertextbook, ‘Refraction,’ “http://physics.info/refraction/.Google Scholar
[346] Duarte, J.L., Sanjurjo, J.A., and Katiyar, R.S., “Off-normal infrared reflectivity in uniaxial crystals: α-LiIO3 and α-quartz,” Phys. Rev. B 36, 33683372 (1987).CrossRefGoogle Scholar
[347] Landau, L., “Diamagnetismus der Metalle” (“Diamagnetism of metals”), Z. Phys. 64, 629 (1930).Google Scholar
[348] Hurd, Colin M., The Hall Effect in Metals and Alloys (Plenum Press, New York, 1972).CrossRefGoogle Scholar
[349] Hall, E.H., “On a new action of the magnet on electric currents,” American Journal of Mathematics 2, 287292 (1879).CrossRefGoogle Scholar
[350] Schoenberg, D., Magnetic Oscillations in Metals (Cambridge University Press, London, 1984).CrossRefGoogle Scholar
[351] Maxfield, B.W., “Helicon waves in solids,” Am. J. Phys. 37, 241 (1969).CrossRefGoogle Scholar
[352] Goodman, J.M., “Helicon waves, surface-mode loss, and the accurate determination of the hall coefficients of aluminum, indium, sodium, and potassium,” Phys. Rev.171, 641 (1968).CrossRefGoogle Scholar
[353] Blewitt, R. and Sievers, A.J., “Harmonic series of cyclotronlike resonances in Bismuth,” Phys. Rev. Lett. 30, 1041 (1973).CrossRefGoogle Scholar
[354] Dresselhaus, G., Kip, A.F. and Kittel, C., “Cyclotron resonance of electrons and holes in silicon and germanium crystals,” Phys. Rev. 98, 368 (1955).CrossRefGoogle Scholar
[355] Kono, J., “Cyclotron resonance,” in Methods in Materials Research, edited by Kaufmann, E.N. et al. (Wiley, 1999).Google Scholar
[356] Rosenbaum, T.F., Andres, K., Thomas, G.A., and Bhatt, R.N., “Sharp metal-insulator transition in a random solid,” Phys. Rev. Lett. 45, 1723 (1980).CrossRefGoogle Scholar
[357] Shafarman, W.N., Koon, D.W., and Castner, T.G., “DC conductivity of arsenic-doped silicon near the metal-insulator transition,” Phys. Rev. B 40, 1216 (1989).CrossRefGoogle ScholarPubMed
[358] Mott, N., “On metal-insulator transitions,” J. Solid State Chem. 88 57 (1990).CrossRefGoogle Scholar
[359] Rabi, I.I., Zacharias, J.R., Millman, S., and Kusch, P., “A new method of measuring nuclear magnetic moment,” Phys. Rev., 53, 318 (1938).CrossRefGoogle Scholar
[360] Feher, G. and Kip, A.F., “Electron spin resonance absorption in metals. I. Experimen- tal,” Phys. Rev., 98, 337 (1955).CrossRefGoogle Scholar
[361] Dyson, F.J.Electron spin resonance absorption in metals. II. Theory of electron diffusion and the skin effect,” Phys. Rev. 98, 349 (1955).CrossRefGoogle Scholar
[362] Griffiths, J.H.E., “Anomalous high-frequency resistance of ferromagnetic metals,” Nature 158, 670 (1946).CrossRefGoogle Scholar
[363] Kittel, C., “On the theory of ferromagnetic resonance absorption,” Phys. Rev. 73, 155 (1948).CrossRefGoogle Scholar
[364] Kittel, C., “Theory of antiferromagnetic resonance,” Phys. Rev. 82, 565 (1951); F. Keffer and C. Kittel “Theory of antiferromagnetic resonance,” Phys. Rev. 85, 329 (1952).CrossRefGoogle Scholar
[365] Pimenov, A., Mukhin, A. A., Ivanov, V. Yu., Travkin, V. D., Balbashov, A.M., and Loidl, A., “Possible evidence for electromagnons in multiferroic manganites,” Nature Physics 2, 97100 (2006).CrossRefGoogle Scholar
[366] Yildirim, T., Vergara, L.I., Íñiguez, Jorge, Musfeldt, J.L., Harris, A.B., Rogado, N., Cava, R.J., Yen, F., Chaudhury, R.P., and Lorenz, B., “Phonons and magnetoelectric interactions in Ni3V2O8,J. Phys.: Cond. Mat. 20, 434214 (2008).Google Scholar
