Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T16:37:51.408Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2015

Douglas Natelson
Affiliation:
Rice University, Houston
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] “The Lycurgus Cup”, www.britishmuseum.org/research/collection_online/collection_ object_details/collection_image_gallery.aspx?partid=1&assetid=1066673& objectid=61219 (2014).
[2] O. D., Sherby, “Ultrahigh carbon steels, Damascus steels and ancient blacksmiths”, ISIJ international 39, 637–648 (1999).Google Scholar
[3] K., Kinoshita, “Electrochemical uses of carbon”, electrochem.cwru.edu/encycl.artc01-carbon.htm (2001).
[4] H., Ohnishi, Y., Kondo, and K., Takayanagi, “Quantized conductance through individual rows of suspended gold atoms”, Nature 395, 780–783 (1998).Google Scholar
[5] C., Kittel, Introduction to Solid State Physics, Eighth ed. (New York, JohnWiley & Sons, 2004).Google Scholar
[6] N. W., Ashcroft and N. D., Mermin, Solid State Physics (New York, Brooks Cole, 1976).Google Scholar
[7] W. A., Harrison, Solid State Theory (New York, Dover, 1980).Google Scholar
[8] W. A., Harrison, Electronic Structure and the Properties of Solids (New York, Dover, 1989).Google Scholar
[9] R. P., Feynman, R. B., Leighton, and M., Sands, The Feynman Lectures on Physics, volume III (New York, Addison Wesley, 1965).Google Scholar
[10] D. C., Ralph, C. T., Black, and M., Tinkham, “Spectroscopic Measurements of Discrete Electronic States in Single Metal Particles”, Phys. Rev. Lett. 74, 3241–3244 (1995).Google Scholar
[11] N., Nilius, T. M., Wallis, and W., Ho, “Development of one-dimensional band structure in artificial gold chains”, Science 297, 1853–1856 (2002).Google Scholar
[12] D. K., Ferry, private communication (2009).
[13] M., Topinka, B., LeRoy, S., Shaw, et al., “Imaging coherent electron flow from a quantum point contact”, Science 289, 2323–2326 (2000).Google Scholar
[14] S., Frank, P., Poncharal, Z., Wang, and W. A., de Heer, “Carbon nanotube quantum resistors”, Science 280, 1744–1746 (1998).Google Scholar
[15] M. P., Marder, Condensed Matter Physics (New York, Wiley, 2000).Google Scholar
[16] L. C., Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals (Ithaca, NY, Cornell University, 1960).Google Scholar
[17] J. C., Phillips, Bonds and Bands in Semiconductors (Academic, New York, 1973).Google Scholar
[18] L. C., Pauling, “The nature of the chemical bond IV. The energy of single bonds and the relative electronegativity of atoms”, J. Am. Chem. Soc. 54, 3570–3582 (1932).Google Scholar
[19] E., Hückel, “Quantum-theoretical contributions to the benzene problem. I. The electron configuration of benzene and related compounds”, Z. Physik 71, 204–286 (1931).Google Scholar
[20] J. C., Slater, “Wave functions in a periodic potential”, Phys. Rev. 51, 846–851 (1937).Google Scholar
[21] C., Herring, “A new method for calculating wave functions in crystals”, Phys. Rev. 57, 1169–1177 (1940).Google Scholar
[22] E., AntonČík, “Approximate formulation of the orthogonalized plane-wave method”, J. Phys. Chem. Solids 10, 314–320 (1959).Google Scholar
[23] J. C., Phillips and L., Kleinman, “New method for calculating wave functions in crystals and molecules”, Phys. Rev. 116, 287–294 (1959).Google Scholar
[24] P., Hohenberg and W., Kohn, “Inhomogeneous electron gas”, Phys. Rev. 136, B864–B871 (1964).Google Scholar
[25] W., Kohn and L. J., Sham, “Self-consistent equations including exchange and correlation effects”, Phys. Rev. 140, A1133–A1138 (1965).Google Scholar
[26] N. F., Mott, “The basis of the electron theory of metals, with special reference to the transition metals”, Proc. Phys. Soc. London Series A 62, 416–421 (1949).Google Scholar
[27] R., de Picciotto, M., Reznikov, M., Heiblum, V., Umansky, G., Bunin, and D., Mahalu, “Direct observation of a fractional charge”, Nature 389, 162–164 (1997).Google Scholar
[28] L., Saminadayar, D. C., Glattli, Y., Jin, and B., Etienne, “Observation of the e/3 fractionally charged Laughlin quasiparticle”, Phys. Rev. Lett. 79, 2526–2529 (1997).Google Scholar
[29] L., Landau, “Theory of the Fermi liquid”, Sov. Phys. JETP 3, 920–928 (1956).Google Scholar
[30] D., Pines and P., Nozières, The Theory of Quantum Liquids, Vol. I (New York, Addison Wesley, 1989).Google Scholar
[31] G., Baym and C., Pethick, Landau Fermi-Liquid Theory: Concepts and Applications (New York, Wiley, 1992).Google Scholar
[32] J., Bardeen, L. N., Cooper, and J. R., Schrieffer, “Microscopic theory of superconductivity”, Phys. Rev. 106, 162–164 (1957).Google Scholar
[33] J., Bardeen, L. N., Cooper, and J. R., Schrieffer, “Theory of superconductivity”, Phys. Rev. 108, 1175–1204 (1957).Google Scholar
[34] J. R., Schrieffer, Theory of Superconductivity, Advanced Book Classics (New York, Westview, 2001).Google Scholar
[35] M., Tinkham, Introduction to Superconductivity, 2nd edn. (New York, Dover, 2004).Google Scholar
[36] C. P., Poole, H. A., Farach, and R. J., Creswick, Superconductivity(New York, Academic, 1996).Google Scholar
[37] W., Meissner and R., Oschenfeld, “Ein neuer Effekt bei Eintritt der Supraleitfähigkeit”, Naturwiss. 21, 787–788 (1933).Google Scholar
[38] R. C., Jaeger, Introduction to Microelectronic Fabrication, volume 5 of Modular Series on Solid State Devices, 2nd edn. (New York, Prentice Hall, 2002).Google Scholar
[39] H., Ohno, “Making nonmagnetic semiconductors ferromagnetic”, Science 281, 951–956 (1998).Google Scholar
[40] H., Ohno, “Properties of ferromagnetic III-V semiconductors”, J. Mag. Mag. Mater. 200, 110–129 (1999).Google Scholar
[41] T., Dietl, “Ferromagnetic semiconductors”, Semicond. Sci. Technol. 17, 377–392 (2002).Google Scholar
[42] Y. D., Park, A. T., Hanbicki, S. C., Erwin, et al., “A group-IV ferromagnetic semiconductor: MnxGe1-x”, Science 295, 651–654 (2002).Google Scholar
[43] A. H., MacDonald, P., Schiffer, and N., Samarth, “Ferromagnetic semiconductors: Moving beyond (Ga,Mn)As”, Nate. Mater. 4, 195–202 (2005).Google Scholar
[44] T., Schallenberg and H., Munekata, “Preparation of ferromagnetic (In, Mn) As with a high Curie temperature of 90 K”, Appl. Phys. Lett. 89, 042507 (2006).Google Scholar
[45] H., Ohno, D., Chiba, F., Matsukura, et al., “Electric-field control of ferromagnetism”, Nature 208, 944–946 (2000).Google Scholar
[46] S., Koshihara, A., Oiwa, M., Hirasawa, et al., “Ferromagnetic order induced by photogenerated carriers in magnetic III-V semiconductor heterostructures of (In, Mn) As/GaSb”, Phys. Rev. Lett. 78, 4617–4620 (1997).Google Scholar
[47] S. M., Sze and K. K., Ng, Physics of Semiconductor Devices, 3rd edn. (New York, Wiley-Interscience, 2006).Google Scholar
[48] B. E., Deal and C. R., Helms, eds., The Physics and Chemistry of SiO2 and the Si-SiO2 interface (Berlin, Springer, 1993).
[49] D. A., Muller, T., Sorsch, S., Moccio, F. H., Baumann, K., Evans-Lutterodt, and G., Timp, “The electronic structure at the atomic scale of ultrathin gate oxides”, Nature 399, 758–762 (1999).Google Scholar
[50] A. A., Demkov, L. R. C., Fonseca, E., Verret, J., Tomfohr, and O. F., Sankey, “Complex band structure and the band alignment problem at the Si-high-k dielectric interface”, Phys. Rev. B 71, 195306 (2005).Google Scholar
[51] J. P., O'Sullivan and G. C., Wood, “Themorphology and mechanisms of formation of porous anodic films on aluminum”, Pro c. R. Soc. London A 317, 511–543 (1970).Google Scholar
[52] H., Masuda, H., Yamada, M., Satoh, H., Asoh, M., Nakao, and T., Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina”, Appl. Phys. Lett. 71, 2770–2772 (1997).Google Scholar
[53] C. L., Kane and E. J., Mele, “Quantum spin Hall effect in graphene”, Phys. Rev. Lett. 95, 226801 (2005).Google Scholar
[54] C. L., Kane and E. J., Mele, “Z 2 topological order and the quantum spin Hall effect”, Phys. Rev. Lett. 95, 146802 (2005).Google Scholar
[55] L., Fu, C. L., Kane, and E. J., Mele, “Topological insulators in three dimensions”, Phys. Rev. Lett. 98, 106803 (2007).Google Scholar
[56] H., Zhang, C.-X., Liu, X.-L., Qi, X., Dai, Z., Fang, and S.-C., Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface”, Nat. Phys. 5, 438–442 (2009).Google Scholar
[57] Y., Chen, J., Analytis, J.-H., Chu, et al., “Experimental realization of a three-dimensional topological insulator, Bi2Te3”, Science 325, 178–181 (2009).Google Scholar
[58] Y., Xia, D., Qian, D., Hsieh, et al., “Observation of a large-gap topological-insulator class with a single Dirac cone on the surface”, Nat. Phys. 5, 398–402 (2009).Google Scholar
[59] J. E., Moore, “The birth of topological insulators”, Nature 464, 194–198 (2010).Google Scholar
[60] X.-L., Qi and S.-C., Zhang, “The quantum spin Hall effect and topological insulators”, Physics Today 63, 33–38 (2010).Google Scholar
[61] M. Z., Hasan and C. L., Kane, “Colloquium: topological insulators”, Rev. Mod. Phys. 82, 3045 (2010).Google Scholar
[62] X.-L., Qi and S.-C., Zhang, “Topological insulators and superconductors”, Rev. Mod. Phys. 83, 1057 (2011).Google Scholar
[63] M. M., Qazilbash, K. S., Burch, D., Whisler, et al. “Correlated metallic state of vanadium dioxide”, Phys. Rev. B 74, 205118 (2006).Google Scholar
[64] F., Walz, “The Verwey transition – a topical review”, J. Phys.: Condens. Matter 14, R285–R340 (2002).Google Scholar
[65] J., García and G., Subías, “The Verwey transition – a new perspective”, J. Phys.: Condens. Matter 16, R145–R178 (2004).Google Scholar
[66] P. W., Anderson, “Ordering and antiferromagnetism in ferrites”, Phys. Rev. 102, 1008–1013 (1956).Google Scholar
[67] J. Q., Wu, Q., Gu, B. S., Guiton, N. P., deLeon, O. Y., Lian, and H., Park, “Straininduced self organization of metal-insulator domains in single-crystalline VO2 nanobeams”, Nano Lett. 6, 2313–2317 (2006).Google Scholar
[68] H., Zeng, C. T., Black, R. L., Sandstrom, P. M., Rice, C. B., Murray, and S., Sun, “Magnetotransport of magnetite nanoparticle arrays”, Phys. Rev. B 73, 020402(R) (2006).Google Scholar
[69] P. R., Wallace, “The band theory of graphite”, Phys. Rev. 71, 622–634 (1947).Google Scholar
[70] J. C., Slonczewski and P. R., Weiss, “Band structure of graphite”, Phys. Rev. 109, 272–279 (1958).Google Scholar
[71] R., Saito, M., Fujita, G., Dresselhaus, and M. S., Dresselhaus, “Electronic structure of chiral graphene tubules”, Appl. Phys. Lett. 60, 2201–2203 (1992).Google Scholar
[72] M. I., Katsnelson, “Graphene: carbon in two dimensions”, Materials Today 10, 20–27 (2007).Google Scholar
[73] A. K., Geim and N. V., Novoselov, “The rise of graphene”, Nat. Mater. 6, 183–191 (2007).Google Scholar
[74] J. S., Bunch, Y., Yaish, M., Brink, K., Bolotin, and P. L., McEuen, “Coulomb oscillations and Hall effect in quasi-2d graphite quantum dots”, Nano Lett. 5, 287–290 (2005).Google Scholar
[75] Y. B., Zhang, J. P., Small, W. V., Pontius, and P., Kim, “Fabrication and electric-field dependent transport measurements of mesoscopic graphite devices”, Appl. Phys. Lett. 86, 073104 (2005).Google Scholar
[76] K. S., Novoselov, A. K., Geim, S. V., Morozov, et al., “Electric field effect in atomically thin carbon films”, Science 306, 666–669 (2004).Google Scholar
[77] K. S., Novoselov, A. K., Geim, S. V., Morozov, et al., “Two-dimensional gas of massless Dirac fermions in graphene”, Nature 438, 197–200 (2005).Google Scholar
[78] Y. B., Zhang, Y. W., Tan, H. L., Stormer, and P., Kim, “Experimental observation of the quantum Hall effect and Berry's phase in graphene”, Nature 438, 201–204 (2005).Google Scholar
[79] C., Berger, Z. M., Song, X. B., Li, et al., “Electronic confinement and coherence in patterned epitaxial graphene”, Science 312, 1191–1196 (2006).Google Scholar
[80] C., Mattevi, H., Kim, and M., Chhowalla, “A review of chemical vapour deposition of graphene on copper”, J. Mat. Chem. 21, 3324–3334 (2011).Google Scholar
[81] S., Das Sarma, S., Adam, E. H., Hwang, and E., Rossi, “Electronic transport in two-dimensional graphene”, Rev. Mod. Phys. 83, 407–470 (2011).Google Scholar
[82] J., Wilson and A., Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties”, Adv. Phys. 18, 193–335 (1969).Google Scholar
[83] R. F., Frindt, “Superconductivity in ultrathin NbSe2 layers”, Phys. Rev. Lett. 28, 299–301 (1972).Google Scholar
[84] J. N., Coleman, M., Lotya, A., ONeill, et al., “Two-dimensional nanosheets produced by liquid exfoliation of layered materials”, Science 331, 568–571 (2011).Google Scholar
[85] R., Friend and A., Yoffe, “Electronic properties of intercalation complexes of the transition metal dichalcogenides”, Adv. Phys. 36, 1–94 (1987).Google Scholar
[86] M., Monthioux and V., Kuznetsov, “Who should be given credit for the discovery of carbon nanotubes?”, Carbon 44, 1621–1623 (2006).Google Scholar
[87] S., Iijima, “Helical microtubules of graphitic carbon”, Nature 354, 56–58 (1991).Google Scholar
[88] S., Iijima and T., Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature 363, 603–605 (1993).Google Scholar
[89] D. S., Bethune, C. H., Klang, M. S., de Vries, et al., “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature 363, 605–607 (1993).Google Scholar
[90] M. S., Dresselhaus, G., Dresselhaus, P., Eklund, and R., Saito, “Carbon nanotubes”, Physics World 11, 33–38 (1998).Google Scholar
[91] M. S., Dresselhaus, G., Dresselhaus, J. C., Charlier, and E., Hernández, “Electronic, thermal and mechanical properties of carbon nanotubes”, Phil. Tran s. R. Soc. Lond. A 362, 2065–2098 (2004).Google Scholar
[92] R. S., Lee, H. J., Kim, J. E., Fischer, A., Thess, and R. E., Smalley, “Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br”, Nature 388, 255–257 (1997).Google Scholar
[93] V., Derycke, R., Martel, J., Appenzeller, and P., Avouris, “Carbon nanotube inter- and intramolecular logic gates”, Nano Lett. 1, 453–456 (2001).Google Scholar
[94] V., Derycke, R., Martel, J., Appenzeller, and P., Avouris, “Controlled doping and carrier injection in carbon nanotube transistors”, Appl. Phys. Lett. 80, 2773–2775 (2002).Google Scholar
[95] J., Cao, Q., Wang, and H. J., Dai, “Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching”, Phys. Rev. Lett. 90, 157601 (2003).Google Scholar
[96] H., Maki, T., Sato, and K., Ishibashi, “Direct observation of the deformation and the band gap change from an individual single-walled carbon nanotube under uniaxial strain”, Nano Lett. 7, 890–895 (2007).Google Scholar
[97] E. D., Minot, Y., Yaish, V., Sazonova, J. Y., Park, M., Brink, and P. L., McEuen, “Tuning carbon nanotube band gaps with strain”, Phys. Rev. Lett. 90, 156401 (2003).Google Scholar
[98] S., Zaric, G. N., Ostojic, J., Kono, et al., “Optical signatures of the Aharonov-Bohm phase in single-walled carbon nanotubes”, Science 304, 1129–1131 (2004).Google Scholar
[99] G., Fedorov, A., Tselev, D., Jimenez, et al., “Magnetically induced field effect in carbon nanotube devices”, Nano Lett. 7, 960–964 (2007).Google Scholar
[100] A., Bachtold, C., Strunk, J.-P., Salvetat, et al., “Aharonov-Bohm oscillations in carbon nanotubes”, Nature 397, 673–676 (1999).Google Scholar
[101] J., Cumings, P. G., Collins, and A., Zettl, “Peeling and sharpening multiwall nanotubes”, Nature 406, 586 (2000).Google Scholar
[102] A., Kis, K., Jensen, S., Aloni, W., Mickelson, and A., Zettl, “Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes”, Phys. Rev. Lett. 97, 025501 (2006).Google Scholar
[103] L. D., Landau, “Über die Bewegung der Elektronen in Kristalgitter”, Phys. Z. Sowjetunion 3, 644–645 (1933).Google Scholar
[104] S. I., Pekar, Untersuchangen Über die sElectronentheorie der Kristalle (Akademie-Verlag, 1954).Google Scholar
[105] H., Frölich, “Electrons in lattice fields”, Adv. Phys. 3, 325–361 (1954).Google Scholar
[106] T., Holstein, “Studies of polaron motion, Part I. The molecular-crystal model”, Ann. Phys. 8, 325–342 (1959).Google Scholar
[107] T., Holstein, “Studies of polaron motion, Part II. The ‘small’ polaron”, Ann. Phys. 8, 343–389 (1959).Google Scholar
[108] V., Coropceanu, J., Cornil, D. A., da Silva Filho, Y., Olivier, R., Silbey, and J.-L., Brédas, “Charge transport in organic semiconductors”, Chem. Rev. 107, 926–952 (2007).Google Scholar
[109] R. G., Kepler, “Charge carrier production and mobility in anthracene crystals”, Phys. Rev. 119, 1226–1229 (1960).Google Scholar
[110] J. O. H., LeBlanc, “Hole and electron drift mobilities in anthracene”, J. Chem. Phys. 33, 626 (1960).Google Scholar
[111] W., Warta and N., Karl, “Hot holes in naphthalene: high, electric-field-dependent mobilities”, Phys. Rev. B 32, 1172–1182 (1985).Google Scholar
[112] M. E., Gershenson, V., Podzorov, and A. F., Morpurgo, “Colloquium: Electronic transport in single-crystal organic transistors”, Rev. Mod. Phys. 78, 973–989 (2006).Google Scholar
[113] H. E., Katz, “Recent advances in semiconductor performance and printing processes for organic transistor-based electronics”, Chem. Mater. 16, 4748–4756 (2004).Google Scholar
[114] M. C. J. M., Vissenberg and M., Matters, “Theory of the field-effect mobility in amorphous organic transistors”, Phys. Rev. B 57, 12964–12967 (1998).Google Scholar
[115] W. F., Pasveer, J., Cottaar, C., Tanase, et al., “Unified description of charge-carrier mobilities in disordered semiconducting polymers”, Phys. Rev. Lett. 94, 206601 (2005).Google Scholar
[116] Z. G., Soos, “Theory of π-molecular charge-transfer crystals”, Ann. Rev. Phys. Chem. 25, 121–153 (1974).Google Scholar
[117] J. B., Torrance, “The difference between metallic and insulating salts of tetracyanoquinodimethane (TCNQ): how to design an organic metal”, Acc. Chem. Res. 12, 79–86 (1979).Google Scholar
[118] A. E., Underhill, “Molecular metals and superconductors”, J. Mater. Chem. 2, 1–11 (1992).Google Scholar
[119] M. R., Bryce, “Recent progress in conducting organic charge-transfer salts”, Chem. Soc. Rev. 20, 355–390 (1991).Google Scholar
[120] D., Jerome, A., Mazaud, M., Ribault, and K., Bechgaard, “Superconductivity in a synthetic organic conductor (TMTSF)2PF6”, J. de Phys. Lett. 41, L95–L98 (1980).Google Scholar
[121] S. T., Hannahs, J. S., Brooks, W., Kang, L. Y., Chiang, and P. M., Chaikin, “Quantum Hall effect in a bulk crystal”, Phys. Rev. Lett. 63, 1988–1991 (1989).Google Scholar
[122] E., Coronado, J. R., Galan-Mascaros, C. J., Gomez-Garcia, and V., Laukhin, “Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound”, Nature 408, 447–449 (2000).Google Scholar
[123] A. J., Heeger, S., Kivelson, J. R., Schrieffer, and W. P., Su, “Solitons in conducting polymers”, Rev. Mod. Phys. 60, 781–850 (1988).Google Scholar
[124] R. E., Peierls, Quantum Theory of Solids, Oxford Classic Texts in the Physical Sciences (Oxford, Oxford University Press, 1955).Google Scholar
[125] A. J., Heeger, “Nobel lecture: Semiconducting and metallic polymers: the fourth generation of polymeric materials”, Rev. Mod. Phys. 73, 681–700 (2001).Google Scholar
[126] W. P., Su, J. R., Schrieffer, and A. J., Heeger, “Solitons in Polyacetylene”, Phys. Rev. Lett. 42, 1698–1701 (1979).Google Scholar
[127] W. P., Su, J. R., Schrieffer, and A. J., Heeger, “Soliton excitations in polyacetylene”, Phys. Rev. B 22, 2099–2111 (1980).Google Scholar
[128] R. C., Haddon, A. F., Hebard, M. J., Rosseinsky, et al., “Conducting films of C60 and C70 by alkali-metal doping”, Nature 350, 320–322 (1991).Google Scholar
[129] A. F., Hebard, M. J., Rosseinsky, R. C., Haddon, et al., “Superconductivity at 18 K in potassium-doped C60”, Nature 350, 600–601 (1991).Google Scholar
[130] L., Forró and L., Mihály, “Electronic properties of doped fullerenes”, Rep. Prog. Phys. 64, 649–699 (2001).Google Scholar
[131] O., Gunnarsson, M., Calandra, and J. E., Han, “Colloquium: Saturation of electrical resistivity”, Rev. Mod. Phys. 75, 1085–1099 (2003).Google Scholar
[132] P. W., Anderson, “Infrared catastrophe in fermi gases with local scattering potentials”, Phys. Rev. Lett. 18, 1049–1051 (1967).Google Scholar
[133] G. R., Stewart, “Heavy-fermion systems”, Rev. Mod. Phys. 56, 755–787 (1984).Google Scholar
[134] M., Gibertini, A., Singha, V., Pellegrini, et al., “Engineering artificial graphene in a two-dimensional electron gas”, Phys. Rev. B 79, 241406 (2009).Google Scholar
[135] D. K. G., DeBoer, A. J. G., Leenaers, and W. W., Vandenhoogenhof, “Glancingincidence X-ray-analysis of thin-layered materials - a review”, X-ray spectrometry 24, 91–102 (1995).Google Scholar
[136] K. N., Stoev and K., Sakurai, “Review on grazing incidence X-ray spectrometry and reflectometry”, Spectrochimica Acta Part B: Atomic Spectroscopy 54, 41–82 (1999).Google Scholar
[137] M., Krumrey, M., Hoffmann, G., Ulm, K., Hasche, and P., Thomsen-Schmidt, “Thickness determination for SiO2 films on Si by X-ray reflectometry at the Si K edge”, Thin Solid Films 459, 241–244 (2004), Proceedings of the 8th European Vacuum Congress Berlin 2003, 23–26 June 2003, featuring the 8th European Vacuum Conference and 2nd Annual Conference of the German Vacuum Society.Google Scholar
[138] S. K., Andersen, J. A., Golovchenko, and G., Mair, “New applications of X-ray standing-wave fields to solid state physics”, Phys. Rev. Lett. 37, 1141–1145 (1976).Google Scholar
[139] D. P., Woodruff, “Normal incidence X-ray standing wave determination of adsorbate structures”, Prog. Surf. Sci. 57, 1–60 (1998).Google Scholar
[140] K., Siegbahn, “Electron spectroscopy for atoms, molecules, and condensed matter”, Rev. Mod. Phys. 54, 709–728 (1982).Google Scholar
[141] L., Yarris, www2.lbl.gov/Science-Articles/Archive/sabl/2006/Jul/04.html (2006).
