Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T19:29:42.918Z Has data issue: false hasContentIssue false

Chapter 15 - Movement disorders associated with chronic metal poisoning

from Section III - Iatrogenic and toxic movement disorders

Published online by Cambridge University Press:  05 April 2014

Pille Taba
Affiliation:
Department of Neurology & Neurosurgery, University of Tartu, Tartu, Estonia
Werner Poewe
Affiliation:
Medical University Innsbruck
Joseph Jankovic
Affiliation:
Baylor College of Medicine, Texas
Get access

Summary

Introduction

In the periodic table of elements, there are sixty-seven metals, characterized by metallic luster, high thermal and electrical conductivity, strength, and ductility. Metals are often extracted as ores from the Earth’s core by mining and some are useful for carrying large loads or resisting impact damage. Some metals are required for enzymatic processes and their intake is regulated by homeostatic mechanisms, while others interfere with intracellular functions of essential metals, but also excess of essential metals may cause toxicity by free radical mediated oxidative stress, impairment of mitochondrial function and disturbed energy metabolism, and alteration of protein structure. Metal toxicity may occur from overload as a consequence of external exposure – industrial, accidental, or from drugs – and may affect the function of many organs as well as the central and peripheral nervous system. Clinical manifestations caused by metal toxicity vary greatly, and include movement disorders such as secondary parkinsonism and a wide range of hyperkinetic disorders (see Table 15.1).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agate, J. N. and Buckell, M. (1949). “Mercury poisoning from fingerprint photography: an occupational hazard of policemen,” Lancet Neurol. 254: 451–4.CrossRefGoogle Scholar
ATSDR (Agency of Toxic Substances and Disease Registy) (1999). Toxicological Profile for Mercury. (Atlanta, GA: US Department of Health and Human Services).Google Scholar
Bakir, F., Damluji, S. F., Amin-Zaki, L., Murtadha, M., Khalidi, A., Al-Rawi, N. Y., et al. (1973). “Methylmercury poisoning in Iraq: An inter-university report,” Science 181: 230–40.CrossRefGoogle Scholar
Belyaeva, E. A., Sokolova, T. V., Emelyanova, L. V., and Zakharova, I. O. (2012). “Mitochondrial electron transport chain in heavy metal-induced neurotoxicity: effects of cadmium, mercury, and copper,” Sci. World J. 136063.Google Scholar
Berglund, M., Lind, B., Bjrnberg, K. A., Palm, B., Einarsson, O., and Vahter, M. (2005). “Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment,” Environ. Health 4: 20.CrossRefGoogle ScholarPubMed
Bernhoft, R. A. (2012). “Mercury toxicity and treatment: a review of the literature,” J. Environ. Public Health460508: .Google ScholarPubMed
Berzas Nevado, J. J., Rodríguez Martín-Doimeadios, R. C., Mateo, R., Rodríguez Fariñas, N., Rodríguez-Estival, J., and Patiño Ropero, M. J. (2012). “Mercury exposure and mechanism of response in large game using the Almadén mercury mining area (Spain) as a case study,” Environ. Res. 112: 58–66.CrossRefGoogle ScholarPubMed
Blumberg, K. and Walsh, M. P. (2004). “Status report concerning the use of MMT in gasoline,” (International Council on Clean Transportation (ICCT)).
Böse-O’Reilly, S., Drasch, G., Beinhoff, C., Maydl, S., Vosko, M. R., Roider, G., et al. (2003). “The Mt. Diwata study on the Philippines 2000 – treatment of mercury intoxicated inhabitants of a gold mining area with DMPS (2,3-Dimercapto-1-propane-sulfonic acid, Dimaval),” Sci. Total Environ. 307: 71–82.CrossRefGoogle Scholar
Bourdineaud, J. P., Fujimura, M., Laclau, M., Sawada, M., and Yasutake, A. (2011). “Deleterious effects in mice of fish-associated methylmercury contained in a diet mimicking the Western populations’ average fish consumption,” Environ. Int. 37: 303–13.CrossRefGoogle Scholar