[367] Shuvaev, A., Dziom, V., Pimenov, Anna, Schiebl, M., Mukhin, A. A., Komarek, A. C., Finger, T., Braden, M., and Pimenov, A., “Electric field control of terahertz polarization in a multiferroic manganite with electromagnons,” Phys. Rev. Lett. 111, 227201 (2013).CrossRefGoogle Scholar
[368] Garnett, J.C.M., “Colours in metal glasses and in metallic films,” Phil. Trans. Roy. Soc. A203, 385 (1904).Google Scholar
[369] Garnett, J.C.M., “Colours in metal glasses, in metallic films, and in metallic solutions–II,” Phil. Trans. Roy. Soc. A205, 237 (1906).Google Scholar
[370] Bruggeman, D.A.G., “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mis- chkörper aus isotropen Substanzen” (“Calculation of different physical constants of heterogeneous substances. I. Dielectric constants and conductivities of the mixed bodies of isotropic substances”), Ann. Physik (Leipz.) 24, 636 (1935).Google Scholar
[371] Landauer, R., “The electrical resistance of binary metallic mixtures,” J. Appl. Phys. 23, 779 (1952).CrossRefGoogle Scholar
[372] Springett, B.E., “Effective-medium theory for the AC behavior of a random system,” Phys. Rev. Lett. 31, 1463 (1973).CrossRefGoogle Scholar
[373] Stroud, D., “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12, 3368 (1975).CrossRefGoogle Scholar
[374] Mie, G., “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen (Contributions to optics via media, especially colloidal metal compounds),” Ann. Physik 25, 377 (1908).Google Scholar
[375] Debye, P., “Der Lichtdruck auf Kugeln von beliebigem Material” (“The light pressure on spheres of any material”), Ann. Physik 30, 57 (1909).Google Scholar
[376] Van de Hulst, H.C., Light Scattering by Small Particles (Dover, New York, 1981).Google Scholar
[377] Hashin, Z. and Shtrikman, S., J. Appl. Phys. 33, 3125 (1962).CrossRefGoogle Scholar
[378] Doyle, W.T., “Optical absorption by F centers in alkali halides,” Phys. Rev. 111, 1072 (1958).Google Scholar
[379] Galeener, F.L., “Submicroscopic-void resonance: The effect of internal roughness on optical absorption,” Phys. Rev. Lett. 27, 421 (1971).Google Scholar
[380] Galeener, F.L., “Optical evidence for a network of cracklike voids in amorphous germanium,” Phys. Rev. Lett. 27, 1716 (1971).CrossRefGoogle Scholar
[381] Genzel, L. and Martin, T.P., “Infrared absorption by surface phonons and surface plasmons in small crystals,” Surf. Sci. 34, 33 (1973).CrossRefGoogle Scholar
[382] Barker, A.S. Jr.Infrared absorption of localized longitudinal-optical phonons,” Phys. Rev. B 7, 2507 (1973).CrossRefGoogle Scholar
[383] Weaver, J.H., Alexander, R.W., Teng, L., Mann, R.A., and Bell, R.J., “Infrared absorption of small silicon particles with oxide overlayers,” Phys. Stat. Sol. (a) 20, 321 (1973).Google Scholar
[384] Cohen, R.W., Cody, G.D., Coutts, M.D., and Abeles, B., “Optical properties of granular silver and gold films,” Phys. Rev. B 8, 3689 (1973).CrossRefGoogle Scholar
[385] Abeles, B., Pinch, H.L., and Gittleman, J.I., “Percolation conductivity in W-Al2O3 granular metal films,” Phys. Rev. Lett. 35, 247 (1975).CrossRefGoogle Scholar