[142] www.vcbio.science.ru.nl/en/fesem/info/fesemfaq/ (2004).
[143] J., Joo, H., Na, T., Yu, et al., “Generalized and facile synthesis of semiconducting metal sulfide nanocrystals”, J. Am. Chem. Soc. 125, 11100–11105 (2003).Google Scholar
[144] G., Binnig, C. F., Quate, and C., Gerber, “Atomic force microscope”, Phys. Rev. Lett. 56, 930–933 (1986).Google Scholar
[145] Y., Martin, D. W., Abraham, and H. K., Wickramasinghe, “High-resolution capacitance measurement and potentiometry by force microscopy”, Appl. Phys. Lett. 52, 1103–1105 (1988).Google Scholar
[146] J. E., Stern, B. D., Terris, H. J., Mamin, and D., Rugar, “Deposition and imaging of localized charge on insulator surfaces using a force microscope”, Appl. Phys. Lett. 53, 2717–2719 (1988).Google Scholar
[147] Y., Martin and H. K., Wickramasinghe, “Magnetic imaging by “force microscopy” with 1000 [A-ring] resolution”, Appl. Phys. Lett. 50, 1455–1457 (1987).Google Scholar
[148] M., Fujihira, “Kelvin probe force microscopy of molecular surfaces”, Ann. Rev. Mat. Sci. 29, 353–380 (1999).Google Scholar
[149] C. C., Williams, “Two-dimensional dopant profiling by scanning capacitance microscopy”, Ann. Rev. Mat. Sci. 29, 471–504 (1999).Google Scholar
[150] C. D., Frisbie, L. F., Rozsnyai, A., Noy, M. S., Wrighton, and C. M., Lieber, “Functional-group imaging by chemical force microscopy”, Science 265, 2071–2074 (1994).Google Scholar
[151] A., Noy, D. V., Vezenov, and C. M., Lieber, “Chemical force microscopy”, Ann. Rev. Mat. Sci. 27, 381–421 (1997).Google Scholar
[152] M., Rief, F., Oesterhelt, B., Heymann, and H. E., Gaub, “Single molecule force spectroscopy on polysaccharides by atomic force microscopy”, Science 275, 1295–1297 (1997).Google Scholar
[153] F., Oesterhelt, D., Oesterhelt, M., Pfeiffer, A., Engel, H. E., Gaub, and D. J., Muller, “Unfolding pathways of individual bacteriorhodopsins”, Science 288, 143–146 (2000).Google Scholar
[154] J. H., Hafner, C. L., Cheung, A. T., Woolley, and C. M., Lieber, “Structural and functional imaging with carbon nanotube AFM probes”, Prog. Biophys. Mole. Bio. 77, 73–110 (2001).Google Scholar
[155] G., Binnig, H., Rohrer, C., Gerber, and E., Weibel, “Surface studies by scanning tunneling microscopy”, Phys. Rev. Lett. 49, 57–61 (1982).Google Scholar
[156] J., Tersoff and D. R., Hamann, “Theory of the scanning tunneling microscope”, Phys. Rev. B 31, 805–813 (1985).Google Scholar
[157] P., Sautet and C., Joachim, “Calculation of the benzene on rhodium STM images”, Chem. Phys. Lett. 185, 23–30 (1991).Google Scholar
[158] H. L., Edwards, J. T., Markert, and A. L., de Lozanne, “Energy gap and surface structure of YBa2Cu3-xO7 probed by scanning tunneling microscopy”, Phys. Rev. Lett. 69, 2967–2970 (1992).Google Scholar
[159] K., McElroy, R., Simmonds, J., Hoffman, et al., “Relating atomic-scale electronic phenomena to wave-like quasi-particle states in superconducting Bi2Sr2CaCu2O8+δ”, Nature 422, 592–596 (2003).Google Scholar
[160] B. C., Stipe, M. A., Rezaei, and W., Ho, “Single-molecule vibrational spectroscopy and microscopy”, Science 280, 1732–1735 (1998).Google Scholar
[161] A. J., Heinrich, J. A., Gupta, C. P., Lutz, and D. M., Eigler, “Single-atom spin-flip spectroscopy”, Science 306, 466–469 (2004).Google Scholar
[162] R., Wiesendanger, “Spin mapping at the nanoscale and atomic scale”, Rev. Mod. Phys. 81, 1495–1550 (2009).Google Scholar
[163] J. A., Stroscio and D. M., Eigler, “Atomic and molecular manipulation with the scanning tunneling microscope”, Science 254, 1319–1326 (1991).Google Scholar
[164] W., Ho, “Single-molecule chemistry”, J. Chem. Phys. 117, 11033–11061 (2002).Google Scholar
[165] R. C., Dunn, “Near-field scanning optical microscopy”, Chem. Rev. 99, 2891–2928 (1999).Google Scholar
[166] J. W., Hsu, “Near-field scanning optical microscopy studies of electronic and photonic materials and devices”, Mat. Sci. Eng.: R: Reports 33, 1–50 (2001).Google Scholar
[167] E. A., Ash and G., Nicholls, “Super-resolution aperture scanning microscope”, Nature 237, 510–512 (1972).Google Scholar
[168] D. W., Pohl, W., Denk, and M., Lanz, “Optical stethoscopy: image recording with resolution λ/20”, Appl. Phys. Lett. 44, 651–653 (1984).Google Scholar
[169] U., Dürig, D. W., Pohl, and F., Rohner, “Near-field optical-scanning microscopy”, J. Appl. Phys. 59, 3318–3327 (1986).Google Scholar
[170] E., Betzig, J. K., Trautman, T. D., Harris, J. S., Weiner, and R. L., Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale”, Science 251, 1468–1470 (1991).Google Scholar
[171] F., Zenhausern, Y., Martin, and H. K., Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 Angstrom resolution”, Science 269, 1083–1085 (1995).Google Scholar
[172] D. L., Smith, Thin Film Deposition: Principles & Practice (New York, McGraw-Hill Professional, 1995).Google Scholar
[173] M., Ohring, Materials Science of Thin Films 2nd edn. (New York, Academic, 2001).Google Scholar
[174] K., Seshan, Handbook of Thin Film Deposition Processes and Techniques 2nd edn. (Norwich, NY, William Andrew, 2002).Google Scholar
[175] A. R., Barron, cnx.org/contents/0b2614e4-aa98-44cL-bf50-idb3ee3c5ecd@2.
[176] A., Ohtomo and H. Y., Hwang, “A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface”, Nature 427, 423–426 (2004).Google Scholar
[177] Z., Ren, Z., Huang, J., Xu, et al., “Synthesis of large arrays of well-aligned carbon nanotubes on glass”, Science 282, 1105–1107 (1998).Google Scholar
[178] M., Meyyappan, L., Delzeit, A., Cassell, and D., Hash, “Carbon nanotube growth by PECVD: a review”, Plasma Sources Sci. & Tech. 12, 205–216 (2003).Google Scholar
[179] S., Fan, M., Chapline, N., Franklin, T., Tombler, A., Cassell, and H., Dai, “Selforiented regular arrays of carbon nanotubes and their field emission properties”, Science 283, 512–514 (1999).Google Scholar
[180] A., Cassell, J., Raymakers, J., Kong, and H., Dai, “Large scale CVD synthesis of single-walled carbon nanotubes”, J. Phys. Chem. B 103, 6484–6492 (1999).Google Scholar
[181] M., Marchand, C., Journet, D., Guillot, J.-M., Benoit, B. I., Yakobson, and S. T., Purcell, “Growing a carbon nanotube atom by atom: “and yet it does turn””, Nano Lett. 9, 2961–2966 (2009).Google Scholar
[182] X., Wang, Q., Li, J., Xie, et al., “Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates”, Nano Letters 9, 3137–3141 (2009/08/03/).
[183] T., Yamada, T., Namai, K., Hata, et al., “Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts”, Nature Nano. 1, 131–136 (2006).Google Scholar
[184] S., Han, X., Liu, and C., Zhou, “Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire”, J. Am. Chem. Soc. 127, 5294–5295 (2005).Google Scholar
[185] C., Kocabas, S., Hur, A., Gaur, M., Meitl, M., Shim, and J., Rogers, “Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors”, Small 1, 1110–1116 (2005).Google Scholar
[186] P., Nikolaev, M. J., Bronikowski, R. K., Bradley, et al., “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide”, Chem. Phys. Lett. 313, 91–97 (1999).Google Scholar
[187] K. S., Kim, Y., Zhao, H., Jang, et al., “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature 457, 706–710 (2009).Google Scholar
[188] X., Li, W., Cai, J., An, et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science 324, 1312–1314 (2009).Google Scholar
[189] C., Berger, Z.M., Song, T. B., Li, et al., “Ultrathin epitaxial graphite: 2d electron gas properties and a route toward graphene-based nanoelectronics”, J. Phys. Chem. B 108, 19912–19916 (2004).Google Scholar
[190] R. S., Wagner and W. C., Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, Appl. Phys. Lett. 4, 89–90 (1964).Google Scholar
[191] A., Morales and C., Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires”, Science 279, 208–211 (1998).Google Scholar
[192] X., Duan and C., Lieber, “General synthesis of compound semiconductor nanowires”, Adv. Mater. 12, 298–302 (2000).Google Scholar
[193] A., Persson, M., Larsson, S., Stenstrom, B., Ohlsson, L., Samuelson, and L., Wallenberg, “Solid-phase diffusion mechanism for GaAs nanowire growth”, Nat. Mater. 3, 677–681 (2004).Google Scholar
[194] K., Dick, K., Deppert, T., Martensson, B., Mandl, L., Samuelson, and W., Seifert, “Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires”, Nano Lett. 5, 761–764 (2005).Google Scholar
[195] Z. H., Wu, X. Y., Mei, D., Kim, M., Blumin, and H. E., Ruda, “Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy”, Appl. Phys. Lett. 81, 5177–5179 (2002).Google Scholar
[196] T., Mårtensson, M., Borgström, W., Seifert, B. J., Ohlsson, and L., Samuelson, “Fabrication of individually seeded nanowire arrays by vapour-liquid-solid growth”, Nanotechnology 14, 1255 (2003).Google Scholar
[197] M. S., Gudiksen, L. J., Lauhon, J., Wang, D. C., Smith, and C. M., Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics”, Nature 415, 617–620 (2002).Google Scholar
[198] L., Lauhon, M., Gudiksen, C., Wang, and C., Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures”, Nature 420, 57–61 (2002).Google Scholar
[199] C., Thelander, T., Mårtensson, M. T., Björk, et al., “Single-electron transistors in heterostructure nanowires”, Appl. Phys. Lett. 83, 2052–2054 (2003).Google Scholar
[200] W., Lu, J., Xiang, B., Timko, Y., Wu, and C., Lieber, “One-dimensional hole gas in germanium/silicon nanowire heterostructures”, Proc. Nat. Acad. Sci. US 102, 10046–10051 (2005).Google Scholar
[201] C. B., Murray, D. J., Norris, and M. G., Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites”, J. Am. Chem. Soc. 115, 8706–8715 (1993).Google Scholar
[202] A. P., Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots”, Science 271, 933–937 (1996).Google Scholar
[203] C. B., Murray, C. R., Kagan, and M. G., Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies”, Ann. Rev. Mater. Sci. 30, 545–610 (2000).Google Scholar
[204] G., Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications (London, Imperial College, 2004).Google Scholar
[205] Y., Yin and A. P., Alivisatos, “Colloidal nanocrystal synthesis and the organic-inorganic interface”, Nature 437, 664–670 (2005).Google Scholar
[206] EPFL, cmi.epfl.ch/etch/PladeKOH.php (2001).
[207] L. N., Pfeiffer, K. W., West, R. L., Willett, H., Akiyama, and L. P., Rokhinson, “Nanostructures in GaAs fabricated by molecular beam epitaxy”, Bell Labs Tech. Journ. 10, 151–159 (2005).Google Scholar
[208] www.oxfordplasma.de/images/sem_ti_3.jpg (2004).
[209] L. R., Harriott, “Scattering with angular limitation projection electron beam lithography for suboptical lithography”, in Papers from the 41st International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, volume 15, 2130–2135 (AVS, 1997).Google Scholar
[210] S. Y., Chou, P. R., Krauss, and P. J., Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett. 67, 3114–3116 (1995).Google Scholar
[211] S. Y., Chou, P. R., Krauss, and P. J., Renstrom, “Imprint lithography with 25-nanometer resolution”, Science 272, 85–87 (1996).Google Scholar
[212] M. D., Austin, H., Ge, W., Wu, et al., “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography”, Appl. Phys. Lett. 84, 5299–5301 (2004).Google Scholar
[213] R. W., Jaszewski, H., Schift, B., Schnyder, A., Schneuwly, and P., Groning, “The deposition of anti-adhesive ultra-thin teflon-like films and their interaction with polymers during hot embossing”, Appl. Surf. Sci. 143, 301–308 (1999).Google Scholar
[214] W., Zhang and S. Y., Chou, “Multilevel nanoimprint lithography with submicron alignment over 4 in. Si wafers”, Appl. Phys. Lett. 79, 845–847 (2001).Google Scholar
[215] Y. N., Xia and G. M., Whitesides, “Soft lithography”, Ann. Rev. Mat. Sci. 28, 153–184 (1998).Google Scholar
[216] S. R., Quake and A., Scherer, “From micro- to nanofabrication with soft materials”, Science 290, 1536–1540 (2000).Google Scholar
[217] J. A., Rogers, R. J., Jackman, G. M., Whitesides, J. L., Wagener, and A. M., Vengsarkar, “Using microcontact printing to generate amplitude photomasks on the surfaces of optical fibers: a method for producing in-fiber gratings”, Appl. Phys. Lett. 70, 7–9 (1997).Google Scholar
[218] Y., Xia, J. A., Rogers, K. E., Paul, and G. M., Whitesides, “Unconventional methods for fabricating and patterning nanostructures”, Chem. Rev. 99, 1823–1848 (1999).Google Scholar
[219] Y.-L., Loo, R. L., Willett, K. W., Baldwin, and J. A., Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: applications in plastic electronics”, Appl. Phys. Lett. 81, 562–564 (2002).Google Scholar
[220] S.-H., Hur, D.-Y., Khang, C., Kocabas, and J. A., Rogers, “Nanotransfer printing by use of noncovalent surface forces: applications to thin-film transistors that use single-walled carbon nanotube networks and semiconducting polymers”, Appl. Phys. Lett. 85, 5730–5732 (2004).Google Scholar
[221] M. A., Meitl, Z.- T., Zhu, V., Kumar, et al. “Transfer printing by kinetic control of adhesion to an elastomeric stamp”, Nat. Mater. 5, 33–38 (2006).Google Scholar
[222] X.-M., Zhao, Y., Xia, and G. M., Whitesides, “Soft lithographic methods for nano-fabrication”, J. Mater. Chem. 7, 1069–1074 (1997).Google Scholar
[223] F., Hua, A., Gaur, Y., Sun, et al., “Processing dependent behavior of soft imprint lithography on the 1–10-nm scale”, IEEE Trans. Nanotechnology, 5, 301–308 (2006).Google Scholar
[224] P., Vettiger, G., Cross, M., Despont, et al., The “millipede” – nanotechnology entering data storage”, IEEE Trans. Nanotech., 1, 39–55 (2002).Google Scholar
[225] R. D., Piner, J., Zhu, F., Xu, S., Hong, and C. A., Mirkin, “Dip-pen nanolithography”, Science 283, 661–663 (1999).Google Scholar
[226] L. L., Sohn and R. L., Willett, “Fabrication of nanostructures using atomic-forcemicroscope-based lithography”, Appl. Phys. Lett. 67, 1552–1554 (1995).Google Scholar
[227] V., Bouchiat and D., Esteve, “Lift-off lithography using an atomic force microscope”, Appl. Phys. Lett. 69, 3098–3100 (1996).Google Scholar
[228] E. S., Snow and P. M., Campbell, “AFM fabrication of sub-10-nanometer metaloxide devices with in situ control of electrical properties”, Science 270, 1639–1641 (1995).Google Scholar
[229] R., Held, T., Vancura, T., Heinzel, K., Ensslin, M., Holland, and W., Wegscheider, “In-plane gates and nanostructures fabricated by direct oxidation of semiconductor heterostructures with an atomic force microscope”, Appl. Phys. Lett. 73, 262–264 (1998).Google Scholar
[230] H., Dai, N., Franklin, and J., Han, “Exploiting the properties of carbon nanotubes for nanolithography”, Appl. Phys. Lett. 73, 1508–1510 (1998).Google Scholar
[231] K., Salaita, Y., Wang, and C. A., Mirkin, “Applications of dip-pen nanolithography”, Nat. Nano. 2, 145–155 (2007).Google Scholar
[232] S., Gustavsson, R., Leturcq, T., Ihn, K., Ensslin, and A. C., Gossard, “Electrons in quantum dots: one by one”, J. Appl. Phys. 105, 122401 (2009).Google Scholar
[233] A., Majumdar, P. I., Oden, J. P., Carrejo, L. A., Nagahara, J. J., Graham, and J., Alexander, “Nanometer-scale lithography using the atomic force microscope”, Appl. Phys. Lett. 61, 2293–2295 (1992).Google Scholar
[234] I. I., Smolyaninov, D. L., Mazzoni, and C. C., Davis, “Near-field direct-write ultraviolet lithography and shear force microscopic studies of the lithographic process”, Appl. Phys. Lett. 67, 3859–3861 (1995).Google Scholar
[235] S., Sun and G. J., Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography”, Nano Lett. 2004, 1381–1384 (2004).Google Scholar
[236] J. W., Lyding, T.-C., Shen, J. S., Hubacek, J. R., Tucker, and G. C., Abeln, “Nanoscale patterning and oxidation of H-passivated Si(100)-2 x 1 surfaces with an ultrahigh vacuum scanning tunneling microscope”, Appl. Phys. Lett. 64, 2010–2012 (1994).Google Scholar
[237] T. C., Shen, C., Wang, G. C., Abeln, et al., “Atomic-scale desorption through electronic and vibrational excitation mechanisms”, Science 268, 1590–1592 (1995).Google Scholar
[238] G.-Y., Liu, S., Xu, and Y., Qian, “Nanofabrication of self-assembled monolayers using scanning probe lithography”, Acc. Chem. Res. 33, 457–466 (2000).Google Scholar
[239] R. K., Smith, P. A., Lewis, and P. S., Weiss, “Patterning self-assembled monolayers”, Prog. Surf. Sci. 75, 1–68 (2004).Google Scholar
[240] J., Chen, M. A., Reed, C. L., Asplund, et al., “Placement of conjugated oligomers in an alkanethiol matrix by scanned probe microscope lithography”, Appl. Phys. Lett. 75, 624–626 (1999).Google Scholar
[241] C. L., Haynes and R. P., van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics”, J. Phys. Chem. B 105, 5599–5611 (2001).Google Scholar
[242] J. C., Hulteen and R. P., van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces”, J. Vac. Sci. Tech. A 13, 1553–1558 (1995).Google Scholar
[243] A., Bezryadin, C. N., Lau, and M., Tinkham, “Quantum suppression of superconductivity in ultrathin nanowires”, Nature 404, 971–974 (2000).Google Scholar
[244] Y., Zhang, N. W., Franklin, R. J., Chen, and H., Dai, “Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction”, Chem. Phy. Lett. 331, 35–41 (2000).Google Scholar
[245] D. S., Hopkins, D., Pekker, P. M., Goldbart, and A., Bezryadin, “Quantum interference device made by DNA templating of superconducting nanowires”, Science 308, 1762–1765 (2005).Google Scholar
[246] W. S., Yun, J., Kim, K.-H., Park, et al., “Fabrication of metal nanowire using carbon nanotube as a mask”, in The 46th International Symposium of the American Vacuum Society, volume 18, 1329–1332 (AVS, 2000).Google Scholar
[247] R., Šordan, M., Burghard, and K., Kern, “Removable template route to metallic nanowires and nanogaps”, Appl. Phys. Lett. 79, 2073–2075 (2001).Google Scholar
[248] D., Natelson, R. L., Willett, K.W., West, and L. N., Pfeiffer, “Fabrication of extremely narrow metal wires”, Appl. Phys. Lett. 77, 1991–1993 (2000).Google Scholar
[249] F., Altomare, A. M., Chang, M. R., Melloch, Y., Hong, and C. W., Tu, “Ultranarrow AuPd and Al wires”, Appl. Phys. Lett. 86, 172501 (2005).Google Scholar
[250] N. A., Melosh, A., Boukai, F., Diana, et al., “Ultrahigh-density nanowire lattices and circuits”, Science 300, 112–115 (2003).Google Scholar
[251] G. E., Possin, “A method for forming very small diameter wires”, Rev. Sci. Instr. 41, 772–774 (1970).Google Scholar
[252] W. D., Williams and N., Giordano, “Fabrication of 80Å metal wires”, Rev. Sci. Instr. 55, 410–412 (1984).Google Scholar
[253] G. E., Thompson, R. C., Furneaux, G. C., Wood, J. A., Richardson, and J. S., Goode, “Nucleation and growth of porous anodic films on aluminium”, Nature 272, 433–435 (1978).Google Scholar
[254] B. T., Holland, C. F., Blanford, and A., Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids”, Science 281, 538–540 (1998).Google Scholar
[255] G., Whitesides, J., Mathias, and C., Seto, “Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures”, Science 254, 1312–1319 (1991).Google Scholar
[256] J. S., Lindsay, “Self-assembly in synthetic routes to molecular devices – biological principles and chemical perspectives – a review”, New J. Chem. 15, 153–180 (1991).Google Scholar
[257] G. M., Whitesides and B., Grzybowski, “Self-assembly at all scales”, Science 295, 2418–2421 (2002).Google Scholar
[258] F., Schreiber, “Structure and growth of self-assembling monolayers”, Progr. Surf. Sci. 65, 151–257 (2000).Google Scholar
[259] K., Ariga, J. P., Hill, M. V., Lee, A., Vinu, R., Charvet, and S., Acharya, “Challenges and breakthroughs in recent research on self-assembly”, Sci. Tech. Adv. Mater. 9, 014109 (2008).Google Scholar
[260] M., Park, C., Harrison, P. M., Chaikin, R. A., Register, and D. H., Adamson, “Block copolymer lithography: periodic arrays of 1011 Holes in 1 square centimeter”, Science 276, 1401–1404 (1997).Google Scholar
[261] J. K. W., Yang, Y. S., Jung, J.-B., Chang, et al., “Complex self-assembled patterns using spares commensurate templates with locally varying motifs”, Nat. Nano. 5, 256–260 (2010).Google Scholar
[262] F. S., Bates and G. H., Fredrickson, “Block copolymer thermodynamics: theory and experiment”, Ann. Rev. Phys. Chem. 41, 525–557 (1990).Google Scholar
[263] F. S., Bates, “Polymer-polymer phase behavior”, Science 251, 898–905 (1991).Google Scholar
[264] S. A., Stauth and B. A., Parviz, “Self-assembled single-crystal silicon circuits on plastic”, Proc. Nat. Acad. Sci. 103, 13922–13927 (2006).Google Scholar
[265] A., Guiner, X-Ray Diffraction: in Crystals, Imperfect Crystals, and Amorphous Bodies (New York, Dover, 1994).Google Scholar
[266] J., Als-Nielsen and D., McMorrow, Elements of Modern X-Ray Physics (New York, Wiley, 2001).Google Scholar
[267] J., Goldstein, D. E., Newbury, D. C., Joy, et al., Scanning Electron Microscopy and X-ray Microanalysis, 3rd edn. (New York, Springer, 2003).Google Scholar
[268] D. B., Williams and C. B., Carter, Transmission Electron Microscopy: a Textbook for Materials Science, 2nd edn. (New York, Springer, 2009).Google Scholar
[269] C. J., Chen, Introduction to Scanning Tunneling Microscopy, Monographs on the Physics and Chemistry of Materials, 2nd edn. (New York, Oxford, 2007).Google Scholar
[270] R., Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications (Cambridge, Cambridge University Press, 1994).Google Scholar
[271] F. J., Giessibl, “Advances in atomic force microscopy”, Rev. Mod. Phys. 75, 949–983 (2003).Google Scholar
[272] W. A., Hofer, A. S., Foster, and A. L., Shluger, “Theories of scanning probe microscopes at the atomic scale”, Rev. Mod. Phys. 75, 1287–1331 (2003).Google Scholar
[273] J. E., Mahan, Physical Vapor Deposition of Thin Films (New York, Wiley-Interscience, 2000).Google Scholar
[274] G. A., Ozin and A. C., Arsenault, Nanochemistry: a Chemical Approach to Nanomaterials (London, RSC Publishing, 2005).Google Scholar
[275] M., Law, J., Goldberger, and P. D., Yang, “Semiconductor nanowires and nanotubes”, Ann. Rev. Mater. Res. 34, 83–122 (2004).Google Scholar
[276] K., Suzuki and B. W., Smith, eds., Microlithography: Science and Technology, Optical Science and Engineering, 2nd edn. (Boca Raton, CRC Press, 2007).