[386] Granqvist, C.G. and Hunderi, O., “Retardation effects on the optical properties of ultrafine particles,” Phys. Rev. B 16, 1353 (1977).Google Scholar
[387] Granqvist, C.G. and Hunderi, O., “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513 (1977).Google Scholar
[388] Webman, I., Jortner, J. and Cohen, M.H., “Theory of optical and microwave properties of microscopically inhomogeneous materials,” Phys. Rev. B 15, 5712 (1977).CrossRefGoogle Scholar
[389] Lamb, W., Wood, D.M., and Ashcroft, N.W., “Long-wavelength electromagnetic propagation in heterogeneous media,” Phys. Rev. B 21, 2248 (1980).CrossRefGoogle Scholar
[390] Stroud, D., “Percolation effects and sum rules in the optical properties of composi- ties,” Phys. Rev. B 19, 1783 (1979).CrossRefGoogle Scholar
[391] Scher, H. and Zallen, R., “Critical density in percolation processes,” J. Chem. Phys. 53, 3759 (1970).CrossRefGoogle Scholar
[392] Zallen, Richard, “The percolation model,” in The Physics of Amorphous Solids (Wiley, 1983), pp. 135–204.CrossRefGoogle Scholar
[393] Powell, M.J., “Site percolation in randomly packed spheres,” Phys. Rev. B 20, 4194 (1979).CrossRefGoogle Scholar
[394] Grannan, D.M., Garland, J.C., and Tanner, D.B., “Critical behavior of the dielectric constant of a random composite near the percolation threshold,” Phys. Rev. Lett. 46, 375 (1981).CrossRefGoogle Scholar
[395] Kirkpatrick, S., “Classical transport in disordered media: Scaling and effective- medium theories,” Phys. Rev. Lett. 27, 1722 (1971).CrossRefGoogle Scholar
[396] Kirkpatrick, S., “Percolation and conduction,” Rev. Mod. Phys. 45, 574588 (1973).CrossRefGoogle Scholar
[397] Kirkpatrick, S., “Percolation phenomena in higher dimensions: Approach to the mean-field limit,” Phys. Rev. Lett. 36, 69 (1976).CrossRefGoogle Scholar
[398] Kirkpatrick, S., “Percolation thresholds in Ising magnets and conducting mixtures,” Phys. Rev. B 15, 1533 (1977).CrossRefGoogle Scholar
[399] Last, B.J. and Thouless, D.J., “Percolation theory and electrical conductivity,” Phys. Rev. Lett. 27, 1719 (1971).CrossRefGoogle Scholar
[400] Ambegaokar, V., Cochran, S., and Kurkijarvi, J., “Conduction in random systems,” Phys. Rev. B 8, 3682 (1973).CrossRefGoogle Scholar
[401] Watson, B.P., and Leath, P.L., “Conductivity in the two-dimensional-site percolation problem,” Phys. Rev. B 9, 4893 (1974).CrossRefGoogle Scholar
[402] Webman, I., and Jortner, J., “Numerical simulation of electrical conductivity in microscopically inhomogeneous materials,” Phys. Rev. B 15, 2885 (1975).Google Scholar
[403] Levinshtein, M.E., Shklovskii, B.I., Shur, M.S., and Efros, A.L., “The relation between the critical exponents of percolation theory,” Sov. Phys JETP, 42, 197 (1975).Google Scholar
[404] Deutscher, G., Zallen, R., and Adler, J. eds., Percolation Structures and Processes (Adam Hilger, Bristol, 1983).Google Scholar
[405] Stauffer, D.S. and Ahorony, A., Introduction to Percolation Theory (Taylor and Francis, 1994).Google Scholar
[406] Straley, J.P., “Critical phenomena in resistor networks,” J. Phys. C: Solid State Phys. 9, 783 (1976).CrossRefGoogle Scholar
[407] Straley, J.P., “Critical exponents for the conductivity of random resistor lattices,” Phys. Rev. B 15, 5733 (1977).CrossRefGoogle Scholar
[408] Straley, J.P., “Random resistor tree in an applied field,” J. Phys. C: Solid State Phys. 10, 3009 (1977).CrossRefGoogle Scholar