[277] C., Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (New York, Wiley, 2008).Google Scholar
[278] I., Brodie and J. J., Muray, The Physics of Micro/Nano-Fabrication (New York, Springer, 2010).Google Scholar
[279] Z., Cui, Nanofabrication: Principles, Capabilities, and Limits (New York, Springer, 2008).Google Scholar
[280] A., Busnaina, ed., Nanomanufacturing Handbook (Boca Raton, CRC, 2007).
[281] Y. S., Lee, Self-Assembly and Nanotechnology: a Force Balance Approach (New York, Wiley-Interscience, 2008).Google Scholar
[282] J. A., Pelesko, Self Assembly: the Science of Things that Put Themselves Together (Boca Raton, Chapman and Hall/CRC, 2007).Google Scholar
[283] L., Gross, F., Mohn, N., Moll, P., Liljeroth, and G., Meyer, “The chemical structure of a molecule resolved by atomic force microscopy”, Science 325, 1110–1114 (2009).Google Scholar
[284] R., Temirov, S., Soubatch, O., Neucheva, A., Lassise, and F., Tautz, “A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy”, New J. Phys. 10, 053012 (2008).Google Scholar
[285] C.-l., Chiang, C., Xu, Z., Han, and W., Ho, “Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe”, Science 344, 885–888 (2014).Google Scholar
[286] N. S., Rasor and C., Warner, “Correlation of emission processes for adsorbed alkali films on metal surfaces”, J. Appl. Phys. 35, 2589–2600 (1964).Google Scholar
[287] I. H., Campbell, S., Rubin, T. A., Zawodzinski, et al., “Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers”, Phys. Rev. B 54, R14321–R14324 (1996).Google Scholar
[288] M., Nonnenmacher, M. P., O'Boyle, and H. K., Wickramasinghe, “Kelvin probe force microscopy”, Appl. Phys. Lett. 58, 2921–2923 (1991).Google Scholar
[289] I., Tamm, “A possible kind of electron binding on crystal surfaces”, Phys. Z. Sowjetunion 1, 733–746 (1932).Google Scholar
[290] I., Tamm, “A possible kind of electron binding on crystal surfaces”, Z. Phys. 76, 849–850 (1932).Google Scholar
[291] K. S., Ralls, W. J., Skocpol, L. D., Jackel, et al., “Discrete resistance switching in submicrometer silicon inversion layers: individual interface traps and low-frequency (1f?) noise”, Phys. Rev. Lett. 52, 228–231 (1984).Google Scholar
[292] K., Kanisawa, M. J., Butcher, H., Yamaguchi, and Y., Hirayama, “Imaging of Friedel oscillation patterns of two-dimensionally accumulated electrons at epitaxially grown InAs(111) A surfaces”, Phys. Rev. Lett. 86, 3384–3387 (2001).Google Scholar
[293] B., Tanatar and D. M., Ceperley, “Ground state of the two-dimensional electron gas”, Phys. Rev. B 39, 5005–5016 (1989).Google Scholar
[294] D. M., Ceperley and B. J., Alder, “Ground state of the electron gas by a stochastic method”, Phys. Rev. Lett. 45, 566–569 (1980).Google Scholar
[295] G., Ortiz, M., Harris, and P., Ballone, “Zero temperature phases of the electron Gas”, Phys. Rev. Lett. 82, 5317–5320 (1999).Google Scholar
[296] R. L., Anderson, “Germanium-gallium arsenide heterojunction”, IBM J. Res. Dev. 4, 283–287 (1960).Google Scholar
[297] J. H., Davies, The Physics of Low-Dimensional Semiconductors: an Introduction (Cambridge, Cambridge University Press, 1997).Google Scholar
[298] S., Gwo, K.-J., Chao, C. K., Shih, K., Sadra, and B. G., Streetman, “Direct mapping of electronic structure across Al0.3Ga0.7As/GaAs heterojunctions: Band offsets, asymmetrical transition widths, and multiple-valley band structures”, Phys. Rev. Lett. 71, 1883–1886 (1993).Google Scholar
[299] J., Faist, F., Capasso, D. L., Sivco, C., Sirtori, A. L., Hutchinson, and A. Y., Cho, “Quantum cascade laser”, Science 264, 553–556 (1994).Google Scholar
[300] F., Capasso, C., Gmachl, D. L., Sivco, and A. Y., Cho, “Quantum cascade lasers”, Phys. Today 55, 34–40 (2002).Google Scholar
[301] A. I., Yanson, G. R., Bollinger, H. E., van den Brom, N., Agrait, and J. M., van Ruitenbeek, “Formation and manipulation of a metallic wire of single gold atoms”, Nature 395, 783–785 (1998).Google Scholar
[302] N., Agrait, A. L., Yeyati, and J. M., van Ruitenbeek, “Quantum properties of atomic-sized conductors”, Phys. Rep. 377, 81–279 (2003).Google Scholar
[303] F. J., Himpsel, A., Kirakosian, J. N., Crain, J.-L., Lin, and D., Petrovykh, “Selfassembly of one-dimensional nanostructures at silicon surfaces”, Sol. State Comm. 117, 149–157 (2000).Google Scholar
[304] Y., Chen, D. A. A., Ohlberg, and R. S., Williams, “Nanowires of four epitaxial hexagonal silicides grown on Si(001)”, J. Appl. Phys. 91, 3213–3218 (2002).Google Scholar
[305] P. J., Pearah, A. C., Chen, K. C., Hsieh, and K. Y., Cheng, “AlGaInP multiplequantum wire heterostructure lasers prepared by the strain-induced lateral-layer ordering process”, IEEE J. Quant. Electron. 30, 608–618 (1994).Google Scholar
[306] S., Tsukamoto, Y., Nagamune, M., Nishioka, and Y., Arakawa, “Fabrication of GaAs quantum wires on epitaxially grown v-grooves by metal-organic chemical-vapor deposition”, J. Appl. Phys. 71, 533–535 (1992).Google Scholar
[307] A. R., Goni, L. N., Pfeiffer, K. W., West, A., Pinczuk, H. U., Baranger, and H. L., Stormer, “Observation of quantum wire formation at intersecting quantum-wells”, Appl. Phys. Lett. 61, 1956–1958 (1992).Google Scholar
[308] T., Heinzel, R., Held, S., Luscher, K., Ensslin, W., Wegscheider, and M., Bichler, “Electronic properties of nanostructures defined in Ga[Al]As heterostructures by local oxidation”, Physica E 9, 84–93 (2001).Google Scholar
[309] L., Samuelson, C., Thelander, M. T., Bjork, et al., “Semiconductor nanowires for 0 d and 1d physics and applications”, Physica E 25, 313–318 (2004).Google Scholar
[310] W., Lu and C. M., Lieber, “Semiconductor nanowires”, J. Phys. D: Appl. Phys. 39, R387–R406 (2006).Google Scholar
[311] Y. Y., Wu, R., Fan, and P. D., Yang, “Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires”, Nano Lett. 2, 83–86 (2002).Google Scholar
[312] G., Sek, K., Ryczko, M., Motyka, et al., “Wetting layer states of InAs/GaAs self-assembled quantum dot structures: effect of intermixing and capping layer”, J. Appl. Phys. 101, 063539 (2007).Google Scholar
[313] L. P., Kouwenhoven, D. G., Austing, and S., Tarucha, “Few-electron quantum dots”, Rep. Prog. Phys. 64, 701–736 (2001).Google Scholar
[314] X., Peng, L., Manna, W., Yang, et al., “Shape control of CdSe nanocrystals”, Nature 404, 56–61 (2000).Google Scholar
[315] D., Goldhaber-Gordon, H., Shtrikman, D., Mahalu, D., Abusch-Magder, U., Meirav, and M. A., Kastner, “Kondo effect in a single-electron transistor”, Nature 391, 156–159 (1998).Google Scholar
[316] A. M., Smith and S., Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering”, Acc. Chem. Res. 43, 190–200 (2009).Google Scholar
[317] S., Gaponenko, Optical Properties of Semiconductor Nanocrystals, Cambridge Studies in Modern Optics (Cambridge, Cambridge University Press, 1998).Google Scholar
[318] V., Klimov, Nanocrystal Quantum Dots (Boca Raton, CRC Press, 2010).Google Scholar
[319] G., Konstantatos, I., Howard, A., Fischer, et al., “Ultrasensitive solution-cast quantum dot photodetectors”, Nature 442, 180–183 (2006).Google Scholar
[320] D. V., Talapin and C. B., Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors”, Science 310, 86–89 (2005).Google Scholar
[321] D. L., Klein, R., Roth, A. K. L., Lim, A. P., Alivisatos, and P. L., McEuen, “A single-electron transistor made from a cadmium selenide nanocrystal”, Nature 389, 699–701 (1997).Google Scholar
[322] A., Dorn, H., Huang, and M. G., Bawendi, “Electroluminescence from nanocrystals in an electromigrated gap composed of two different metals”, Nano Lett. 8, 1347–1351 (2008).Google Scholar
[323] L., Onsager, “Reciprocal relations in irreversible processes II”, Phys. Rev. 38, 2265–2279 (1931).Google Scholar
[324] A. D., Benoit, S., Washburn, C. P., Umbach, R. B., Laibowitz, and R. A., Webb, “Asymmetry in the magnetoconductance of metal wires and loops”, Phys. Rev. Lett. 57, 1765–1768 (1986).Google Scholar
[325] P., Drude, “Zue Elektronentheorie der Metalle”, Ann. Physik 1, 566–613 (1900).Google Scholar
[326] K., von Klitzing, G., Dorda, and M., Pepper, “New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance”, Phys. Rev. Lett. 45, 494–497 (1980).Google Scholar
[327] S. M., Girvin, “The quantum Hall effect: novel excitations and broken symmetries”, in Aspects Topologiques de la Physique en Basse Dimension. Topological Aspects of Low Dimensional Systems, 53–175 (Lesllies, France, Springer, 1999).Google Scholar
[328] C., Weisbuch and B., Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (New York, Academic Press, 1991).Google Scholar
[329] D. C., Tsui, H. L., Stormer, and A. C., Gossard, “Two-dimensional magnetotransport in the extreme quantum limit”, Phys. Rev. Lett. 48, 1559–1562 (1982).Google Scholar
[330] R. B., Laughlin, “Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations”, Phys. Rev. Lett. 50, 1395–1398 (1983).Google Scholar
[331] H. L., Stormer, “Nobel lecture: The fractional quantum Hall effect”, Rev. Mod. Phys. 71, 875–889 (1999).Google Scholar
[332] Y., Imry, Introduction to Mesoscopic Physics (Oxford, Oxford University Press, 1997).Google Scholar
[333] S., Lee, A., Trionfi, and D., Natelson, unpublished (2005).
[334] A. G., Aronov and Y. V., Sharvin, “Magnetic flux effects in disordered conductors”, Rev. Mod. Phys. 59, 755–779 (1987).Google Scholar
[335] F., Pierre and N. O., Birge, “Dephasing by extremely dilute magnetic impurities revealed by Aharonov–Bohm oscillations”, Phys. Rev. Lett. 89, 206804 (2002).Google Scholar
[336] C. P., Umbach, C., van Haesendonck, R. B., Laibowitz, S., Washburn, and R. A., Webb, “Direct observation of ensemble averaging of the Aharonov–Bohm effect in normal-metal loops”, Phys. Rev. Lett. 56, 386–389 (1986).Google Scholar
[337] B. L., Althsuler, A. G., Aronov, and B. Z., Spivak, “The Aharonov–Bohm effect in disordered conductors”, JETP 33, 94 (1981).Google Scholar
[338] D. J., Bishop, R. C., Dynes, and D. C., Tsui, “Magnetoresistance in Si metaloxide-semiconductor field-effect transitors: evidence of weak localization and correlation”, Phys. Rev. B 26, 773–779 (1982).Google Scholar
[339] G., Bergmann, “Weak localization in thin films: a time-of-flight experiment with conduction electrons”, Phys. Rep. 107, 1–58 (1984).Google Scholar
[340] P. E., Lindelof, J., Nørrgaard, and J. B., Hansen, “Magnetoresistance in two-dimensional magnesium films”, Z. Phys. B 59, 423–428 (1985).Google Scholar
[341] P. W., Anderson, B. I., Halperin, and C. M., Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses”, Phil. Mag. 25, 1–9 (1972).Google Scholar
[342] R. C., Zeller and R. O., Pohl, “Thermal conductivity and specific heat of noncrystalline solids”, Phys. Rev. B 4, 2029–2041 (1971).Google Scholar
[343] N. O., Birge, B., Golding, and W. H., Haemmerle, “Electron quantum interference and 1/f noise in bismuth”, Phys. Rev. Lett. 62, 195–198 (1989).Google Scholar
[344] P., Dutta and P. M., Horn, “Low-frequency fluctuations in solids: 1/f noise”, Rev. Mod. Phys. 53, 497–516 (1981).Google Scholar
[345] M. B., Weissman, “1/f noise and other slow, nonexponential kinetics in condensed matter”, Rev. Mod. Phys. 60, 537–571 (1988).Google Scholar
[346] N. O., Birge, B., Golding, and W. H., Haemmerle, “Conductance fluctuations and 1/f noise in Bi”, Phys. Rev. B 42, 2735–2743 (1990).Google Scholar
[347] B. L., Altshuler and D. E., Khmelnitskii, “Fluctuation properties of small conductors”, JETP Lett. 42, 359–363 (1985).Google Scholar
[348] R. A., Webb, S., Washburn, and C. P., Umbach, “Experimental study of nonlinear conductance in small metallic samples”, Phys. Rev. B 37, 8455–8458 (1988).Google Scholar
[349] B., Ludolph and J. M., van Ruitenbeek, “Conductance fluctuations as a tool for investigating the quantum modes in atomic-size metallic contacts”, Phys. Rev. B 61, 2273–2285 (2000).Google Scholar
[350] L. P., Lévy, G., Dolan, J., Dunsmuir, and H., Bouchiat, “Magnetization of mesoscopic copper rings: Evidence for persistent currents”, Phys. Rev. Lett. 64, 2074–2077 (1990).Google Scholar
[351] V., Chandrasekhar, R. A., Webb, M. J., Brady, M. B., Ketchen, W. J., Gallagher, and A., Kleinsasser, “Magnetic response of a single, isolated gold loop”, Phys. Rev. Lett. 67, 3578–3581 (1991).Google Scholar
[352] D. K., Ferry and S. M., Goodnick, Transport in Nanostructures (Cambridge, Cambridge University Press, 1997).Google Scholar
[353] J. G., Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film”, J. Appl. Phys. 34, 1793–1803 (1963).Google Scholar
[354] E. H., Hauge and J. A., Støvneng, “Tunneling times: a critical review”, Rev. Mod. Phys. 61, 917–936 (1989).Google Scholar
[355] R., Landauer and T., Martin, “Barrier interaction time in tunneling”, Rev. Mod. Phys. 66, 217–228 (1994).Google Scholar
[356] P. C. W., Davies, “Quantum tunneling time”, Amer. J. Phys. 73, 23–27 (2005).Google Scholar
[357] U., Peskin, M., Galperin, and A., Nitzan, “Traversal times for resonant tunneling”, J. Phys. Chem. B 106, 8306–8312 (2002).Google Scholar
[358] R., Tsu and L., Esaki, “Tunneling in a finite superlattice”, Appl. Phys. Lett. 22, 562–564 (1973).Google Scholar
[359] L. L., Chang, L., Esaki, and R., Tsu, “Resonant tunneling in semiconductor double barriers”, Appl. Phys. Lett. 24, 593–595 (1974).Google Scholar
[360] S., Datta, Electronic Transport in Mesoscopic Systems (Cambridge, Cambridge University, 1995).Google Scholar
[361] R., Landauer, “Spatial variation of currents and fields due to localized scatterers in metallic conduction”, IBM J. Res. Develop. 1, 223–231 (1957).Google Scholar
[362] B. J., van Wees, H., van Houten, C. W. J., Beenakker, et al., “Quantized conductance of point contacts in a two-dimensional electron gas”, Phys. Rev. Lett. 60, 848–850 (1988).Google Scholar
[363] D. A., Wharam, T. J., Thornton, R., Newbury, et al., “One-dimensional transport and the quantization of the ballistic resistance”, J. Phys. C - Sol. State Phys. 8, L209–L214 (1988).Google Scholar
[364] J. L., Costa-Krämer, N., García, P., García-Mochales, P. A., Serena, M. I., Marqués, and A., Correia, “Conductance quantization in nanowires formed between micro and macroscopic metallic electrodes”, Phys. Rev. B 55, 5416–5424 (1997).Google Scholar
[365] E., Scheer, N., Agraït, J. C., Cuevas, et al., “The signature of chemical valence in the electrical conduction through a single-atom contact”, Nature 394, 154–157 (1998).Google Scholar
[366] R., de Picciotto, H. L., Stormer, L. N., Pfeiffer, K. W., Baldwin, and K. W., West, “Four-terminal resistance of a ballistic quantum wire”, Nature 411, 51–54 (2001).Google Scholar
[367] N. D., Lang and P., Avouris, “Understanding the variation of the electrostatic potential along a biased molecular wire”, Nano Lett. 3, 737–740 (2003).Google Scholar
[368] Y., Meir and N. S., Wingreen, “Landauer formula for the current through an interacting electron region”, Phys. Rev. Lett. 68, 5612–5615 (1992).Google Scholar
[369] K. L., Shepard, M. L., Roukes, and B. P., van der Gaag, “Experimental measurement of scattering coefficients in mesoscopic conductors”, Phys. Rev. B 46, 9648–9666 (1992).Google Scholar
[370] K. L., Shepard, M. L., Roukes, and B. P., van der Gaag, “Direct measurement of the transmission matrix of a mesoscopic conductor”, Phys. Rev. Lett. 68, 2660–2663 (1992).Google Scholar
[371] N., van der Post, E. T., Peters, I. K., Yanson, and J. M., van Ruitenbeek, “Subgap structure as a function of the barrier in atom-size superconducting tunnel junctions”, Phys. Rev. Lett. 73, 2611–2614 (1994).Google Scholar
[372] M., Cahay, M., McLennan, and S., Datta, “Conductance of an array of elastic scatterers: a scattering-matrix approach”, Phys. Rev. B 37, 10125–10136 (1988).Google Scholar
[373] W., Liang, M., Bockrath, D., Bozovic, J. H., Hafner, M., Tinkham, and H., Park, “Fabry-Perot interference in a nanotube electron waveguide”, Nature 411, 665–669 (2001).Google Scholar
[374] M., Büttiker, “Coherent and sequential tunneling in series barriers”, IBM J. Res. Dev. 32, 63–75 (1988).Google Scholar
[375] S., Datta, “Electrical resistance: an atomistic view”, Nanotech. 15, S433–S451 (2004).Google Scholar
[376] S., Datta, Quantum Transport: Atom to Transistor (Cambridge, Cambridge University Press, 2005).Google Scholar
[377] M., Riordan and L., Hoddeson, Crystal Fire: the Birth of the Information Age (New York, W. W.|Norton, 1997).Google Scholar
[378] J. W., Orton, The Story of Semiconductors (New York, Oxford University Press, 2009).Google Scholar
[379] C., Jacoboni, C., Canali, G., Ottaviani, and A. A., Quaranta, “Review of some charge transport properties of silicon”, Sol. State Electronics 20, 77–89 (1977).Google Scholar
[380] P. M., Smith, M., Inoue, and J., Frey, “Electron velocity in Si and GaAs at very high electric fields”, Appl. Phys. Lett. 37, 797–798 (1980).Google Scholar
[381] Y.-F., Chen and M. S., Fuhrer, “Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes”, Phys. Rev. Lett. 95, 236803 (2005).Google Scholar
[382] I., Meric, M. Y., Han, A. F., Young, B., Ozyilmaz, P., Kim, and K. L., Shephard, “Current saturation in zero-bandgap, topgated graphene field-effect transistors”, Nat, Nano. 3, 654–659 (2008).Google Scholar
[383] G. A., Sai-Halasz, M. R., Wordeman, D. P., Kern, S., Rishton, and E., Ganin, “High transconductance and velocity overshoot in NMOS devices at the 0.1 µm gate-length level”, IEEE Electron Dev. Lett. 9, 464–466 (1988).Google Scholar
[384] F., Assaderaghi, P. K., Ko, and C., Hu, “Observation of velocity overshoot in silicon inversion layers”, IEEE Electron Dev. Lett. 14, 484–486 (1993).Google Scholar
[385] J. H., Stathis, “Reliability limits for the gate insulator in CMOS technology”, IBM J. Res. Dev. 46, 265–286 (2002).Google Scholar
[386] J., Robertson, “High dielectric constant gate oxides for metal oxide Si transistors”, Rep. Prog. Phys. 69, 327–396 (2006).Google Scholar
[387] P., Packan, S., Akbar, M., Armstrong, et al., “High performance 32nm logic technology featuring 2nd generation high-k+ metal gate transistors”, in Electron Devices Meeting (IEDM), 2009 IEEE International, 1–4 (IEEE, 2009).Google Scholar
[388] B., van Zeghbroek, Principles of Semiconductor Devices, ecee.colorado.edu/∼bart/book/book/title.htm
[389] C. A., Mead, “Scaling of MOS technology to submicrometer feature sizes”, J. VLSI Signal Proc. 8, 9–25 (1994).Google Scholar
[390] D. J., Frank, R. H., Dennard, E., Nowak, P. M., Solomon, Y., Taur, and H.-S. P., Wong, “Device scaling limits of Si MOSFETs and their application dependencies”, Proc. IEEE 89, 259–288 (2001).Google Scholar
[391] H.-S.P., Wong, “Beyond the conventional transistor”, IBM J. Res. Dev. 46, 133–168 (2002).Google Scholar
[392] H.-S. P., Wong, K., Chan, and Y., Taur, “Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel”, IEDM Tech. Digest 427 (1997).Google Scholar
[393] J. M., Hergenrother, S.-H., Oh, T., Nigam, D., Monroe, F. P., Klemens, and A., Kornblit, “The vertical replacement-gate (VRG) MOSFET”, Solid-State Electronics 46, 939–950 (2002).Google Scholar
[394] V., Schmidt, H., Reil, S., Senz, S., Karg, W., Riess, and U., Gösele, “Realization of a silicon nanowire vertical surround-gate field-effect transistor”, Small 2, 85–88 (2005).Google Scholar
[395] T., Bryllert, L.-E., Wernersson, T., Löwgren, and L., Samuelson, “Vertical wrap-gated nanowire transistors”, Nanotech. 17, S227–S230 (2006).Google Scholar
[396] M., Lundstrom and Z., Ren, “Essential physics of carrier transport in nanoscale MOSFETs”, IEEE Trans. Elect. Dev. 49, 133–141 (2002).Google Scholar
[397] F., Assad, Z., Ren, D., Vasileska, S., Datta, and M., Lundstrom, “On the performance limits for Si MOSFETs: a theoretical study”, IEEE Trans. Electron Devices, 47, 232–240 (2000).Google Scholar
[398] Z., Chen, J., Appenzeller, Y.-M., Lin, et al., “An integrated logic circuit assembled on a single carbon nanotube”, Science 311, 1735 (2006).Google Scholar
[399] H., Grabert and M. H., Devoret, eds., Single Charge Tunneling (New York, Plenum, 1992).
[400] P., Delsing, T., Claeson, K. K., Likharev, and L. S., Kuzmin, “Observation of single-electron-tunneling oscillations”, Phys. Rev. B 42, 7439–7449 (1990).Google Scholar
[401] G.-L., Ingold and Y. V., Nazarov, “Charge tunneling rates in ultrasmall junctions”, in H., Grabert and M. H., Devoret, eds., Single Charge Tunneling, (New York, Plenum, 1992).Google Scholar
[402] E., Bonet, M. M., Deshmukh, and D. C., Ralph, “Solving rate equations for electron tunneling via discrete quantum states”, Phys. Rev. B 65, 045317 (2002).Google Scholar
[403] K., Likharev, “Single-electron transistors: electrostatic analogs of the DC SQUIDS”, IEEE Trans. Magnetics, 23, 1142–1145 (1987).Google Scholar
[404] D., Berman, N. B., Zhitenev, R. C., Ashoori, H. I., Smith, and M. R., Melloch, “Single-electron transistor as a charge sensor for semiconductor applications”, Papers from the 41st International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication 15, 2844–2847 (1997).Google Scholar
[405] R. G., Knobel and A. N., Cleland, “Nanometre-scale displacement sensing using a single electron transistor”, Nature 424, 291–293 (2003).Google Scholar
[406] M. H., Devoret and R. J., Schoelkopf, “Amplifying quantum signals with the single-electron transistor”, Nature 406, 1039–1046 (2000).Google Scholar
[407] S. M., Cronenwett, T. H., Oosterkamp, and L. P., Kouwenhoven, “A tunable Kondo effect in quantum dots”, Science 281, 540–544 (1998).Google Scholar
[408] P., Wahl, L., Diekhöner, G., Wittich, L., Vitali, M. A., Schneider, and K., Kern, “Kondo effect of molecular complexes at surfaces: ligand control of the local spin coupling”, Phys. Rev. Lett. 95, 166601 (2005).Google Scholar
[409] A., Zhao, Q., Li, L., Chen, et al., “Controlling the Kondo effect of an absorbed magnetic ion through its chemical bonding”, Science 309, 1542–1544 (2005).Google Scholar
[410] T. A., Fulton and G. J., Dolan, “Observation of single-electron charging effects in small tunnel junctions”, Phys. Rev. Lett. 59, 109–112 (1987).Google Scholar
[411] A., Bezryadin, C., Dekker, and G., Schmid, “Electrostatic trapping of single conducting nanoparticles between nanoelectrodes”, Appl. Phys. Lett. 71, 1273–1275 (1997).Google Scholar
[412] K. I., Bolotin, F., Kuemmeth, A. N., Pasupathy, and D. C., Ralph, “Metal-nanoparticle single-electron transistors fabricated using electromigration”, Appl. Phys. Lett. 84, 3154–3156 (2004).Google Scholar
[413] U., Meirav, M. A., Kastner, M., Heiblum, and S. J., Wind, “One-dimensional electron gas in GaAs: periodic conductance oscillations as a function of density”, Phys. Rev. B 40, 5871–5874 (1989).Google Scholar
[414] D. G., Austing, T., Honda, Y., Tokura, and S., Tarucha, “Sub-micron vertical AlGaAs/GaAs resonant tunneling single electron transistor”, Japanese J. Appl. Phys. 34, 1320–1325 (1995).Google Scholar
[415] S., Lüscher, A., Fuhrer, R., Held, T., Heinzel, K., Ensslin, and W., Wegscheider, “In-plane gate single-electron transistor in Ga[Al]As fabricated by scanning probe lithography”, Appl. Phys. Lett. 75, 2452–2454 (1999).Google Scholar
[416] Z., Yao, H., Postma, L., Balents, and C., Dekker, “Carbon nanotube intramolecular junctions”, Nature 402, 273–276 (1999).Google Scholar
[417] A., Tilke, R. H., Blick, H., Lorenz, and J. P., Kotthaus, “Single-electron tunneling in highly doped silicon nanowires in a dual-gate configuration”, J. Appl. Phys. 89, 8159–8162 (2001).Google Scholar
[418] Z., Zhong, Y., Fang, W., Lu, and C., Lieber, “Coherent single charge transport in molecular-scale silicon nanowires”, Nano Lett. 5, 1143–1146 (2005).Google Scholar
[419] H., Park, J., Park, A. K. L., Lim, E. H., Anderson, A. P., Alivisatos, and P. L., McEuen, “Nanomechanical oscillations in a single-C60 transistor”, Nature 407, 57–60 (2000).Google Scholar
[420] J., Park, A. N., Pasupathy, J. I., Goldsmith, et al., “Coulomb blockade and the Kondo effect in single-atom transistors”, Nature 417, 722–725 (2002).Google Scholar
[421] W., Liang, M. P., Shores, M., Bockrath, J. R., Long, and H., Park, “Kondo resonance in a single-molecule transistor”, Nature 417, 725–729 (2002).Google Scholar
[422] S., Kubatkin, A., Danilov, M., Hjort, et al., “Single-electron transistor of a single organic molecule with access to several redox states”, Nature 425, 698–701 (2003).Google Scholar
[423] L. H., Yu and D., Natelson, “The Kondo effect in C60 single-molecule transistors”, Nano Lett. 4, 79–83 (2004).Google Scholar
[424] H., Sellier, G. P., Lansbergen, J., Caro, et al., “Transport spectroscopy of a single dopant in a gated silicon nanowire”, Phys. Rev. Lett. 97, 206805 (2006).Google Scholar
[425] K. Y., Tan, K. W., Chan, M., Möttönen, et al., “Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor”, Nano Lett. 10 (2010).Google Scholar
[426] M. W., Keller, A. L., Eichenberger, J.M., Martinis, and N. M., Zimmerman, “A capacitance standard based on counting electrons”, Science 285, 1706–1709 (1999).Google Scholar
[427] P. J., Mohr and B. N., Taylor, “CODATA recommended values of the fundamental physical constants: 2002”, Rev. Mod. Phys. 77, 1–107 (2005).Google Scholar
[428] P. J., Mohr, B. N., Taylor, and D. B., Newell, “CODATA recommended values of the fundamental physical constants: 2006”, Rev. Mod. Phys. 80, 633 (2008).Google Scholar
[429] J., Bylander, T., Duty, and P., Delsing, “Current measurement by real-time counting of electrons”, Nature 434, 361–364 (2005).Google Scholar
[430] R. J., Schoelkopf, P., Wahlgren, A. A., Kozhevnikov, P., Delsing, and D. E., Prober, “The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer”, Science 280, 1238 (1998).Google Scholar
[431] W., Lu, Z., Ji, L., Pfeiffer, K. W., West, and A. J., Rimberg, “Real-time detection of electron tunneling in a quantum dot”, Nature 423, 422–425 (2003).Google Scholar
[432] M. D., LaHaye, O., Buu, B., Camarota, and K. C., Schwab, “Approaching the quantum limit of a nanomechanical resonator”, Science 304, 74–77 (2004).Google Scholar
[433] D. M., Pozar, Microwave Engineering, 3rd edn. (New York, Wiley, 2004)Google Scholar
[434] R. H., Chen, A. N., Korotkov, and K. K., Likharev, “Single-electron transistor logic”, Appl. Phys. Lett. 68, 1954–1956 (1996).Google Scholar
[435] K., Likharev, “Single-electron devices and their applications”, Proc. IEEE 87, 606–632 (1999).Google Scholar
[436] G., Zimmerli, R. L., Kautz, and J. M., Martinis, “Voltage gain in the single-electron transistor”, Appl. Phys. Lett. 61, 2616–2618 (1992).Google Scholar
[437] P. D., Tougaw and C. S., Lent, “Logical devices implemented using quantum cellular automata”, J. Appl. Phys. 75, 1818–1825 (1994).Google Scholar
[438] I., Amlani, A. O., Orlov, G., Toth, G. H., Bernstein, C. S., Lent, and G. L., Snider, “Digital logic gate using quantum-dot cellular automata”, Science 284, 289–291 (1999).Google Scholar
[439] A. R., von Hippel, ed., Molecular Science and Molecular Engineering(New York, Wiley and MIT Press, 1959).
[440] A., Aviram and M. A., Ratner, “Molecular rectifiers”, Chem. Phys. Lett. 29, 277–283 (1974).Google Scholar
[441] A., Nitzan and M. A., Ratner, “Electron transport in molecular wire junctions”, Science 300, 1384–1389 (2003).Google Scholar
[442] R. L., McCreery, “Molecular electronic junctions”, Chem. Mater. 16, 4477–4496 (2004).Google Scholar
[443] Y., Selzer and D. L., Allara, “Single-molecule electrical junctions”, Ann. Rev. Phys. Chem. 57, 693–623 (2006).Google Scholar
[444] D., Natelson, “Single-molecule transistors”, in H. S., Nalwa, ed., Handbook of Organic Electronics and Photonics, (Stephenson Ranch, CA, American Scientific, 2007).Google Scholar
[445] D., Natelson, “Towards the ultimate transistor”, Physics World 22, 27–31 (2009).Google Scholar
[446] J., Chen, M. A., Reed, A. M., Rawlett, and J. M., Tour, “Large on-off ratios and negative differential resistance in a molecular electronic device”, Science 286, 1550–1552 (1999).Google Scholar
[447] J. G., Kushmerick, D. B., Holt, J. C., Yang, J., Naciri, M. H., Moore, and R., Shashidhar, “Metal-molecule contacts and charge transport across monomolecular layers: measurement and theory”, Phys. Rev. Lett. 89, 086802 (2002).Google Scholar
[448] H. B., Akkerman, P. W. M., Blom, D.M., de Leeuw, and B., de Boer, “Towards molecular electronics with large-area molecular junctions”, Nature 441, 69–72 (2006).Google Scholar
[449] H., Park, A. K. L., Lim, A. P., Alivisatos, J., Park, and P. L., McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration”, Appl. Phys. Lett. 75, 301–303 (1999).Google Scholar
[450] D., Natelson, L. H., Yu, J. W., Ciszek, Z. K., Keane, and J. M., Tour, “Single-molecule transistors: electron transfer in the solid state”, Chem. Phys. 324, 267–275 (2006).Google Scholar
[451] M. A., Ratner, “Bridge-assisted electron transfer - effective electronic coupling”, J. Phys. Chem. 94, 4877–4883 (1990).Google Scholar
[452] H. B., Akkerman, R. C. G., Naber, B., Jongbloed, et al., “Electron tunneling through alkanedithiol self-assembled monolayers in large-area molecular junctions”, Proc. Nat. Acad. Sci. US 104, 11161–11166 (2007).Google Scholar
[453] S. H., Ke, H. U., Baranger, and W. T., Yang, “Contact atomic structure and electron transport through molecules”, J. Chem. Phys. 122, 074704 (2005).Google Scholar
[454] V. B., Engelkes, J. M., Beebe, and C. D., Frisbie, “Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: effect of metal work function and applied bias on tunneling efficiency and contact resistance”, J. Am. Chem. Soc. 126, 14287–14296 (2004).Google Scholar
[455] L., Venkataraman, J. E., Klare, I. W., Tam, C., Nuckolls, M. S., Hybertsen, and M. L., Steigerwald, “Single-molecule circuits with well-defined molecular conductance”, Nano Lett. 6, 458–462 (2006).Google Scholar
[456] S. H., Choi, B., Kim, and C. D., Frisbie, “Electrical resistance of long conjugated molecular wires”, Science 320, 1482–1486 (2008).Google Scholar
[457] J. G., Kushmerick, J., Lazorcik, C. H., Patterson, and R., Shashidhar, “Vibronic contributions to charge transport across molecular junctions”, Nano Lett. 4, 639–642 (2004).Google Scholar
[458] R. M., Metzger, “Electrical rectification by a molecule: the advent of unimolecular electronic devices”, Acc. Chem. Res. 32, 950–957 (1999).Google Scholar
[459] G. J., Ashwell, B., Urasinska, and W. D., Tyrrell, “Molecules that mimic Schottky diodes”, Phys. Chem. Chem. Phys. 8, 3314–3319 (2006).Google Scholar
[460] L. H., Yu, Z., Keane, J., Ciszek, et al., “Strong Kondo physics and anomalous gate dependence in single-molecule transistors”, Phys. Rev. Lett. 95, 256803 (2005).Google Scholar
[461] C. P., Collier, E. W., Wong, M., Belohradsky, et al., “Electronically configurable molecular-based logic gates”, Science 285, 391–394 (1999).Google Scholar
[462] V., Balzani, M., Gomez-Lopez, and J. F., Stoddart, “Molecular machines”, Acc. Chem. Res. 31, 405–414 (1998).Google Scholar
[463] C. N., Lau, D. R., Stewart, R. S., Williams, and M., Bockrath, “Direct observation of nanoscale switching centers in metal/molecule/metal structures”, Nano Lett. 4, 569–572 (2004).Google Scholar
[464] J. E., Green, J. W., Choi, A., Boukai, et al., “A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre”, Nature 445, 414–417 (2007).Google Scholar
[465] C., Zhang, M.-H., Du, H.-P., Cheng, X.-G., Zhang, A. E., Roitberg, and J. L., Krause, “Coherent electron transport through an azobenzene molecule: a light-driven molecular switch”, Phys. Rev. Lett. 92, 58301 (2004).Google Scholar
[466] M., Irie, “Diarylethenes for memories and switches”, Chem. Rev. 100, 1685–1716 (2000).Google Scholar
[467] A., Salomon, T., Boecking, C. K., Chan, et al., “How do electronic carriers cross Si-bound alkyl monolayers?”Phys. Rev. Lett. 95, 266807 (2005).Google Scholar
[468] T., He, J. L., He, M., Lu, et al., “Controlled modulation of conductance in silicon devices by molecular monolayers”, J. Am. Chem. Soc. 128, 14537–14541 (2006).Google Scholar
[469] S. A., Scott, W. N., Peng, A. M., Kiefer, et al., “Influence of surface chemical modification on charge transport properties in ultrathin silicon membranes”, ACS Nano 3, 1683–1692 (2009).Google Scholar
[470] J. R., Heath, P. J., Kuekes, G. S., Snider, and R. S., Williams, “A defecttolerant computer architecture: opportunities for nanotechnology”, Science 280, 1716–1721 (1998).Google Scholar
[471] P. J., Kuekes, D. R., Stewart, and R. S., Williams, “The crossbar latch: logic value storage, restoration, and inversion in crossbar circuits”, J. Appl. Phys. 97, 034301 (2005).Google Scholar
[472] M. A., Kastner, “The single-electron transistor”, Rev. Mod. Phys. 64, 849–858 (1992).Google Scholar
[473] C. W. J., Beenakker, “Random-matrix theory of quantum transport”, Rev. Mod. Phys. 69, 731–808 (1997).Google Scholar
[474] Y., Imry and R., Landauer, “Conductance viewed as transmission”, Rev. Mod. Phys. 71, S306–S312 (1999).Google Scholar
[475] B., Ludoph, M. H., Devoret, D., Esteve, C., Urbina, and J. M., van Ruitenbeek, “Evidence for saturation of channel transmission from conductance fluctuations in atomic-size point contacts”, Phys. Rev. Lett. 82, 1530–1533 (1999).Google Scholar
[476] C., Untiedt, G., Rubio Bollinger, S., Vieira, and N., Agraït, “Quantum interference in atomic-sized point contacts”, Phys. Rev. B 62, 9962–9965 (2000).Google Scholar
[477] D. C., Jiles, Introduction to Magnetism and Magnetic Materials, 2nd edn. (New York, CRC, 1998).Google Scholar
[478] R. C., O'Handley, Modern Magnetic Materials: Principles and Applications (New York, Wiley-Interscience, 1999).Google Scholar
[479] S., Chikazumi, Physics of Ferromagnetism, 3rd edn. (New York, Oxford, 2009).Google Scholar
[480] J. M. D., Coey, “Materials for spin electronics”, in M., Ziese and M. J., Thornton, eds., Spin Electronics, Lecture Notes in Physics, 277–297 (New York, MSpringer Berlin/Heidelberg, 2001).Google Scholar
[481] J. M. D., Coey and C. L., Chien, “Half-metallic ferromagnetic oxides”, MRS Bulletin 28, 720–724 (2003).Google Scholar
[482] J., Van Kranendonk and J. H., Van Vleck, “Spin waves”, Rev. Mod. Phys. 30, 1–23 (1958).