[409] Stinchcombe, R.B. and Watson, B.P., “Renormalization group approach for percola- tion conductivity,” J. Phys. C: Solid State Phys. 9, 3221 (1976).CrossRefGoogle Scholar
[410] Efros, A.L., and Shklovskii, B.I., “Critical behaviour of conductivity and dielectric constant near the metal-non-metal transition threshold,” Phys. Stat. Sol. (B) 76, 475 (1976).CrossRefGoogle Scholar
[411] Harris, A.B. and Fisch, R., “Critical behavior of random resistor networks,” Phys. Rev. Lett. 38, 796 (1977).CrossRefGoogle Scholar
[412] Bergman, D.J. and Imry, Y., “Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material,” Phys. Rev. Lett. 39, 1222 (1977).CrossRefGoogle Scholar
[413] Straley, J.P., in Electrical Transport and Optical Properties of Inhomogeneous Media, edited by Garland, J.C. and Tanner, D.B. (The American Institute of Physics, New York, 1978), p. 118.Google Scholar
[414] Wu, J. and McLachlan, D.S., “Percolation exponents and thresholds obtained from the nearly ideal continuum percolation system graphite-boron nitride,” Phys. Rev. B 56, 1236 (1997).CrossRefGoogle Scholar
[415] Stroud, D. and Bergman, D.J., “Frequency dependence of the polarization catastrophe at a metal-insulator transition and related problems,” Phys. Rev. B 25, 2061 (1982).CrossRefGoogle Scholar
[416] Tanner, D.B., Sievers, A.J., and Buhrman, R.A., “Far-infrared absorption in small metallic particles,” Phys. Rev. B 11, 13301341 (1975).CrossRefGoogle Scholar
[417] Russell, N.E., Garland, J.C., and Tanner, D.B., “Absorption of far-infrared radiation by random metal particle composites,” Phys. Rev. B 23, 632 (1981).CrossRefGoogle Scholar
[418] Carr, G.L., Henry, R.L., Russell, N.E., Garland, J.C., and Tanner, D.B., “Anomalous far-infrared absorption in random small-particle composites,” Phys. Rev. B., 24, 777 (1981).CrossRefGoogle Scholar
[419] Lee, S.-I., Noh, T.W., Gaines, J.R., Ko, Y.-H., and Kreidler, E.R., “Optical studies of porous glass media containing silver particles,” Phys. Rev. B 37, 2918 (1988).CrossRefGoogle ScholarPubMed
[420] Carr, G.L., Perkowitz, S., and Tanner, D.B., “Far-infrared properties of inhomoge- neous materials,” in Infrared and Millimeter Waves, Vol. 13, edited by Button, Kenneth J. (Academic Press, Orlando, 1985), pp. 171263.Google Scholar
[421] Stroud, D. and Pan, F.P., “Self-consistent approach to electromagnetic wave propa- gation in composite media: Application to model granular metals,” Phys. Rev. B 17, 1602 (1978).CrossRefGoogle Scholar
[422] Casimir, H.B.G., “On electromagnetic units,” Helvetica Phys. Acta, 41, 741742 (1968) This article is reprinted in Robert L. Weber and Eric Mendoza, A Random Walk in Science (Institute of Physics Publishing, Bristol, 1973).Google Scholar
[423] Nityananda, R. and Samuel, J.,”Fermat’s principle in general relativity,” Phys. Rev. D 45, 3862 (1992).CrossRefGoogle ScholarPubMed
[424] Dupertuis, M.A., Proctor, M., and Acklin, B., “Generalization of complex Snell- Descartes and Fresnel laws,” J. Opt. Soc. Am. A 11, 11591166 (1994).CrossRefGoogle Scholar
[425] Chang, P.C.Y., Walker, J.G., and Hopcraft, K.I.Ray tracing in absorbing media,” J. Quant. Spect. Rad. Trans. 96, 327341 (2005).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×