[483] H., Barkhausen, “Zwei mit Hilfe der neuen verstarker entdeckte Erscheinungen”, Z. Phys. 20, 401–403 (1919).Google Scholar
[484] C., Kittel, “On the theory of ferromagnetic resonance absorption”, Phys. Rev. 73, 155–161 (1948).Google Scholar
[485] L. D., Landau and E., Lifshitz, “On the theory of the dispersion of magnetic permeability in ferromagnetic bodies”, Phys. Z. Sowjetunion 8, 153–169 (1935).Google Scholar
[486] T. L., Gilbert, “A Lagrangian formulation of the gyromagnetic equation of the magnetization field”, Phys. Rev. 100, 1243 (1955).Google Scholar
[487] T., Gilbert, “A phenomenological theory of damping in ferromagnetic materials”, IEEE Trans. Magnetics, 40, 3443–3449 (2004).Google Scholar
[488] F., Bloch, “Nuclear induction”, Phys. Rev. 70, 460–474 (1946).Google Scholar
[489] H. Y., Carr and E. M., Purcell, “Effects of diffusion on free precession in nuclear magnetic resonance experiments”, Phys. Rev. 94, 630–638 (1954).Google Scholar
[490] F., Bitter, “Experiments on the nature of ferromagnetism”, Phys. Rev. 41, 507–515 (1932).Google Scholar
[491] A., Oral, S. J., Bending, and M., Henini, “Real-time scanning Hall probe microscopy”, Appl. Phys. Lett. 69, 1324–1326 (1996).Google Scholar
[492] J. G. S., Lok, A. K., Geim, U., Wyder, J. C., Maan, and S. V., Dubonos, “Thermally activated annihilation of an individual domain in submicrometer nickel particles”, J. Mag. Mag. Mater. 204, 159–164 (1999).Google Scholar
[493] A. D., Kent, S., von Molnár, S., Gider, and D. D., Awschalom, “Properties and measurement of scanning tunneling microscope fabricated ferromagnetic particle arrays”, in The 6th Joint Magnetism and Magnetic Materials (MMM)-Intermag Conference, volume 76, 6656–6660 (Melville, NY, AIP, 1994).Google Scholar
[494] A. K., Geim, S. V., Dubonos, J. G. S., Lok, et al., “Ballistic Hall micromagnetometry”, Appl. Phys. Lett. 71, 2379–2381 (1997).Google Scholar
[495] D., Cohen, “Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer”, Science 175, 664–666 (1972).Google Scholar
[496] Y. S., Greenberg, “Application of superconducting quantum interference devices to nuclear magnetic resonance”, Rev. Mod. Phys. 70, 175–222 (1998).Google Scholar
[497] J. R., Kirtley, C. C., Tsuei, M., Rupp, et al., “Direct imaging of integer and half-integer Josephson vortices in high- Tc-grain boundaries”, Phys. Rev. Lett. 76, 1336–1339 (1996).Google Scholar
[498] W., Wernsdorfer, “From micro- to nano-SQUIDs: applications to nanomagnetism”, Superconductor Science and Technology 22, 064013 (2009).Google Scholar
[499] T. J., Silva, S., Schultz, and D., Weller, “Scanning near-field optical microscope for the imaging of magnetic domains in optically opaque materials”, Appl. Phys. Lett. 65, 658–660 (1994).Google Scholar
[500] K., Koike and K., Hayakawa, “Domain observation with spin-polarized secondary electrons”, J. Appl. Phy. 57, 4244–4248 (1985).Google Scholar
[501] M. R., Scheinfein, J., Unguris, M. H., Kelly, D. T., Pierce, and R. J., Celotta, “Scanning electron-microscopy with polarization analysis (SEMPA)”, Rev. Sci. Instr. 61, 2501–2526 (1990).Google Scholar
[502] T. J., Gay and F. B., Dunning, “Mott electron polarimetry”, Review of Scientific Instruments 63, 1635–1651 (1992).Google Scholar
[503] J., Unguris, D. T., Pierce, A., Galejs, and R. J., Celotta, “Spin and energy analyzed secondary electron emission from a ferromagnet”, Phys. Rev. Lett. 49, 72–76 (1982).Google Scholar
[504] M. E., Hale, H. W., Fuller, and H., Rubinstein, “Magnetic domain observations by electron microscopy”, J. Appl. Phys. 30, 789–791 (1959).Google Scholar
[505] P. J., Grundy and R. S., Tebble, “Lorentz electron microscopy”, Adv. Phys. 17, 153–242 (1968).Google Scholar
[506] M. S., Cohen, “Wave-optical aspects of Lorentz microscopy”, J. Appl. Phys. 38, 4966–4976 (1967).Google Scholar
[507] A., Tonomura, T., Matsuda, J., Endo, T., Arii, and K., Mihama, “Direct observation of fine structure of magnetic domain walls by electron holography”, Phys. Rev. Lett. 44, 1430–1433 (1980).Google Scholar
[508] D., Rugar, H. J., Mamin, P., Guethner, et al., “Magnetic force microscopy: general principles and application to longitudinal recording media”, J. Appl. Phys. 68, 1169–1183 (1990).Google Scholar
[509] J. A., Sidles, J. L., Garbini, K. J., Bruland, et al., “Magnetic resonance force microscopy”, Rev. Mod. Phys. 67, 249–265 (1995).Google Scholar
[510] D., Rugar, R., Budakian, H. J., Mamin, and B. W., Chui, “Single spin detection by magnetic resonance force microscopy”, Nature 430, 329–332 (2004).Google Scholar
[511] C. L., Degen, M., Poggio, H. J., Mamin, C. T., Rettner, and D., Rugar, “Nanoscale magnetic resonance imaging”, Proc. Nat. Acad. Sci. US. 106, 1313–1317 (2009).Google Scholar
[512] M., Bode, A., Kubetzka, O., Pietzsch, and R., Wiesendanger, “Spin-resolved spectro-microscopy of magnetic nanowire arrays”, Sur. Sci. 514, 135–144 (2002).Google Scholar
[513] L., Piraux, S., Dubois, E., Ferain, et al., “Anisotropic transport and magnetic properties of arrays of sub-micron wires”, J. Mag. Mag. Mat. 165, 352–355 (1997), symposium E: “Magnetic ultrathin films, multilayers and surfaces”.Google Scholar
[514] M. N., Baibich, J. M., Broto, A., Fert, et al., “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices”, Phys. Rev. Lett. 61, 2472–2475 (1988).Google Scholar
[515] G., Binasch, P., Grünberg, F., Saurenbach, and W., Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange”, Phys. Rev. B 39, 4828–4830 (1989).Google Scholar
[516] S. S. P., Parkin, N., More, and K. P., Roche, “Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr”, Phys. Rev. Lett. 64, 2304–2307 (1990).Google Scholar
[517] M., Johnson and R. H., Silsbee, “Interfacial charge-spin coupling: injection and detection of spin magnetization in metals”, Phys. Rev. Lett. 55, 1790–1793 (1985).Google Scholar
[518] F. J., Jedema, A. T., Filip, and B. J., van Wees, “Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve”, Nature 410, 345–349 (2001).Google Scholar
[519] J. S., Moodera, L. R., Kinder, T. M., Wong, and R., Meservey, “Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions”, Phys. Rev. Lett. 74, 3273–3276 (1995).Google Scholar
[520] M., Julliere, “Tunneling between ferromagnetic films”, Phys. Lett. A 54, 225–226 (1975).Google Scholar
[521] R., Meservey and P. M., Tedrow, “Spin-polarized electron tunneling”, Phys. Rep. 238, 173–243 (1994).Google Scholar
[522] E., Tsymbal, K., Belashchenko, J., Velev, et al., “Interface effects in spin-dependent tunneling”, Prog. Mat. Sci. 52, 401–420 (2007)Google Scholar
[523] A. P., Ramirez, “Colossal magnetoresistance”, J. Phys.: Cond. Mat. 9, 8171 (1997).Google Scholar
[524] J. M. D., Coey, M., Viret, and S. V., Molnar, “Mixed-valence manganites.”Adv. Phys. 48, 167–293 (1999).Google Scholar
[525] N., García, M., Muñoz, and Y.-W., Zhao, “Magnetoresistance in excess of 200% in ballistic Ni nanocontacts at room temperature and 100 Oe”, Phys. Rev. Lett. 82, 2923–2926 (1999).Google Scholar
[526] Z. K., Keane, L. H., Yu, and D., Natelson, “Magnetoresistance of atomic-scale electromigrated nickel nanocontacts”, Appl. Phys. Lett. 88, 062514 (2006).Google Scholar
[527] K. I., Bolotin, F., Kuemmeth, A. N., Pasupathy, and D. C., Ralph, “From ballistic transport to tunneling in electromigrated ferromagnetic breakjunctions”, Nano Lett. 6, 123–1237 (2006).Google Scholar
[528] B., Doudin and M., Viret, “Ballistic magnetoresistance?”, J. Phys.: Cond. Mat. 20, 083201 (2008).Google Scholar
[529] S. A., Solin, T., Thio, D. R., Hines, and J. J., Heremans, “Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors”, Science 289, 1530–1532 (2000).Google Scholar
[530] S. A., Solin, D. R., Hines, A. C. H., Rowe, et al., “Nonmagnetic semiconductors as read-head sensors for ultra-high-density magnetic recording”, Appl. Phys. Lett. 80, 4012–4014 (2002).Google Scholar
[531] J., Nogués and I. K., Schuller, “Exchange bias”, J. Mag. Mag. Mat. 192, 203–232 (1999).Google Scholar
[532] A., Hubert and R., Schäfer, Magnetic Domains: the Analysis of Magnetic Microstructures (New York, Springer, 1998).Google Scholar
[533] K., Hong and N., Giordano, “Evidence for domain wall tunnelling in a quasi-one dimensional ferromagnet”, J. Phys.: Cond. Mat. 8, L301 (1996).Google Scholar
[534] P. M., Levy and S., Zhang, “Resistivity due to domain wall scattering”, Phys. Rev. Lett. 79, 5110–5113 (1997).Google Scholar
[535] E. M., Chudnovsky and L., Gunther, “Quantum tunneling of magnetization in small ferromagnetic particles”, Phys. Rev. Lett. 60, 661–664 (1988).Google Scholar
[536] H.-B., Braun, J., Kyriakidis, and D., Loss, “Macroscopic quantum tunneling of ferromagnetic domain walls”, Phys. Rev. B 56, 8129–8137 (1997).Google Scholar
[537] T., Ono, H., Miyajima, K., Shigeto, K., Mibu, N., Hosoito, and T., Shinjo, “Propagation of a magnetic domain wall in a submicrometer magnetic wire”, Science 284, 468–470 (1999).Google Scholar
[538] R., Ferré, K., Ounadjela, J. M., George, L., Piraux, and S., Dubois, “Magnetization processes in nickel and cobalt electrodeposited nanowires”, Phys. Rev. B 56, 14066–14075 (1997).Google Scholar
[539] T., Shinjo, T., Okuno, R., Hassdorf, K., Shigeto, and T., Ono, “Magnetic vortex core observation in circular dots of permalloy”, Science 289, 930–932 (2000).Google Scholar
[540] C. P., Bean and J. D., Livingston, “Superparamagnetism”, J. Appl. Phys. 30, S120–S129 (1959).Google Scholar
[541] F. C., Fonseca, G. F., Goya, R. F., Jardim, et al., “Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO2”, Phys. Rev. B 66, 104406 (2002).Google Scholar
[542] W. F., Brown, “Thermal fluctuations of a single-domain particle”, Phys. Rev. 130, 1677–1686 (1963).Google Scholar
[543] J. I., Gittleman, B., Abeles, and S., Bozowski, “Superparamagnetism and relaxation effects in granular Ni-SiO2 and Ni-Al2O3 films”, Phys. Rev. B 9, 3891–3897 (1974).Google Scholar
[544] P. C. E., Stamp, E. M., Chudnovsky, and B., Barbara, “Quantum tunneling of magnetization in solids”, Int. J. Mod. Phys. B 6, 1355–1473 (1992).Google Scholar
[545] W., Wernsdorfer, E., Bonet Orozco, K., Hasselbach, et al., “Macroscopic quantum tunneling of magnetization of single ferrimagnetic nanoparticles of barium ferrite”, Phys. Rev. Lett. 79, 4014–4017 (1997).Google Scholar
[546] J. R., Friedman, M. P., Sarachik, J., Tejada, and R., Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules”, Phys. Rev. Lett. 76, 3830–3833 (1996).Google Scholar
[547] D., Gatteschi and R., Sessoli, “Quantum tunneling of magnetization and related phenomena in molecular materials”, Angew. Chemie, Int. Ed. 42, 268–297 (2003).Google Scholar
[548] G., Christou, D., Gatteschi, D. N., Hendrickson, and R., Sessoli, “Single-molecule magnets”, MRS Bulletin 25, 66–71 (2000).Google Scholar
[549] R. J., Elliott, “Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors”, Phys. Rev. 96, 266–279 (1954).Google Scholar
[550] Y., Yafet, “g factors and spin-lattice relaxation of conduction electrons”, Sol. State Phys. 14, 1–98 (1963).Google Scholar
[551] M. I., D'Yakonov and V. I., Perel, “Possibility of orienting electron spins with current”, JETP Letters-USSR 13, 467–469 (1971).Google Scholar
[552] M. I., D'Yakonov and V. I., Perel, “Current-induced spin orientation of electrons in semiconductors”, Phys. Lett. A A 35, 459–460 (1971).Google Scholar
[553] G. L., Bir, A. G., Aronov, and G. E., Pikus, “Spin relaxation of electrons scattered by holes”, Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki 69, 1382–1397 (1975).Google Scholar
[554] A. Y., Elezzabi, M. R., Freeman, and M., Johnson, “Direct measurement of the conduction electron spin-lattice relaxation time T1 in gold”, Phys. Rev. Lett. 77, 3220–3223 (1996).Google Scholar
[555] G., Zolfagharkani, A., Gaidarzhy, P., Degiovanni, S., Kettemann, P., Fulde, and P., Mohanty, “Nanomechanical detection of itinerant electron spin flip”, Nature Nano. 3, 720–723 (2008).Google Scholar
[556] E. B., Myers, D. C., Ralph, J. A., Katine, R. N., Louie, and R. A., Buhrman, “Current-induced switching of domains in magnetic multilayer devices”, Science 285, pp. 867–870 (1999).Google Scholar
[557] M., Tsoi, A. G. M., Jansen, J., Bass, et al., “Excitation of a Magnetic Multilayer by an Electric Current”, Phys. Rev. Lett. 80, 4281–4284 (1998).Google Scholar
[558] J. A., Katine, F. J., Albert, R. A., Buhrman, E. B., Myers, and D. C., Ralph, “Currentdriven magnetization reversal and spin-wave excitations in Co /Cu /Co pillars”, Phys. Rev. Lett. 84, 3149–3152 (2000).Google Scholar
[559] I. N., Krivorotov, N. C., Emley, J. C., Sankey, S. I., Kiselev, D. C., Ralph, and R. A., Buhrman, “Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques”, Science 307, 228–231 (2005).Google Scholar
[560] S., Kiselev, J., Sankey, I., Krivorotov, et al., “Microwave oscillations of a nanomagnet driven by a spin-polarized current”, Nature 425, 380–383 (2003).Google Scholar
[561] E. D., Daniel, C. D., Mee, and M. H., Clark, eds., Magnetic Recording: the First 100 Years (New York, Wiley-IEEE, 1998).Google Scholar
[562] E., Grobowski, “Hitachi global storage technologies HDD roadmap”, www1.hitachigst.com/hdd/technolo/overview/storagetechchart.html (2011).
[563] Y., Tanaka, “Perpendicular recording technology: from research to commercialization”, Proc. IEEE 96, 1754–1760 (2008).Google Scholar
[564] R., Wood, Y., Hsu, and M., Schulz, “Perpendicular magnetic recording technology”, Technical report, Hitachi Global Storage Technology (2007).
[565] “CPP read-head technology enables smaller form factor storage”, Technical report, Fujitsu Computer Products of America (2006).
[566] M., Kryder, E., Gage, T., McDaniel, et al., “Heat assisted magnetic recording”, Proc. IEEE 96, 1810–1835 (2008).Google Scholar
[567] E., Dobisz, Z., Bandic, T.-W., Wu, and T., Albrecht, “Patterned media: nanofabrication challenges of future disk drives”, Proc. IEEE 96, 1836–1846 (2008).Google Scholar
[568] J.-G., Zhu, “Magnetoresistive random access memory: the path to competitiveness and scalability”, Proc. IEEE 96, 1786–1798 (2008).Google Scholar
[569] S. S. P., Parkin, M., Hayashi, and L., Thomas, “Magnetic domain-wall racetrack memory”, Science 320, 190–194 (2008).Google Scholar
[570] S. A., Wolf, D. D., Awschalom, R. A., Buhrman, et al., “Spintronics: A spin-based electronics vision for the future”, Science 294, 1488–1495 (2001).Google Scholar
[571] S. A., Wolf, A. Y., Chtchelkanova, and D. M., Treger, “Spintronics – a retrospective and perspective”, IBM J. Res. Dev. 50, 101–110 (2006).Google Scholar
[572] S., Datta and B., Das, “Electronic analog of the electro-optic modulator”, Appl. Phys. Lett. 56, 665–667 (1990).Google Scholar
[573] G., Schmidt, D., Ferrand, L. W., Molenkamp, A. T., Filip, and B. J., van Wees, “Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor”, Phys. Rev. B 62, R4790–R4793 (2000).Google Scholar
[574] G. Schmidt and L. W., Molenkamp, “Spin injection into semiconductors, physics and experiments”, Semiconductor Science and Technology 17, 310 (2002).Google Scholar
[575] E. I., Rashba, “Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem”, Phys. Rev. B 62, R16267–R16270 (2000).Google Scholar
[576] J. M., Kikkawa, I. P., Smorchkova, N., Samarth, and D. D., Awschalom, “Roomtemperature spin memory in two-dimensional electron gases”, Science 277, 1284–1287 (1997).Google Scholar
[577] J., Kikkawa and D. D., Awschalom, “Lateral drag of spin coherence in gallium arsenide”, Nature 397, 139–141 (1999).Google Scholar
[578] Y., Ohno, D. K., Young, B., Beschoten, F., Matsukura, H., Ohno, and D. D., Awschalom, “Electrical spin injection in a ferromagnetic semiconductor heterostructure”, Nature 402, 790–792 (1999).Google Scholar
[579] J. E., Hirsch, “Spin Hall effect”, Phys. Rev. Lett. 83, 1834–1837 (1999).Google Scholar
[580] Y. K., Kato, R. C., Myers, A. C., Gossard, and D. D., Awschalom, “Observation of the spin Hall effect in semiconductors”, Science 306, 1910–1913 (2004).Google Scholar
[581] J., Wunderlich, B., Kaestner, J., Sinova, and T., Jungwirth, “Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system”, Phys. Rev. Lett. 94, 047204 (2005).Google Scholar
[582] J., Sinova, D., Culcer, Q., Niu, N. A., Sinitsyn, T., Jungwirth, and A. H., MacDonald, “Universal intrinsic spin Hall effect”, Phys. Rev. Lett. 92, 126603 (2004).Google Scholar
[583] Y.A., Bychkov and E. I., Rashba, “Oscillatory effects and the magnetic susceptibility of carriers in inversion layers”, J. Phys. C: Solid State Phys. 17, 6039 (1984).Google Scholar
[584] Q. A., Pankhurst, J., Connolly, S. K., Jones, and J., Dobson, “Applications of magnetic nanoparticles in biomedicine”, J. Phys. D: Appl. Phys. 36, R167 (2003).Google Scholar
[585] S., Mornet, S., Vasseur, F., Grasset, and E., Duguet, “Magnetic nanoparticle design for medical diagnosis and therapy”, J. Mater. Chem. 14, 2161–2175 (2004).Google Scholar
[586] A., Jordan, R., Scholz, P., Wust, H., Fähling, and R., Felix, “Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles”, J. Mag. Mag. Mat. 201, 413–419 (1999).Google Scholar
[587] J., Oberteuffer, “Magnetic separation: a review of principles, devices, and applications”, IEEE Trans. Magnetics, 10, 223–238 (1974).Google Scholar
[588] O., Olsvik, T., Popovic, E., Skjerve, et al., “Magnetic separation techniques in diagnostic microbiology.”Clinical Microbiology Reviews 7, 43–54 (1994).Google Scholar
[589] C. T., Yavuz, J. T., Mayo, W. W., Yu, et al., “Low-field magnetic separation of monodisperse Fe3O4 Nanocrystals”, Science 314, 964–967 (2006).Google Scholar
[590] G., De Las Cuevas, J., Faraudo, and J., Camacho, “Low-gradient magnetophoresis through field-induced reversible aggregation”, J. Phys. Chem. C 112, 945–950 (2008).Google Scholar
[591] J., M. Ginder and L. C., Davis, “Shear stresses in magnetorheological fluids: Role of magnetic saturation”, Appl. Phys. Lett. 65, 3410–3412 (1994).Google Scholar
[592] M. R., Jolly, J. D., Carlson, and B. C., Muñoz, “A model of the behaviour of magnetorheological materials”, Smart Mat. Struct. 5, 607 (1996).Google Scholar
[593] A., Sommerfeld, “The propagation of light in dispersing media”, Ann. Physik 44, 177 (1914).Google Scholar
[594] L., Brillouin, “On the propagation of light in dispersing media”, Ann. Physik 44, 203 (1914).Google Scholar
[595] A., Kuzmich, A., Dogariu, L. J., Wang, P. W., Milonni, and R. Y., Chiao, “Signal velocity, causality, and quantum noise in superluminal light pulse propagation”, Phys. Rev. Lett. 86, 3925–3929 (2001).Google Scholar
[596] J., Jackson, Classical Electrodynamics (New York, Wiley, 1999).Google Scholar
[597] S. J., Orfanidis, “Electromagnetic waves and antennas”, www.ece.rutgers.edu~orfanidi/ewa/ (2002).
[598] M., Sargent III, M. O., Scully, and J. W. E., Lamb, Laser Physics (New York, Westview, 1978).Google Scholar
[599] A. E., Siegman, Lasers (Sausalito, University Science Books, 1986).Google Scholar
[600] O., Svelto, Principles of Lasers, 5th edn. (New York, Springer, 2009).Google Scholar
[601] J. P., Gordon, H. J., Zeiger, and C. H., Townes, “The Maser–new type of microwave amplifier, frequency standard, and spectrometer”, Phys. Rev. 99, 1264–1274 (1955).Google Scholar
[602] W. T., Tsang, “A graded-index waveguide separate-confinement laser with very low threshold and a narrow Gaussian beam”, Appl. Phys. Lett. 39, 134–137 (1981).Google Scholar
[603] H., Kogelnik and C. V., Shank, “Stimulated emission in a periodic structure”, Appl. Phys. Lett. 18, 152–154 (1971).Google Scholar
[604] H., Yen, M., Nakamura, E., Garmire, S., Somekh, A., Yariv, and H., Garvin, “Optically pumped GaAs waveguide lasers with a fundamental 0.11 corrugation feedback”, Optics Commu. 9, 35–37 (1973).Google Scholar
[605] P., Yeh and A., Yariv, “Bragg reflection waveguides”, Optics Commu. 19, 427–430 (1976).Google Scholar
[606] A., Nurmikko and J., Han, “Blue and near-ultraviolet vertical-cavity surface-emitting lasers”, MRS Bulletin 27, 502–506 (2002).Google Scholar
[607] C., Gmachl, F., Capasso, D. L., Sivco, and A. Y., Cho, “Recent progress in quantum cascade lasers and applications”, Rep. Progr. Phys. 64, 1533 (2001).Google Scholar
[608] B., S.Williams, “Terahertz quantum-cascade lasers”, Nat. Phot. 1, 517–525 (2007).Google Scholar
[609] J., Hecht, City of Light: the Story of Fiber Optics (New York, Oxford University, 1999).Google Scholar
[610] G., Agrawal, Fiber-optic Communication Systems, Number 1 in Series in Microwave and Optical Engineering (New York, Wiley-Interscience, 2002).Google Scholar
[611] “Introduction to optical fibers, dB, attenuation and measurements”, Technical report, Cisco Systems, Inc. (2010).
[612] K. O., Hill, Y., Fujii, D. C., Johnson, and B. S., Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication”, Appl. Phys. Lett. 32, 647–649 (1978).Google Scholar
[613] A., Kersey, M., Davis, H., Patrick, et al., “Fiber grating sensors”, J. LightwaveTechnol., 15, 1442–1463 (1997).Google Scholar
[614] B. J., Eggleton, A., Ahuja, P. S., Westbrook, et al., “Integrated tunable fiber gratings for dispersion management in high-bit rate systems”, J. Lightwave Technol. 18, 1418 (2000).Google Scholar
[615] E., Wooten, K., Kissa, A., Yi-Yan, et al., “A review of lithium niobate modulators for fiber-optic communications systems”, IEEE J. Selected Topics in QuantumElectronics, 6, 69–82 (2000).Google Scholar
[616] A., Liu, R., Jones, L., Liao, et al., “A high-speed silicon optical modulator based on a metal oxide semiconductor capacitor”, Nature 427, 615–618 (2004).Google Scholar
[617] R., Mears, L., Reekie, I., Jauncey, and D., Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54 ìm”, Electron. Lett. 23, 1026–1028 (1987).Google Scholar
[618] W., Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm”, J. Lightwave Technol., 9, 234–250 (1991).Google Scholar
[619] S., Bottacchi, A., Beling, A., Matiss, et al., “Advanced photoreceivers for highspeed optical fiber transmission systems”, IEEE J. Selected Topics in QuantumElectronics, 16, 1099–1112 (2010).Google Scholar
[620] E., Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Phys. Rev. Lett. 58, 2059–2062 (1987).Google Scholar
[621] E., Yablonovitch, “Photonic band-gap structures”, J. Opt. Soc. Am. B 10, 283–295 (1993).Google Scholar
[622] E., Özbay, A., Abeyta, G., Tuttle, et al., “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods”, Phys. Rev. B 50, 1945–1948 (1994).Google Scholar
[623] A., Blanco, E., Chomski, S., Grabtchak, et al., “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres”, Nature 405, 437–440 (2000).Google Scholar
[624] S., Noda, K., Tomoda, N., Yamamoto, and A., Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths”, Science 289, 604–606 (2000).Google Scholar
[625] M., Campbell, D., Sharp, M., Harrison, R., Denning, and A., Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography”, Nature 404, 53–56 (2000).Google Scholar
[626] D. J., Norris, “Photonic crystals: a view of the future”, Nat. Mater. 6, 177–178 (2007).Google Scholar
[627] A. A., Erchak, D. J., Ripin, M. M. P., Rakich, et al., “Photonic band gap microcavity laser embedded in a strip waveguide”, Technical report, Massachusetts Institute of Technology (2004).
[628] H., Altug, D., Englund, and J., Vučković, “Ultrafast photonic crystal nanocavity laser”, Nat. Phys. 2, 484–488 (2006).Google Scholar
[629] E. M., Purcell, “Spontaneous emission probabilities at radio frequencies”, Phys.Rev. 69, 681–681 (1946).Google Scholar
[630] P., Goy, J. M., Raimond, M., Gross, and S., Haroche, “Observation of cavityenhanced single-atom spontaneous emission”, Phys. Rev. Lett. 50, 1903–1906 (1983).Google Scholar
[631] D., Kleppner, “Inhibited spontaneous emission”, Phys. Rev. Lett. 47, 233–236 (1981).Google Scholar
[632] D., Englund, D., Fattal, E., Waks, et al., “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal”, Phys. Rev. Lett. 95, 013904 (2005).Google Scholar
[633] A., Kress, F., Hofbauer, N., Reinelt, et al., “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals”, Phys.Rev. B 71, 241304 (2005).Google Scholar
[634] T.F., Krauss and R. M. D. L., Rue, “Photonic crystals in the optical regime: past, present and future”, Prog. Quant. Electr. 23, 51–96 (1999).Google Scholar
[635] J. J., Wierer, Jr., A., David, and M. M., Megens, “III-nitride photonic-crystal lightemitting diodes with high extraction efficiency”, Nat. Phot. 3, 163–169 (2009).Google Scholar
[636] J. C., Knight, T. A., Birks, P. S. J., Russell, and D. M., Atkin, “All-silica single-mode optical fiber with photonic crystal cladding”, Opt. Lett. 21, 1547–1549 (1996).Google Scholar
[637] P. S., Russell, “Photonic-crystal fibers”, J. Lightwave Technol., 24, 4729–4749 (2006).Google Scholar
[638] J. C., Knight, J., Broeng, T. A., Birks, and P. S. J., Russell, “Photonic band gap guidance in optical fibers”, Science 282, 1476–1478 (1998).Google Scholar
[639] S. A., Rinne, F., Garcia-Santamaria, and P. V., Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals”, Nat. Phot. 2, 52–56 (2008).Google Scholar
[640] A., Mekis, J. C., Chen, I., Kurland, S., Fan, P. R., Villeneuve, and J. D., Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides”, Phys.Rev. Lett. 77, 3787–3790 (1996).Google Scholar
[641] S. G., Johnson, S., Fan, P. R., Villeneuve, J. D., Joannopoulos, and L. A., Kolodziejski, “Guided modes in photonic crystal slabs”, Phys. Rev. B 60, 5751–5758 (1999).Google Scholar
[642] M. F., Yanik, S., Fan, M., Soljačić, and J. D., Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry”, Opt. Lett. 28, 2506–2508 (2003).Google Scholar
[643] M. F., Yanik, S., Fan, M., Soljačić, and J. D., Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry”, Opt. Lett. 28, 2506–2508 (2003).Google Scholar
[644] S., Kubo, Z.-Z., Gu, K., Takahashi, A., Fujishima, H., Segawa, and O., Sato, “Control of the optical properties of liquid crystal-infiltrated inverse opal structures using photo irradiation and/or an electric field”, Chem. Mater. 17, 2298–2309 (2005).Google Scholar
[645] D., S. Wiersma and A., Lagendijk, “Light diffusion with gain and random lasers”, Phys. Rev. E 54, 4256–4265 (1996).Google Scholar
[646] H., Cao, Y. G., Zhao, S. T., Ho, E. W., Seelig, Q. H., Wang, and R. P. H., Chang, “Random laser action in semiconductor powder”, Phys. Rev. Lett. 82, 2278–2281 (1999).Google Scholar
[647] D. S., Wiersma, P., Bartolini, A., Lagendijk, and R., Righini, “Localization of light in a disordered medium”, Nature 390, 671–673 (1997).Google Scholar
[648] M.A., Paesler and P. J., Moyer, Near-Field Optics: Theory, Instrumentation, and Applications (New York, Wiley Interscience, 1996).Google Scholar
[649] J. M., Vigoureux, F., Depasse, and C., Girard, “Superresolution of near-field optical microscopy defined from properties of confined electromagnetic waves”, Appl.Opt. 31, 3036–3045 (1992).Google Scholar
[650] E., Synge, “XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region”, Phil. Mag. Ser. 76, 356–362 (1928).Google Scholar
[651] J.A., O'Keefe, “Resolving power of visible light”, J. Opt. Soc. Am. 46, 359–359 (1956).Google Scholar
[652] S.A., Maier and H. A., Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures”, J. Appl. Phys. 98, 011101 (2005).Google Scholar
[653] E., Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions”, Science 311, 189–193 (2006).Google Scholar
[654] W., Murray and W., Barnes, “Plasmonic materials”, Adv. Mater. 19, 3771–3782 (2007).Google Scholar
[655] D.K., Gramotnev and S. I., Bozhevolnyi, “Plasmonics beyond the diffraction limit”, Nat. Phot. 4, 83–91 (2010).Google Scholar
[656] J. A., Schuller, E. S., Barnard, W., Cai, Y. C., Jun, J. S., White, and M. L., Brongersma, “Plasmonics for extreme light concentration and manipulation”, Nat. Mater. 9, 193–204 (2010).Google Scholar
[657] L., Novotny and B., Hecht, Principles of Nano-Optics (New York, Cambridge University Press, 2006).Google Scholar
[658] P.B., Johnson and R. W., Christy, “Optical constants of the noble metals”, Phys.Rev. B 6, 4370–4379 (1972).Google Scholar
[659] A., Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection”, Zeitschrift für Physik A Hadrons and Nuclei 216, 398–410 (1968).Google Scholar
[660] E., Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen”, Zeitschrift für Physik AHadrons and Nuclei 241, 313–324 (1971).Google Scholar
[661] J. A., Dionne, H. J., Lezec, and H. A., Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides”, Nano Letters 6, 1928–1932 (2006).Google Scholar
[662] G., Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen”, Ann. Physik 330, 377–445 (1908).Google Scholar
[663] K.A., Willets and R. P., Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing”, Ann. Rev. Phys. Chem. 58, 267–297 (2007).Google Scholar
[664] M., Pelton, J., Aizpurua, and G., Bryant, “Metal-nanoparticle plasmonics”, Laser Phot. Rev. 2, 136–159 (2008).Google Scholar
[665] N., Calander and M., Willander, “Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids”, J. Appl. Phys. 92, 4878–4884 (2002).Google Scholar
[666] C.F., Bohren and D. R., Huffman, Absorption and Scattering of Light by SmallParticles (New York, John Wiley & Sons, 2012).Google Scholar
[667] K. L., Kelly, E., Coronado, L. L., Zhao, and G. C., Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment”, J. Phys. Chem. B 107, 668–677 (2003).Google Scholar
[668] J. P., Kottmann, O. J., Martin, D. R., Smith, and S., Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires”, Chem. Phys. Lett. 341, 1–6 (2001).Google Scholar
[669] E., Prodan, C., Radloff, N. J., Halas, and P., Nordlander, “A hybridization model for the plasmon response of complex nanostructures”, Science 302, 419–422 (2003).Google Scholar
[670] P., Nordlander, C., Oubre, E., Prodan, K., Li, and M. I., Stockman, “Plasmon hybridization in nanoparticle dimers”, Nano Lett. 4, 899–903 (2004).Google Scholar
[671] J. B., Lassiter, H., Sobhani, J. A., Fan, et al., “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability”, Nano Lett. 10, 3184–3189 (2010).Google Scholar
[672] B., Luk'yanchuk, N. I., Zheludev, S. A., Maier, et al., “The Fano resonance in plasmonic nanostructures and metamaterials”, Nat. Mat. 9, 707–715 (2010).Google Scholar
[673] R., Berndt, J. K., Gimzewski, and P., Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces”, Phys. Rev. Lett. 67, 3796–3799 (1991).Google Scholar
[674] A. L., Demming, F., Festy, and D., Richards, “Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering”, J. Chem. Phys. 122, 184716 (2005).Google Scholar
[675] R., Berndt, J. K., Gimzewski, and P., Johansson, “Electromagnetic interactions of metallic objects in nanometer proximity”, Phys. Rev. Lett. 71, 3493–3496 (1993).Google Scholar
[676] M., Fleischmann, P., Hendra, and A., McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode”, Chem. Phys. Lett. 26, 163–166 (1974).Google Scholar
[677] D.L., Jeanmaire and R. P. V., Duyne, “Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode”, J. Electroanalytical Chemistry and Interfacial Electrochemistry 84, 1–20 (1977).Google Scholar
[678] C., Raman and K., Krishnan, “A new type of secondary radiation”, Nature 121, 501–502 (1928).Google Scholar
[679] P.W., Atkins and R. S., Friedman, Molecular Quantum Mechanics, Third edn. (New York, Oxford University Press, 1997).
[680] M.A., Ratner and G. C., Schatz, Quantum Mechanics in Chemistry (New York, Dover, Mineola, 2002).Google Scholar
[681] H., Wei, F., Hao, Y., Huang, W., Wang, P., Nordlander, and H., Xu, “Polarization dependence of surface-enhanced raman scattering in gold nanoparticle nanowire systems”, Nano Lett. 8, 2497–2502 (2008).Google Scholar
[682] K., Kneipp, Y., Wang, H., Kneipp, et al., “Single molecule detection using surfaceenhanced raman scattering (SERS)”, Phys. Rev. Lett. 78, 1667–1670 (1997).Google Scholar
[683] S., Nie and S. R., Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering”, Science 275, 1102–1106 (1997).Google Scholar
[684] P.G., Etchegoin and E. C., Le Ru, “A perspective on single molecule SERS: current status and future challenges”, Phys. Chem. Chem. Phys. 10, 6079–6089 (2008).Google Scholar
[685] L., Jensen, C. M., Aikens, and G. C., Schatz, “Electronic structure methods for studying surface-enhanced Raman scattering”, Chem. Soc. Rev. 37, 1061–1073 (2008).Google Scholar
[686] M. J., Banholzer, J. E., Millstone, L., Qin, and C. A., Mirkin, “Rationally designed nanostructures for surface-enhanced Raman spectroscopy”, Chem. Soc. Rev. 37, 885–897 (2008).Google Scholar
[687] G. V. P., Kumar, “Plasmonic nano-architectures for surface enhanced Raman scattering: a review”, J. Nanophotonics 6, 064503 (2012).Google Scholar
[688] J., Jiang, K., Bosnick, M., Maillard, and L., Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals”, J. Phys. Chem. B 107, 9964–9972 (2003).Google Scholar
[689] D. R., Ward, N. J., Halas, J. W., Ciszek, et al., “Simultaneous measurements of electronic conduction and Raman response in molecular junctions”, Nano Lett. 8, 919–924 (2008).Google Scholar
[690] J., Zuloaga, E., Prodan, and P., Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer”, Nano Lett. 9, 887–891 (2009).Google Scholar
[691] R.M., Stöckle, Y. D., Suh, V., Deckert, and R., Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy”, Chem. Phys. Lett. 318, 131–136 (2000).Google Scholar
[692] B., Pettinger, P., Schambach, C. J., Villagmez, and N., Scott, “Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules”, Ann. Rev. Phys. Chem. 63, 379–399 (2012).Google Scholar
[693] F., Neubrech, A., Pucci, T. W., Cornelius, S., Karim, A., García-Etxarri, and J., Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection”, Phys. Rev. Lett. 101, 157403 (2008).Google Scholar
[694] E., Fort and S., Grésillon, “Surface enhanced fluorescence”, J. Phys. D: Appl. Phys. 41, 013001 (2008).Google Scholar
[695] P., Mühlschlegel, H.-J., Eisler, O. J. F., Martin, B., Hecht, and D. W., Pohl, “Resonant optical antennas”, Science 308, 1607–1609 (2005).Google Scholar
[696] L., Novotny, “Effective wavelength scaling for optical antennas”, Phys. Rev. Lett. 98, 266802 (2007).Google Scholar
[697] R. D., Bhat, N. C., Panoiu, S. R., Brueck, and R. M., Osgood, “Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating”, Opt. Express 16, 4588–4596 (2008).Google Scholar
[698] L., Tang, S. E., Kocabas, S., Latif, et al., “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna”, Nat. Phot. 2, 226–229 (2008).Google Scholar
[699] H.A., Atwater and A., Polman, “Plasmonics for improved photovoltaic devices”, Nature Mater. 9, 205–213 (2010).Google Scholar
[700] N., Yu, E., Cubukcu, L., Diehl, et al., “Plasmonic quantum cascade laser antenna”, Appl. Phys. Lett. 91, 173113 (2007).Google Scholar
[701] T. H., Taminiau, F. D., Stefani, and N. F., van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna”, Opt. Express 16, 10858–10866 (2008).Google Scholar
[702] J. N., Farahani, D.W., Pohl, H.-J., Eisler, and B., Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter”, Phys. Rev. Lett. 95, 017402 (2005).Google Scholar
[703] A., Kinkhabwala, Z., Yu, S., Fan, Y., Avlasevich, K., Muellen, and W. E., Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna”, Nature Phot. 3, 654–657 (2009).Google Scholar
[704] M. A., Noginov, G., Zhu, A. M., Belgrave, et al., “Demonstration of a spaser-based nanolaser”, Nature 460, 1110–U68 (2009).Google Scholar
[705] R. F., Oulton, V. J., Sorger, T., Zentgraf, et al., “Plasmon lasers at deep subwavelength scale”, Nature 461, 629–632 (2009).Google Scholar
[706] P. J., Schuck, D. P., Fromm, A., Sundaramurthy, G. S., Kino, and W. E., Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas”, Phys. Rev. Lett. 94, 017402 (2005).Google Scholar
[707] H. A., Bethe, “Theory of diffraction by small holes”, Phys. Rev. 66, 163–182 (1944).Google Scholar
[708] T., Ebbesen, H., Lezec, H., Ghaemi, T., Thio, and P., Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays”, Nature 391, 667–669 (1998).Google Scholar
[709] L., Martín-Moreno, F. J., García-Vidal, H. J., Lezec, et al., “Theory of extraordinary optical transmission through subwavelength hole arrays”, Phys. Rev. Lett. 86, 1114–1117 (2001).Google Scholar
[710] K. J. K., Koerkamp, S., Enoch, F. B., Segerink, N. F., van Hulst, and L., Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes”, Phys. Rev. Lett. 92, 183901 (2004).Google Scholar
[711] Z., Ruan and M., Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances”, Phys. Rev. Lett. 96, 233901 (2006).Google Scholar
[712] V. G., Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ”, Sov. Phys. Uspekhi 10, 509 (1968).Google Scholar
[713] D. R., Smith, W. J., Padilla, D. C., Vier, S. C., Nemat-Nasser, and S., Schultz, “Composite medium with simultaneously negative permeability and permittivity”, Phys. Rev. Lett. 84, 4184–4187 (2000).Google Scholar
[714] R. A., Shelby, D. R., Smith, and S., Schultz, “Experimental verification of a negative index of refraction”, Science 292, 77–79 (2001).Google Scholar
[715] V. M., Shalaev, “Optical negative-index metamaterials”, Nat. Phot. 1, 41–48 (2007).Google Scholar
[716] N., Fang, H., Lee, C., Sun, and X., Zhang, “Sub-diffraction-limited optical imaging with a silver superlens”, Science 308, 534–537 (2005).Google Scholar
[717] S., Kawata, Y., Inouye, and P., Verma, “Plasmonics for near-field nano-imaging and superlensing”, Nat. Phot. 3, 388–394 (2009).Google Scholar
[718] J. B., Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966–3969 (2000).Google Scholar
[719] R.W., Ziolkowski and E., Heyman, “Wave propagation in media having negative permittivity and permeability”, Phys. Rev. E 64, 056625 (2001).Google Scholar
[720] S., Xiao, V. P., Drachev, A. V., Kildishev, et al., “Loss-free and active optical negative-index metamaterials”, Nature 466, 735–738 (2010).Google Scholar
[721] D., Schurig, J. J., Mock, B. J., Justice, et al., “Metamaterial electromagnetic cloak at microwave frequencies”, Science 314, 977–980 (2006).Google Scholar
[722] T., Ergin, N., Stenger, P., Brenner, J. B., Pendry, and M., Wegener, “Three-dimensional invisibility cloak at optical wavelengths”, Science 328, 337–339 (2010).Google Scholar
[723] V. M., Shalaev, “Transforming light”, Science 322, 384–386 (2008).Google Scholar
[724] U., Leonhardt, “Optical conformal mapping”, Science 312, 1777–1780 (2006).Google Scholar
[725] J. B., Pendry, D., Schurig, and D. R., Smith, “Controlling electromagnetic fields”, Science 312, 1780–1782 (2006).Google Scholar
[726] C., López, “Materials aspects of photonic crystals”, Adv. Mater. 15, 1679–1704 (2003).Google Scholar
[727] F.J., García de Abajo, “Colloquium: Light scattering by particle and hole arrays”, Rev. Mod. Phys. 79, 1267–1290 (2007).Google Scholar
[728] K. Y., Bliokh, Y. P., Bliokh, V., Freilikher, S., Savelév, and F., Nori, “Colloquium: Unusual resonators: plasmonics, metamaterials, and random media”, Rev. Mod.Phys. 80, 1201–1213 (2008).Google Scholar
[729] S. A., Ramakrishna, “Physics of negative refractive index materials”, Rep. Progr.Phys. 68, 449 (2005).Google Scholar
[730] Y., Liu and X., Zhang, “Metamaterials: a new frontier of science and technology”, Chem. Soc. Rev. 40, 2494–2507 (2011).Google Scholar
[731] S. H., Crandall, D. C., Karnopp, E. F., Kunter Jr., and D. C., Pridmore-Brown, Dynamics of Mechanical and Electromechanical Systems (Malabar, Florida, Kriegar Publishing, 1982).Google Scholar
[732] J., Hirth and J., Lothe, Theory of Dislocations (Wiley, 1982).Google Scholar
[733] F.C., Frank and W. T., Read, “Multiplication processes for slow moving dislocations”, Phys. Rev. 79, 722–723 (1950).Google Scholar
[734] B., Yang, C., Motz, W., Grosinger, and G., Dehm, “Stress-controlled fatigue behaviour of micro-sized polycrystalline copper wires”, Mater. Sci. Eng. A 515, 71–78 (2009).Google Scholar
[735] T., Nieh, J., Wadsworth, and O., Sherby, Superplasticity in Metals and Ceramics, Cambridge Solid State Science Series (Cambridge, Cambridge University Press, 2005).Google Scholar
[736] Z., Budrovic, H., Van Swygenhoven, P. M., Derlet, S., Van Petegem, and B., Schmitt, “Plastic deformation with reversible peak broadening in nanocrystalline nickel”, Science 304, 273–276 (2004).Google Scholar
[737] L., Lu, M., Sui, and K., Lu, “Superplastic extensibility of nanocrystalline copper at room temperature”, Science 287, 1463–1466 (2000).Google Scholar
[738] X. H., Liu, L. Q., Zhang, L., Zhong, et al., “Ultrafast electrochemical lithiation of individual Si nanowire anodes”, Nano Lett. 11, 2251–2258 (2011).Google Scholar
[739] B., Bhushan, Introduction to Tribology, Tribology in Practice Series (New York, Wiley, 2013).Google Scholar
[740] J., Krim, “Resource letter: FMMLS-1: Friction at macroscopic and microscopic length scales”, Amer. J. Phys. 70, 890–897 (2002).Google Scholar
[741] J., Krim, “Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films”, Adv. Phys. 61, 155–323 (2012).Google Scholar
[742] O., Braun and A., Naumovets, “Nanotribology: microscopic mechanisms of friction”, Surf. Sci. Rep. 60, 79–158 (2006).Google Scholar
[743] F., Bowden and D., Tabor, The Friction and Lubrication of Solids, number 1 in Oxford classic texts in the physical sciences (Oxford, Clarendon Press, 2001).
[744] J.A., Greenwood and J. B. P., Williamson, “Contact of nominally flat surfaces”, Proc. R. Soc. London. Series A. Math. Phys. Sci. 295, 300–319 (1966).Google Scholar
[745] C., Daly and J., Krim, “Sliding friction of solid xenon monolayers and bilayers on Ag(111)”, Phys. Rev. Lett. 76, 803–806 (1996).Google Scholar
[746] M., Cieplak, E. D., Smith, and M. O., Robbins, “Molecular origins of friction: the force on adsorbed layers”, Science 265, 1209–1212 (1994).Google Scholar
[747] M. S., Tomassone, J. B., Sokoloff, A., Widom, and J., Krim, “Dominance of phonon friction for a xenon film on a silver (111) surface”, Phys. Rev. Lett. 79, 4798–4801 (1997).Google Scholar
[748] A., Dayo, W., Alnasrallah, and J., Krim, “Superconductivity-dependent sliding friction”, Phys. Rev. Lett. 80, 1690–1693 (1998).Google Scholar
[749] M., Kisiel, E., Gnecco, U., Gysin, L., Marot, S., Rast, and E., Meyer, “Suppression of electronic friction on Nb films in the superconducting state”, Nat. Mater. 10, 119–122 (2011).Google Scholar
[750] M., Falvo, R., Taylor I, A., Helser, et al., “Nanometre-scale rolling and sliding of carbon nanotubes”, Nature 397, 236–238 (1999).Google Scholar
[751] M. R., Falvo, J., Steele, R. M., Taylor, and R., Superfine, “Gearlike rolling motion mediated by commensurate contact: carbon nanotubes on HOPG”, Phys. Rev. B 62, R10665–R10667 (2000).Google Scholar
[752] J. Y., Park, D., Ogletree, M., Salmeron, et al., “High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface”, Science 309, 1354–1356 (2005).Google Scholar
[753] M., Hirano, K., Shinjo, R., Kaneko, and Y., Murata, “Observation of superlubricity by scanning tunneling microscopy”, Phys. Rev. Lett. 78, 1448–1451 (1997).Google Scholar
[754] P. W., Mertens, T., Bearda, M., Wada, and A., Pacco, “Drying of high aspect ratio structures: a comparison of drying techniques via electrical stiction analysis”, Solid State Phenomena 145, 87–90 (2009).Google Scholar
[755] H., Namatsu, K., Yamazaki, and K., Kurihara, “Supercritical drying for nanostructure fabrication without pattern collapse”, Microelectronic Engineering 46, 129–132 (1999).Google Scholar
[756] K., Van Schuylenbergh, C. L., Chua, D. K., Fork, J.-P., Lu, and B., Griffiths, “Onchip out-of-plane high-Q inductors”, in Proceedings of IEEE Lester EastmanConference on High Performance Devices, 2002, 364–373 (IEEE, 2002).Google Scholar
[757] D. J., Bishop, C. R., Giles, and G. P., Austin, “The Lucent LambdaRouter: MEMS technology of the future here today”, IEEE Comm. Mag., 40, 75–79 (2002).Google Scholar
[758] C.-C., Nguyen, “High-Q micromechanical oscillators and filters for communications”, in Proceedings of 1997 IEEE International Symposiumon Circuits and Systems, 1997. ISCAS'97., volume 4, 2825–2828 (IEEE, 1997).Google Scholar
[759] E., Mounier and L., Robin, “Status of the MEMS industry”, Technical report, Yole Développement (2012).Google Scholar
[760] C., Leondes, MEMS/NEMS: Handbook Techniques and Applications (New York, Springer Science+Business Media, Incorporated, 2006).Google Scholar
[761] N., Yazdi, F., Ayazi, and K., Najafi, “Micromachined inertial sensors”, Proc. IEEE 86, 1640–1659 (1998).Google Scholar
[762] K., Wang and C.-C., Nguyen, “High-order micromechanical electronic filters”, in Proceedings of Tenth Annual InternationalWorkshop on Micro Electro Mechanical Systems, 1997. MEMS'97, 25–30 (IEEE, 1997).Google Scholar
[763] D., Neilson, V., Aksyuk, S., Arney, et al., “Fully provisioned 112×112 micromechanical optical crossconnect with 35.8 Tb/s demonstrated capacity”, in Optical Fiber Communication Conference, (Washington, DC, Optical Society of America, 2000).Google Scholar
[764] R., Arensman, “At long last MEMS”, EDN Newsletter(2002).Google Scholar
[765] L. J., Hornbeck, “Digital light processing and MEMS: reflecting the digital display needs of the networked society”, in Lasers, Optics, and Vision for Productivity in Manufacturing I, 2–13 (Belliagham, WA, International Society for Optics and Photonics, 1996).Google Scholar
[766] R. G., Baraniuk, “Compressive sensing”, IEEE Signal Processing Magazine, 24, 118–121 (2007).Google Scholar
[767] M. F., Duarte, M. A., Davenport, D., Takhar, et al., “Single-pixel imaging via compressive sampling”, IEEE Signal Processing Magazine, 25, 83–91 (2008).Google Scholar
[768] D. M., Bloom, “Grating light valve: revolutionizing display technology”, in Electronic Imaging '97, 165–171 (Belliangham, WA, International Society for Optics and Photonics, 1997).Google Scholar
[769] C., Menzel, A., Bibl, and P., Hoisington, “MEMS solutions for precision micro-fluidic dispensing application”, Technical report, Spectra, Inc. (2012).
[770] A., Naik,M., Hanay,W., Hiebert, X., Feng, and M., Roukes, “Towards single-molecule nanomechanical mass spectrometry”, Nature Nanotech. 4, 445–450 (2009).Google Scholar
[771] J., Chaste, A., Eichler, J., Moser, G., Ceballos, R., Rurali, and A., Bachtold, “A nanomechanical mass sensor with yoctogram resolution”, Nature Nanotech. 7, 301–304 (2012).Google Scholar
[772] I., Wilson-Rae, “Intrinsic dissipation in nanomechanical resonators due to phonon tunneling”, Phys. Rev. B 77, 245418 (2008).Google Scholar
[773] P., Mohanty, D., Harrington, K., Ekinci, Y., Yang, M., Murphy, and M., Roukes, “Intrinsic dissipation in high-frequency micromechanical resonators”, Phys. Rev. B 66, 085416 (2002).Google Scholar
[774] X., Liu, B. E.White, Jr. White, Jr., R. O., Pohl, et al., “Amorphous solid without low energy excitations”, Phys. Rev. Lett. 78, 4418–4421 (1997).Google Scholar
[775] D. R., Southworth, R. A., Barton, S. S., Verbridge, et al., “Stress and silicon nitride: a crack in the universal dissipation of glasses”, Phys. Rev. Lett. 102, 225503 (2009).Google Scholar
[776] J. B., Johnson, “Thermal agitation of electricity in conductors”, Nature 119, 50–51 (1927).Google Scholar
[777] H., Nyquist, “Thermal agitation of electric charge in conductors”, Phys. Rev. 32, 110–113 (1928).Google Scholar
[778] A., Naik, O., Buu, M., LaHaye, et al., “Cooling a nanomechanical resonator with quantum back-action”, Nature 443, 193–196 (2006).Google Scholar
[779] M., Poot and H. S. van der Zant, “Mechanical systems in the quantum regime”, Phys. Rep. 511, 273–335 (2012).Google Scholar
[780] H. B., Casimir, “On the attraction between two perfectly conducting plates”, Proc. K. Ned. Akad. Wet, 51, 150 (1948).Google Scholar
[781] M., Bordag, U., Mohideen, and V., Mostepanenko, “New developments in the Casimir effect”, Phys. Rep. 353, 1–205 (2001).Google Scholar
[782] R. L., Jaffe, “Casimir effect and the quantum vacuum”, Phys. Rev. D 72, 021301 (2005).Google Scholar
[783] J. N., Munday, F., Capasso, and V. A., Parsegian, “Measured long-range repulsive Casimir–Lifshitz forces”, Nature 457, 170–173 (2009).Google Scholar
[784] H., Chan, V., Aksyuk, R., Kleiman, D., Bishop, and F., Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force”, Science 291, 1941–1944 (2001).Google Scholar
[785] S. K., Lamoreaux, “Demonstration of the Casimir force in the 0.6 to 6μm range”, Phys. Rev. Lett. 78, 5–8 (1997).Google Scholar
[786] A. D., OConnell, M., Hofheinz, M., Ansmann, et al., “Quantum ground state and single-phonon control of a mechanical resonator”, Nature 464, 697–703 (2010).Google Scholar
[787] J., Teufel, T., Donner, D., Li, et al., “Sideband cooling of micromechanical motion to the quantum ground state”, Nature 475, 359–363 (2011).Google Scholar
[788] J., Chan, T. M., Alegre, A. H. Safavi-Naeini, J. T., Hill, A., Krause, S. Gröblacher, M., Aspelmeyer, and O., Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state”, Nature 478, 89–92 (2011).Google Scholar
[789] E., Verhagen, S., Deléglise, S., Weis, A., Schliesser, and T. J., Kippenberg, “Quantumcoherent coupling of a mechanical oscillator to an optical cavity mode”, Nature 482, 63–67 (2012).Google Scholar
[790] K., L. Ekinci and M. L., Roukes, “Nanoelectromechanical systems”, Rev. Sci. Instr. 76, 061101 (2005).Google Scholar
[791] E., Buckingham, “On physically similar systems; illustrations of the use of dimensional equations”, Phys. Rev. 4, 345–376 (1914).Google Scholar
[792] L. F., Moody, “Friction factors for pipe flow”, Trans. Asme 66, 671–684 (1944).Google Scholar
[793] M. A., Deakin, “GI Taylor and the Trinity test”, International Journal of Mathematical Education in Science and Technology 42, 1069–1079 (2011).Google Scholar
[794] E. M., Purcell, “Life at low Reynolds number”, Amer. J. Phys. 45, 3–11 (1977).Google Scholar
[795] P. J., Kenis, R. F., Ismagilov, and G. M., Whitesides, “Microfabrication inside capillaries using multiphase laminar flow patterning”, Science 285, 83–85 (1999).Google Scholar
[796] E., B. Flint and K. S., Suslick, “The temperature of cavitation”, Science 253, 1397–1399 (1991).Google Scholar
[797] B. P., Barber, R. A., Hiller, R. Löfstedt, S. J., Putterman, and K. R., Weninger, “Defining the unknowns of sonoluminescence”, Phys. Rep. 281, 65–143 (1997).Google Scholar
[798] W. A., Zisman, “Relation of the equilibrium contact angle to liquid and solid constitution” in F. M., Fowker, ed., Contact Angle, Wettability, and Adhesion(New York, American Chemical Society, 1964).Google Scholar
[799] T., Young, “An essay on the cohesion of fluids”, Phil. Trans. R. Soc. Lond. 95, 65–87 (1805).Google Scholar
[800] N., M. Holbrook and M. A., Zwieniecki, “Transporting water to the tops of trees”, Physics Today 61, 76 (2008).Google Scholar
[801] B., Zhao, J. S., Moore, and D. J., Beebe, “Surface-directed liquid flow inside microchannels”, Science 291, 1023–1026 (2001).Google Scholar
[802] K., Ichimura, S.-K., Oh, and M., Nakagawa, “Light-driven motion of liquids on a photoresponsive surface”, Science 288, 1624–1626 (2000).Google Scholar
[803] T., Welton, “Room-temperature ionic liquids. Solvents for synthesis and catalysis”, Chem. Rev. 99, 2071–2084 (1999).Google Scholar
[804] M., Armand, F., Endres, D. R., MacFarlane, H., Ohno, and B., Scrosati, “Ionic-liquid materials for the electrochemical challenges of the future”, Nat. mater. 8, 621–629 (2009).Google Scholar
[805] E., Hart and M., Anbar, The Hydrated Electron(Wiley-Interscience, 1970).Google Scholar
[806] D. C., Grahame, “The electrical double layer and the theory of electrocapillarity”, Chem. Rev. 41, 441–501 (1947).Google Scholar
[807] H., Von Helmholtz, “Studies of electric boundary layers”, Wied. Ann. 7, 337–382 (1879).Google Scholar
[808] O., Stern, “The theory of the electrolytic double-layer”, Zeit. Elektrochem. 30, 508–516 (1924).Google Scholar
[809] G., Gouy, “Constitution of the electric charge at the surface of an electrolyte”, J. phys. 9, 457–467 (1910).Google Scholar
[810] D. L., Chapman, “LI. A contribution to the theory of electrocapillarity”, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 25, 475–481 (1913).Google Scholar
[811] H. A., Pohl, “The motion and precipitation of suspensoids in divergent electric fields”, J. Appl. Phys. 22(1951).Google Scholar
[812] P., R. Gascoyne and J., Vykoukal, “Particle separation by dielectrophoresis”, Electrophoresis 23, 1973 (2002).Google Scholar
[813] R., Pethig, “Review article: Dielectrophoresis: status of the theory, technology, and applications”, Biomicrofluidics 4, 022811 (2010).Google Scholar
[814] S., Fiedler, S. G., Shirley, T., Schnelle, and G., Fuhr, “Dielectrophoretic sorting of particles and cells in a microsystem”, Anal. Chem. 70, 1909–1915 (1998).Google Scholar
[815] K. D., Hermanson, S. O., Lumsdon, J. P., Williams, E. W., Kaler, and O. D., Velev, “Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions”, Science 294, 1082–1086 (2001).Google Scholar
[816] G. M., Whitesides, “The origins and the future of microfluidics”, Nature 442, 368–373 (2006).Google Scholar
[817] T., M.|Squires and S. R., Quake, “Microfluidics: fluid physics at the nanoliter scale”, Rev. Mod. Phys. 77, 977 (2005).Google Scholar
[818] H. A., Stone, A. D., Stroock, and A., Ajdari, “Engineering flows in small devices: microfluidics toward a lab-on-a-chip”, Ann. Rev. Fluid Mech. 36, 381–411 (2004).Google Scholar
[819] N., Nguyen and S., Wereley, Fundamentals and Applications of Microfluidics, Artech House MEMS library (Norwood, MA, Artech House, 2002).Google Scholar
[820] J. R., Anderson, D. T., Chiu, R. J., Jackman, et al., “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping”, Anal. Chemi. 72, 3158–3164 (2000).Google Scholar
[821] J. M. K., Ng, I., Gitlin, A. D., Stroock, and G. M., Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems”, Electrophoresis 23, 3461–3473 (2002).Google Scholar
[822] H., Wu, T. W., Odom, D. T., Chiu, and G. M., Whitesides, “Fabrication of complex three-dimensional microchannel systems in PDMS”, J. Amer. Chem. Soc. 125, 554–559 (2003).Google Scholar
[823] J., Narasimhan and I., Papautsky, “Polymer embossing tools for rapid prototyping of plastic microfluidic devices”, J. Micromech. Microeng. 14, 96 (2004).Google Scholar
[824] M. A., Unger, H.-P., Chou, T., Thorsen, A., Scherer, and S. R., Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography”, Science 288, 113–116 (2000).Google Scholar
[825] E., Stemme and G., Stemme, “A valveless diffuser/nozzle-based fluid pump”, Sensors and Actuators A: Physical 39, 159–167 (1993).Google Scholar
[826] N., Nguyen, “Micromachined flow sensors, a review”, Flow Measurement and Instrumentation 8, 7–16 (1997).Google Scholar
[827] S., Wu, Q., Lin, Y., Yuen, and Y.-C., Tai, “MEMS flow sensors for nano-fluidic applications”, Sensors and Actuators A: Physical 89, 152–158 (2001), Special Issue: Micromechanics Section of Sensors and Actuators, based on contributions revised from the Technical Digest of the Thirteenth {IEEE} InternationalWorkshop on Micro Electro Mechanical Systems (MEMS-2000).Google Scholar
[828] J. B., Knight, A., Vishwanath, J. P., Brody, and R. H., Austin, “Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds”, Phys. Rev. Lett. 80, 3863 (1998).Google Scholar
[829] A. D., Stroock, S. K., Dertinger, A., Ajdari, I., Mezić, H. A., Stone, and G. M., Whitesides, “Chaotic mixer for microchannels”, Science 295, 647–651 (2002).Google Scholar
[830] T., Thorsen, S. J., Maerkl, and S. R., Quake, “Microfluidic large-scale integration”, Science 298, 580–584 (2002).Google Scholar
[831] C. L., Hansen, E., Skordalakes, J. M., Berger, and S. R., Quake, “A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion”, Proc. Nat. Acad. Sci. 99, 16531–16536 (2002).Google Scholar
[832] C. L., Hansen, S., Classen, J. M., Berger, and S. R., Quake, “A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination”, J. Amer. Chem. Soc. 128, 3142–3143 (2006).Google Scholar
[833] P., S. Dittrich and A., Manz, “Lab-on-a-chip: microfluidics in drug discovery”, Nat. Rev. Drug Discovery 5, 210–218 (2006).Google Scholar
[834] Y., Zhu and S., Granick, “Rate-dependent slip of newtonian liquid at smooth surfaces”, Phys. Rev. Lett. 87, 096105 (2001).Google Scholar
[835] F., Taherian, V., Marcon, N. F., van der Vegt, and F., Leroy, “What is the contact angle of water on graphene?”, Langmuir 29, 1457–1465 (2013).Google Scholar
[836] M., Majumder, N., Chopra, R., Andrews, and B. J., Hinds, “Nanoscale hydrodynamics: enhanced flow in carbon nanotubes”, Nature 438, 44–44 (2005).Google Scholar
[837] J. K., Holt, H. G., Park, Y., Wang, et al., “Fast mass transport through sub-2-nanometer carbon nanotubes”, Science 312, 1034–1037 (2006).Google Scholar
[838] K. K., Lau, J., Bico, K. B., Teo, et al., “Superhydrophobic carbon nanotube forests”, Nano Lett. 3, 1701–1705 (2003).Google Scholar
[839] P., Joseph, C., Cottin-Bizonne, J.-M., Benoit, et al., “Slippage of water past superhydrophobic carbon nanotube forests in microchannels”, Phys. Rev. Lett. 97, 156104 (2006).Google Scholar
[840] A., Tuteja, W., Choi, M., Ma, et al., “Designing superoleophobic surfaces”, Science 318, 1618–1622 (2007).Google Scholar
[841] S., Pan, A. K., Kota, J. M., Mabry, and A., Tuteja, “Superomniphobic surfaces for effective chemical shielding”, J. Amer. Chem. Soc. 135, 578–581 (2012).Google Scholar
[842] M., Heuberger, M., Zäch, and N., Spencer, “Density fluctuations under confinement: when is a fluid not a fluid?”, Science 292, 905–908 (2001).Google Scholar
[843] Y., Zhu and S., Granick, “Viscosity of interfacial water”, Phys. Rev. Lett. 87, 096104 (2001).Google Scholar
[844] N. E., Levinger, “Water in confinement”, Science 298, 1722–1723 (2002).Google Scholar
[845] J. E., Boyd, A., Briskman, V. L., Colvin, and D. M., Mittleman, “Direct observation of terahertz surface modes in nanometer-sized liquid water pools”, Phys. Rev. Lett. 87, 147401 (2001).Google Scholar
[846] J. C., Burton, J. E., Rutledge, and P., Taborek, “Fluid pinch-off dynamics at nanometer length scales”, Phys. Rev. Lett. 92, 244505 (2004).Google Scholar
[847] H., Cao, J. O., Tegenfeldt, R. H., Austin, and S. Y., Chou, “Gradient nanostructures for interfacing microfluidics and nanofluidics”, Appl. Phys. Lett. 81, 3058–3060 (2002).Google Scholar
[848] L. R., Huang, E. C., Cox, R. H., Austin, and J. C., Sturm, “Continuous particle separation through deterministic lateral displacement”, Science 304, 987–990 (2004).Google Scholar
[849] L.-J., Cheng and L. J., Guo, “Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices”, ACS Nano 3, 575–584 (2009).Google Scholar
[850] R. B., Schoch, J., Han, and P., Renaud, “Transport phenomena in nanofluidics”, Rev. Mod. Phys. 80, 839–883 (2008).Google Scholar
[851] E., Arunan, G. R., Desiraju, R. A., Klein, et al., “Defining the hydrogen bond: An account (IUPAC Technical Report)”, Pure Appl. Chem. 83(2011).Google Scholar
[852] S., Suresh and V., Naik, “Hydrogen bond thermodynamic properties of water from dielectric constant data”, J. Chem. Phys. 113, 9727–9732 (2000).Google Scholar
[853] P. C., Weber, D., Ohlendorf, J., Wendoloski, and F., Salemme, “Structural origins of high-affinity biotin binding to streptavidin”, Science 243, 85–88 (1989).Google Scholar
[854] E., P. Diamandis and T. K., Christopoulos, “The biotin-(strept) avidin system: principles and applications in biotechnology.”Clinical Chemistry 37, 625–636 (1991).Google Scholar
[855] Y., Cui, Q., Wei, H., Park, and C. M., Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species”, Science 293, 1289–1292 (2001).Google Scholar
[856] K., Caswell, J. N., Wilson, U. H., Bunz, and C. J., Murphy, “Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors”, J. Amer. Chem. Soc. 125, 13914–13915 (2003).Google Scholar
[857] N. C., Seeman, “Nucleic acid junctions and lattices”, J. Theor. Biol. 99, 237–247 (1982).Google Scholar
[858] N. C., Seeman, “DNA nanotechnology: novel DNA constructions”, Ann. Rev. Biophy. Biomole. Struc. 27, 225–248 (1998).Google Scholar
[859] N. C., Seeman, “Nanomaterials based on DNA”. Ann. Rev. Biochem. 79, 65–87 (2009).Google Scholar
[860] A. V., Pinheiro, D., Han, W. M., Shih, and H., Yan, “Challenges and opportunities for structural DNA nanotechnology”, Nature Nanotech. 6, 763–772 (2011).Google Scholar
[861] N. C., Seeman, “Nanotechnology and the double helix”, Scientific American 290, 64 (2004).Google Scholar
[862] K. A., Dill, S. B., Ozkan, M. S., Shell, and T. R., Weikl, “The protein folding problem”, Ann. Rev. Biophys. 37, 289 (2008).Google Scholar
[863] V. N., Uversky, “Natively unfolded proteins: a point where biology waits for physics”, Protein Science 11, 739–756 (2002).Google Scholar
[864] D., Goodsell, “ATP synthase: December 2005 molecule of the month”, RCSB Protein Data Bank (2005).Google Scholar
[865] R. K., Nakamoto, J. A. B., Scanlon, and M. K., Al-Shawi, “The rotary mechanism of the ATP synthase”, Archives of Biochemistry and Biophysics 476, 43–50 (2008), Special Issue: Transport ATPases.Google Scholar
[866] D., Goodsell, “Calcium pump: March 2004 molecule of the month”, RCSB Protein Data Bank(2004).Google Scholar
[867] D.W., Miller and K. A., Dill, “Ligand binding to proteins: the binding landscape model”, Protein Science 6, 2166–2179 (1997).Google Scholar
[868] E., Sackmann, “Supported membranes: scientific and practical applications”, Science 271, 43–48 (1996).Google Scholar
[869] S. G., Boxer, “Molecular transport and organization in supported lipid membranes”, Current Opinion in Chemical Biology 4, 704–709 (2000).Google Scholar
[870] M. G., Rossmann, F., Arisaka, A. J., Battisti, et al., “From structure of the complex to understanding of the biology”, Acta Crystallographica Section D 63, 9–16 (2007).Google Scholar
[871] M., Ploss and A., Kuhn, “Kinetics of filamentous phage assembly”, Phys. Biol. 7, 045002 (2010).Google Scholar
[872] D., Goodsell, “Tobacco mosaic virus: January 2009 molecule of the month”, RCSB Protein Data Bank (2009).Google Scholar
[873] A. S., Blum, C. M., Soto, C. D., Wilson, et al., “Cowpea mosaic virus as a scaffold for 3-D patterning of gold nanoparticles”, Nano Lett. 4, 867–870 (2004).Google Scholar
[874] J. C., Falkner,M. E., Turner, J. K., Bosworth, et al., “Virus crystals as nanocomposite scaffolds”, J. Amer. Chem. Soc. 127, 5274–5275 (2005).Google Scholar
[875] Y., Huang, C.-Y., Chiang, S. K., Lee, et al., “Programmable assembly of nanoarchitectures using genetically engineered viruses”, Nano Lett. 5, 1429–1434 (2005).Google Scholar
[876] S. R., Whaley, D., English, E. L., Hu, P. F., Barbara, and A. M., Belcher, “Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly”, Nature 405, 665–668 (2000).Google Scholar
[877] D., Nathans and H. O., Smith, “Restriction endonucleases in the analysis and restructuring of DNA molecules”, Ann. Rev. Biochem. 44, 273–293 (1975).Google Scholar
[878] H., Katada and M., Komiyama, “Artificial restriction DNA cutters as new tools for gene manipulation”, Chem. Bio. Chem. 10, 1279–1288 (2009).Google Scholar
[879] R. K., Saiki, D. H., Gelfand, S., Stoffel, et al., “Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase”, Science 239, 487–491 (1988).Google Scholar
[880] M. G., Van den Heuvel and C., Dekker, “Motor proteins at work for nanotechnology”, Science 317, 333–336 (2007).Google Scholar
[881] R. K., Soong, G. D., Bachand, H. P., Neves, A. G., Olkhovets, H. G., Craighead, and C. D., Montemagno, “Powering an inorganic nanodevice with a biomolecular motor”, Science 290, 1555–1558 (2000).Google Scholar
[882] Y., Hiratsuka, T., Tada, K., Oiwa, T., Kanayama, and T. Q., Uyeda, “Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks”, Biophys. J. 81, 1555–1561 (2001).Google Scholar
[883] J., Clemmens, H., Hess, R., Doot, C. M., Matzke, G. D., Bachand, and V., Vogel, “Motor-protein roundabouts: microtubules moving on kinesin-coated tracks through engineered networks”, Lab on a Chip 4, 83–86 (2004).Google Scholar
[884] P. W., Rothemund, “Folding DNA to create nanoscale shapes and patterns”, Nature 440, 297–302 (2006).Google Scholar
[885] T., Tørring, N. V., Voigt, J., Nangreave, H., Yan, and K. V., Gothelf, “DNA origami: a quantum leap for self-assembly of complex structures”, Chem. Soc. Rev. 40, 5636–5646 (2011).Google Scholar
[886] S. M., Douglas, I., Bachelet, and G. M., Church, “A logic-gated nanorobot for targeted transport of molecular payloads”, Science 335, 831–834 (2012).Google Scholar
[887] R., Iinuma, Y., Ke, R., Jungmann, T., Schlichthaerle, J. B., Woehrstein, and P., Yin, “Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT”, Science 344, 65–69 (2014).Google Scholar
[888] S. M., Douglas, H., Dietz, T., Liedl, B., Högberg, F., Graf, and W. M., Shin, “Selfassembly of DNA into nanoscale three-dimensional shapes”, Nature. 459, 414–418 (2009).Google Scholar
[889] B., Ding, Z., Deng, H., Yan, S., Cabrini, R. N., Zuckermann, and J., Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami”, J. Amer. Chem. Soc. 132, 3248–3249 (2010).Google Scholar
[890] A. M., Hung, C. M., Micheel, L. D., Bozano, L. W., Osterbur, G. M., Wallraff, and J. N., Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami”, Nat. Nanotechn. 5, 121–126 (2010).Google Scholar
[891] H., Bui, C., Onodera, C., Kidwell, et al., “Programmable periodicity of quantum dot arrays with DNA origami nanotubes”, Nano Lett. 10, 3367–3372 (2010).Google Scholar
[892] G. P., Smith, “Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface”, Science 228, 1315–1317 (1985).Google Scholar
[893] A., Merzlyak and S.-W., Lee, “Phage as templates for hybrid materials and mediators for nanomaterial synthesis”, Current Opinion in Chemical Biology 10, 246–252 (2006).Google Scholar
[894] K. T., Nam, D.-W., Kim, P. J., Yoo, et al., “Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes”, Science 312, 885–888 (2006).Google Scholar
[895] Y. S., Nam, A. P., Magyar, et al., “Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation”, Nat. Nanotech. 5, 340–344 (2010).Google Scholar
[896] J. C., Jamieson, “Phase equilibrium in the system calcite-aragonite”, J. Chem. Phys. 21, 1385–1390 (1953).Google Scholar
[897] L., Addadi and S., Weiner, “Control and design principles in biological mineralization”, Angewandte Chemie, International edition in English 31, 153–169 (1992).Google Scholar
[898] G., Falini, S., Albeck, S., Weiner, and L., Addadi, “Control of aragonite or calcite polymorphism by mollusk shell macromolecules”, Science 271, 67–69 (1996).Google Scholar
[899] J., Aizenberg, A. J., Black, and G. M., Whitesides, “Control of crystal nucleation by patterned self-assembled monolayers”, Nature 398, 495–498 (1999).Google Scholar
[900] J., Aizenberg, “Crystallization in patterns: a bio-inspired approach”, Adv. Mater. 16, 1295–1302 (2004).Google Scholar
[901] J., Aizenberg, “A bio-inspired approach to controlled crystallization at the nanoscale”, Bell Labs Technical Journal 10, 129–141 (2005).Google Scholar
[902] P., Maderson, “Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards”, Nature 203, 780–781 (1964).Google Scholar
[903] R., Ruibal and V., Ernst, “The structure of the digital setae of lizards”, J. Morphology 117, 271–293 (1965).Google Scholar
[904] K., Autumn, Y. A., Liang, S. T., Hsieh, et al., “Adhesive force of a single gecko foot-hair”, Nature 405, 681–685 (2000).Google Scholar
[905] M., T.|Northen and K. L., Turner, “A batch fabricated biomimetic dry adhesive”, Nanotech. 16, 1159 (2005).Google Scholar
[906] A., Geim, S., Dubonos, I., Grigorieva, K., Novoselov, A., Zhukov, and S. Y., Shapoval, “Microfabricated adhesive mimicking gecko foot-hair”, Nat. Mater. 2, 461–463 (2003).Google Scholar
[907] B., Yurdumakan, N. R., Raravikar, P. M., Ajayan, and A., Dhinojwala, “Synthetic gecko foot-hairs from multiwalled carbon nanotubes”, Chem. Commu.3799–3801 (2005).Google Scholar
[908] M., Sitti and R. S., Fearing, “Synthetic gecko foot-hair micro/nano-structures as dry adhesives”, J. Adhesion Science and Technology 17, 1055–1073 (2003).Google Scholar
[909] L., Ge, S., Sethi, L., Ci, P. M., Ajayan, and A., Dhinojwala, “Carbon nanotube-based synthetic gecko tapes”, Proc. Nat. Acad. Sci. 104, 10792–10795 (2007).Google Scholar
[910] A., Merkoci, Biosensing Using Nanomaterials, Wiley Nanoscience and Nanotechnology Series (New York, Wiley, 2009).Google Scholar
[911] S., Li, J., Singh, H., Li, and I., Banerjee, Biosensor Nanomaterials(New York, Wiley, 2011).Google Scholar
[912] J., Li and N., Wu, Biosensors Based on Nanomaterials and Nanodevices, Nanomaterials and their Applications (New York, Taylor & Francis, 2013).Google Scholar
[913] T., Förster, “10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation”, Discussions of the Faraday Society 27, 7–17 (1959).Google Scholar
[914] P. R., Selvin, “The renaissance of fluorescence resonance energy transfer.”Nat. Struct. Biol. 7, 730–734 (2000).Google Scholar
[915] I. L., Medintz, H. T., Uyeda, E. R., Goldman, and H., Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing”, Nat. Mater. 4, 435–446 (2005).Google Scholar
[916] X., Michalet, F. F., Pinaud, L. A., Bentolila, et al., “Quantum dots for live cells, in vivo imaging, and diagnostics”, Science 307, 538–544 (2005).Google Scholar
[917] I. L., Medintz, A. R., Clapp, H., Mattoussi, E. R., Goldman, B., Fisher, and J. M., Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors”, Nat. Mater. 2, 630–638 (2003).Google Scholar
[918] M., R.|Lee and P. M., Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection”, Optics Express 15, 4530–4535 (2007).Google Scholar
[919] S., Arnold, M., Khoshsima, I., Teraoka, S., Holler, and F., Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption”, Optics Lett. 28, 272–274 (2003).Google Scholar
[920] A. J., Haes, S., Zou, G. C., Schatz, and R. P., Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles”, J. Phys. Chem. B 108, 6961–6968 (2004).Google Scholar
[921] J., Fritz, E. B., Cooper, S., Gaudet, P. K., Sorger, and S. R., Manalis, “Electronic detection of DNA by its intrinsic molecular charge”, Proc. Nat. Acad. Sci. 99, 14142–14146 (2002).Google Scholar
[922] B., Crone, A., Dodabalapur, A., Gelperin, et al., “Electronic sensing of vapors with organic transistors”, Appl. Phys. Lett. 78, 2229–2231 (2001).Google Scholar
[923] G., Zheng, F., Patolsky, Y., Cui, W. U., Wang, and C. M., Lieber, “Multiplexed electrical detection of cancer markers with nanowire sensor arrays”, Nat. Biotech. 23, 1294–1301 (2005).Google Scholar
[924] E., Stern, J. F., Klemic, D. A., Routenberg, et al., “Label-free immunodetection with CMOS-compatible semiconducting nanowires”, Nature 445, 519–522 (2007).Google Scholar
[925] A., Star, J.-C. P., Gabriel, K., Bradley, and G., Grüner, “Electronic detection of specific protein binding using nanotube FET devices”, Nano Lett. 3, 459–463 (2003).Google Scholar
[926] K., Besteman, J.-O., Lee, F. G., Wiertz, H. A., Heering, and C., Dekker, “Enzymecoated carbon nanotubes as single-molecule biosensors”, Nano Lett. 3, 727–730 (2003).Google Scholar
[927] Y., Choi, I. S., Moody, P. C., Sims, et al., “Single-molecule lysozyme dynamics monitored by an electronic circuit”, Science 335, 319–324 (2012).Google Scholar
[928] R., Raiteri, M., Grattarola, H.-J., Butt, and P., Skládal, “Micromechanical cantileverbased biosensors”, Sensors and Actuators B: Chemical 79, 115–126 (2001).Google Scholar
[929] J., Fritz, M., Baller, H., Lang, et al., “Translating biomolecular recognition into nanomechanics”, Science 288, 316–318 (2000).Google Scholar
[930] T., P.|Burg and S. R., Manalis, “Suspended microchannel resonators for biomolecular detection”, Appl. Phys. Lett. 83, 2698–2700 (2003).Google Scholar
[931] T. P., Burg, M., Godin, S. M., Knudsen, et al., “Weighing of biomolecules, single cells and single nanoparticles in fluid”, Nature 446, 1066–1069 (2007).Google Scholar
[932] D., Goodsell, The Machinery of Life, Biomedical and Life Sciences (New York, Copernicus Books, 2009).Google Scholar
[933] A., Kuzuya and M., Komiyama, “DNA origami: fold, stick, and beyond”, Nanoscale 2, 309–321 (2010).Google Scholar
[934] C., Sanchez, H., Arribart, and M. M. G., Guille, “Biomimetism and bioinspiration as tools for the design of innovative materials and systems”, Nat. Mater. 4, 277–288 (2005).Google Scholar
[935] B., Bhushan, “Biomimetics: lessons from nature – an overview”, Phil. Trans. R. Soc. A: Math., Phys. Eng. Sci. 367, 1445–1486 (2009).Google Scholar
[936] F., Banica, Chemical Sensors and Biosensors: Fundamentals and Applications (New York, Wiley, 2012).Google Scholar
[937] D. G., Gibson, J. I., Glass, C., Lartigue, et al., “Creation of a bacterial cell controlled by a chemically synthesized genome”, Science 329, 52–56 (2010).Google Scholar
[938] J., Cello, A. V., Paul, and E., Wimmer, “Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template”, Science 297, 1016–1018 (2002).Google Scholar
[939] S., Toyabe, T., Okamoto, T., Watanabe-Nakayama, H., Taketani, S., Kudo, and E., Muneyuki, “Nonequilibrium energetics of a single F1-ATPase molecule”, Phys. Rev. Lett. 104, 198103 (2010).Google Scholar
[940] J. T., Groves, S. G., Boxer, and H. M., McConnell, “Electric field-induced reorganization of two-component supported bilayer membranes”, Proc. Nat. Acad. Sci. 94, 13390–13395 (1997).Google Scholar
[941] M. M., Baksh, M., Jaros, and J. T., Groves, “Detection of molecular interactions at membrane surfaces through colloid phase transitions”, Nature 427, 139–141 (2004).Google Scholar
[942] “The Onion: nanotechnology infographic”, www.theonion.com/articles/nanotechnology, 7971/ (2004).
[943] U. E. I., Administration, “International Energy Outlook 2013”, Technical Report DOE/EIA-0484(2013), US Department of Energy (2013).
[944] D., Goodstein, Out of Gas: the End of the Age of Oil, Norton Paperback (New York, Norton, 2005).Google Scholar
[945] T. F., Stocker, D., Qin, G.-K., Plattner, et al., “Climate change 2013: the physical science basis”, Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report(AR5) (New York, Cambridge University Press) (2013).
[946] W., Shockley and H. J., Queisser, “Detailed balance limit of efficiency of pn junction solar cells”, J. Appl. Phys. 32(1961).Google Scholar
[947] F., Dimroth and S., Kurtz, “High-efficiency multijunction solar cells”, MRS Bull. 32, 230–235 (2007).Google Scholar
[948] D.-H., Kim, J.-H., Ahn, W. M., Choi, et al., “Stretchable and foldable silicon integrated circuits”, Science 320, 507–511 (2008).Google Scholar
[949] J., Yoon, S., Jo, I. S., Chun, et al., “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies”, Nature 465, 329–333 (2010).Google Scholar
[950] J., Lee, J., Wu, M., Shi, et al., “Stretchable GaAs photovoltaics with designs that enable high areal coverage”, Adv. Mater. 23, 986–991 (2011).Google Scholar
[951] S., Pillai, K., Catchpole, T., Trupke, and M., Green, “Surface plasmon enhanced silicon solar cells”, J. Appl. Phys. 101, 093105 (2007).Google Scholar
[952] A. J., Morfa, K. L., Rowlen, T. H., Reilly III, M. J., Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics”, Appl. Phys. Lett. 92, 013504 (2008).Google Scholar
[953] W. U., Huynh, X., Peng, and A. P., Alivisatos, “CdSe nanocrystal rods/poly (3-hexylthiophene) composite photovoltaic devices”, Adv. Mater. 11, 923–927 (1999).Google Scholar
[954] W. U., Huynh, J. J., Dittmer, and A. P., Alivisatos, “Hybrid nanorod-polymer solar cells”, Science 295, 2425–2427 (2002).Google Scholar
[955] A., Nozik, “Quantum dot solar cells”, Physica E: Low-dimensional Systems and Nanostructures 14, 115–120 (2002).Google Scholar
[956] R. D., Schaller and V. I., Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion”, Phys. Rev. Lett. 92, 186601 (2004).Google Scholar
[957] R. J., Ellingson, M. C., Beard, J. C., Johnson, et al., “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots”, Nano Lett. 5, 865–871 (2005).Google Scholar
[958] R. D., Schaller, M., Sykora, J. M., Pietryga, and V. I., Klimov, “Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers”, Nano Lett. 6, 424–429 (2006).Google Scholar
[959] A. J., Nozik, “Nanoscience and nanostructures for photovoltaics and solar fuels”, Nano Lett. 10, 2735–2741 (2010).Google Scholar
[960] M. T., Trinh, A. J., Houtepen, J. M., Schins, et al., “In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals”, Nano Lett. 8, 1713–1718 (2008).Google Scholar
[961] C. J., Brabec, N. S., Sariciftci, J. C., Hummelen, et al., “Plastic solar cells”, Adv. Func. Mater. 11, 15–26 (2001).Google Scholar
[962] H., Spanggaard and F. C., Krebs, “A brief history of the development of organic and polymeric photovoltaics”, Solar Energy Materials and Solar Cells 83, 125–146 (2004).Google Scholar
[963] S., Günes, H., Neugebauer, and N. S., Sariciftci, “Conjugated polymer-based organic solar cells”, Chem. Rev. 107, 1324–1338 (2007).Google Scholar
[964] B., Kippelen and J.-L., Brédas, “Organic photovoltaics”, Energy & Environmental Science 2, 251–261 (2009).Google Scholar
[965] M., Grätzel, “Photoelectrochemical cells”, Nature 414, 338–344 (2001).Google Scholar
[966] A., Hagfeldt, G., Boschloo, L., Sun, L., Kloo, and H., Pettersson, “Dye-sensitized solar cells”, Chem. Rev. 110, 6595–6663 (2010).Google Scholar
[967] B., Oregan and M., Grfitzeli, “A low-cost, high-efficiency solar cell based on dye-sensitized”, Nature 353, 737–740 (1991).Google Scholar
[968] T. J., Meyer, “Chemical approaches to artificial photosynthesis”, Accounts of Chemical Research 22, 163–170 (1989).Google Scholar
[969] M. R., Wasielewski, “Photoinduced electron transfer in supramolecular systems for artificial photosynthesis”, Chem. Rev. 92, 435–461 (1992).Google Scholar
[970] A., J. Bard and M. A., Fox, “Artificial photosynthesis: solar splitting of water to hydrogen and oxygen”, Accounts of Chemical Research 28, 141–145 (1995).Google Scholar
[971] N., S. Lewis and D. G., Nocera, “Powering the planet: Chemical challenges in solar energy utilization”, Proc. Nat. Acad. Sci. 103, 15729–15735 (2006).Google Scholar
[972] D., Gust, T. A., Moore, and A. L., Moore, “Solar fuels via artificial photosynthesis”, Accounts of Chemical Research 42, 1890–1898 (2009).Google Scholar
[973] C., H.|Christensen and J. K., Nørskov, “A molecular view of heterogeneous catalysis”, J. Chem. Phys. 128, 182503 (2008).Google Scholar
[974] R., A.|Van Santen and M., Neurock, Molecular Heterogeneous Catalysis: a Conceptual and Computational Approach (New York, John Wiley & Sons, 2009).Google Scholar
[975] A. T., Bell, “The impact of nanoscience on heterogeneous catalysis”, Science 299, 1688–1691 (2003).Google Scholar
[976] X., Chen and S. S., Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications”, Chem. Rev. 107, 2891–2959 (2007).Google Scholar
[977] S., R. Anton and H. A., Sodano, “A review of power harvesting using piezoelectric materials (2003–2006)”, Smart Materials and Structures 16, R1 (2007).Google Scholar
[978] A. I., Boukai, Y., Bunimovich, J. Tahir-Kheli, J.-K., Yu, W. A., Goddard III, and J. R., Heath, “Silicon nanowires as efficient thermoelectric materials”, Nature 451, 168–171 (2008).Google Scholar
[979] A. I., Hochbaum, R., Chen, R. D., Delgado, et al., “Enhanced thermoelectric performance of rough silicon nanowires”, Nature 451, 163–167 (2008).Google Scholar
[980] J., Nicholls, “Advances in coating design for high-performance gas turbines”, MRS Bulletin 28, 659–670 (2003).Google Scholar
[981] P. A., Sørensen, S., Kiil, K., Dam-Johansen, and C., Weinell, “Anticorrosive coatings: a review”, J. Coatings Technology and Research 6, 135–176 (2009).Google Scholar
[982] I., Beyerlein, A., Caro, M., Demkowicz, N., Mara, A., Misra, and B., Uberuaga, “Radiation damage tolerant nanomaterials”, Materials Today 16, 443–449 (2013).Google Scholar
[983] A. S., Aricò, P., Bruce, B., Scrosati, J.-M., Tarascon, and W. Van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices”, Nature Materials 4, 366–377 (2005).Google Scholar
[984] Y.-G., Guo, J.-S., Hu, and L.-J., Wan, “Nanostructured materials for electrochemical energy conversion and storage devices”, Advanced Materials 20, 2878–2887 (2008).Google Scholar
[985] B., Kang and G., Ceder, “Battery materials for ultrafast charging and discharging”, Nature 458, 190–193 (2009).Google Scholar
[986] P., Simon and Y., Gogotsi, “Materials for electrochemical capacitors”, Nat. Mater. 7, 845–854 (2008).Google Scholar
[987] C. K., Chan, H., Peng, G., Liu, et al., “High-performance lithium battery anodes using silicon nanowires”, Nat. Nanotech. 3, 31–35 (2008).Google Scholar
[988] M.-H., Park, M. G., Kim, J., Joo, et al., “Silicon nanotube battery anodes”, Nano Lett. 9, 3844–3847 (2009).Google Scholar
[989] M., Thakur, M., Isaacson, S. L., Sinsabaugh, M. S., Wong, and S. L., Biswal, “Gold-coated porous silicon films as anodes for lithium ion batteries”, J. Power Sources 205, 426–432 (2012).Google Scholar
[990] H., Zhang, X., Yu, and P. V., Braun, “Three-dimensional bicontinuous ultrafastcharge and-discharge bulk battery electrodes”, Nature Nanotech. 6, 277–281 (2011).Google Scholar
[991] J., Chmiola, G., Yushin, Y., Gogotsi, C., Portet, P., Simon, and P.-L., Taberna, “Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer”, Science 313, 1760–1763 (2006).Google Scholar
[992] J., Lin, C., Zhang, Z., Yan, et al., “3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance”, Nano Lett. 13, 72–78 (2012).Google Scholar
[993] A., Nel, T., Xia, L., Mädler, and N., Li, “Toxic potential of materials at the nanolevel”, Science 311, 622–627 (2006).Google Scholar
[994] R. E., Smalley, “Of chemistry, love, and nanobots”, Scientific American 285, 76–77 (2001).Google Scholar
[995] K. E., Drexler, “Drexler and Smalley make the case for and against molecular assemblers”, Chemical & Engineering News 81, 1 (2003).Google Scholar
[996] F., Cocks, Energy Demand and Climate Change: Issues and Resolutions(New York, Wiley, 2011).Google Scholar
[997] R., Stein and J., Powers, The Energy Problem (Hackensack, NJ, World Scientific, 2011).Google Scholar
[998] J., García-Martínez, ed., Nanotechnology for the Energy Challenge, 2nd edn. (New York, Wiley, 2013).Google Scholar
[999] J. B., Goodenough and Y., Kim, “Challenges for rechargeable Li batteries”, Chem. Mater. 22, 587–603 (2009).Google Scholar
[1000] G., Oberdörster, E., Oberdörster, and J., Oberdörster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles”, Env. Health Persp. 113, 823–839 (2005).Google Scholar
[1001] H., F. Krug and P., Wick, “Nanotoxicology: an interdisciplinary challenge”, Ange. Chemie Int. Edn. 50, 1260–1278 (2011).Google Scholar
[1002] S. J., Klaine, P. J., Alvarez, G. E., Batley, et al., “Nanomaterials in the environment: behavior, fate, bioavailability, and effects”, Env. Tox. Chem. 27, 1825–1851 (2008).Google Scholar
[1003] K., Drexler, Engines of Creation (New York, Anchor, 1987).Google Scholar
[1004] N., Stephenson, The Diamond Age, A Bantam spectra book (New York, Random House Publishing Group, 2003).Google Scholar
[1005] D., Griffiths, Introduction to Electrodynamics, Pearson International Edition (Upper Saddle River, NJ, Pearson Education, Limited, 2012).Google Scholar
[1006] L. D., Landau and E. M., Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 3rd. edn. (New York, Elsevier, 2013).Google Scholar
[1007] C., Cohen–Tannoudji, B., Diu, and F., Laloë, Quantum Mechanics, Vol. 1 (New York, Wiley, 1991).
[1008] J. J., Sakurai and J. J., Napolitano, Modern Quantum Mechanics, 2nd edn. (New York, Addison - Wesley, 2010).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Douglas Natelson, Rice University, Houston
  • Book: Nanostructures and Nanotechnology
  • Online publication: 05 July 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139025485.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Douglas Natelson, Rice University, Houston
  • Book: Nanostructures and Nanotechnology
  • Online publication: 05 July 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139025485.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Douglas Natelson, Rice University, Houston
  • Book: Nanostructures and Nanotechnology
  • Online publication: 05 July 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139025485.015
Available formats
×