Bowler, R. M., Gocheva, V., Harris, M., Ngo, L., Abdelouahab, N., Wilkinson, J., et al. (2011). “Prospective study on neurotoxic effects in manganese-exposed bridge construction welders,” Neurotoxicology 32: 596–605.CrossRefGoogle ScholarPubMed
Bowler, R. M., Nakagawa, S., Drezgic, M., Roels, H. A., Park, R. M., Diamond, E., et al. (2007). “Sequelae of fume exposure in confined space welding: a neurological and neuropsychological case series,” Neurotoxicology 28: 198–211.CrossRefGoogle ScholarPubMed
Bowman, A. B., Kwakye, G. F., Herrero Hernández, E., and Aschner, M. (2011). “Role of manganese in neurodegenerative diseases,” J. Trace Elem. Med. Biol. 25: 191–203.CrossRefGoogle ScholarPubMed
Bradberry, S. M., Sheehan, T. M. T., Barraclough, C. R., and Vale, J. A. (2009). “DMPS can reverse the features of severe mercury vapor-induced neurological damage,” Clin. Tox. 47: 894–8.CrossRefGoogle ScholarPubMed
Brna, P., Gordon, K., Dooley, J. M., and Price, V. (2011). “Manganese toxicity in a child with iron deficiency and polycythemia,” J. Child Neurol. 26: 891–4.CrossRefGoogle Scholar
Burkhard, P. R., Delavelle, J., Du Pasquier, R., and Spahr, L. (2003). “Chronic parkinsonism associated with cirrhosis,” Arch. Neurol. 60: 521–8.CrossRefGoogle ScholarPubMed
Chalela, J. A., Bonillha, L., Neyens, R., and Hays, A. (2011). “Manganese encephalopathy: an under-recognized condition in the intensive care unit,” Neurocrit. Care 14: 456–8.CrossRefGoogle ScholarPubMed
Chan, T. Y. (2011). “Inorganic mercury poisoning associated with skin-lightening cosmetic products,” Clin. Toxicol. 49: 886–91.CrossRefGoogle ScholarPubMed
Couper, J. (1837). “On the effects of black oxide of manganese when inhaled into the lungs,” Br. Ann. Med. Pharm. 1: 41–2.Google Scholar
Criswell, S. R., Perlmutter, J. S., Videen, T. O., Moerlein, S. M., Flores, H. P., Birke, A. M., et al. (2011). “Reduced uptake of [18F]FDOPA PET in asymptomatic welders with occupational manganese exposure,” Neurology 76: 1296–301.CrossRefGoogle Scholar
D’souza, H. S., D’souza, S. A., Menezes, G., and Venkatesh, T. (2011). “Diagnosis, evaluation, and treatment of lead poisoning in general population,” Ind. J. Clin. Biochem. 26: 197–201.CrossRefGoogle ScholarPubMed
Da Silva, C. J., da Rocha, A. J., Jeronyomo, S., Mendes, M. F., Milani, F. T., Maia, A. C. M.., et al. (2007). “A preliminary study revealing a new association in patients undergoing maintenance hemodialysis: manganism symptoms and T1 hyperintense changes in the basal ganglia,” Am. J. Neuroradiol. 28: 1474–9.CrossRefGoogle ScholarPubMed
DeRouen, T. A., Martin, M. D., Leroux, B. G., Townes, B. D., Woods, S. J., Leitao, J., et al. (2006). “Neurobehavioural effects of dental amalgam in children,” JAMA 295: 1784–92.CrossRefGoogle Scholar
Dreiem, A., Shan, M., Okoniewski, R. J., Sanchez-Morrissey, S., and Seegal, R. F. (2009). “Methylmercury inhibits dopaminergic function in rat pup synaptosomes in an age-dependent manner,” Neurotoxicol. Teratol. 31: 312–17.CrossRefGoogle Scholar
Ellingsen, D. G., Konstantinov, R., Bast-Pettersen, B., Merkujeva, L., Chashchin, M., Thomassen, Y., et al. (2008). “A neurobehavioural study on current and former welders exposed to manganese,” NeuroToxicology 29: 48–59.CrossRefGoogle Scholar
Ensing, J. G. (1985). “Bazooka: cocaine-base and manganese carbonate,” J. Anal. Toxicol. 9: 45–6.CrossRefGoogle ScholarPubMed
Erikson, K. M., Thompson, K., Aschner, J., and Aschner, M. (2007). “Manganese neurotoxicity: a focus on neonates,” Pharm. Therap. 113: 369–77.CrossRefGoogle Scholar
Eto, K. (2000). “Minamata disease,” Neuropathology 20: S14–19.CrossRefGoogle ScholarPubMed
Fernandez-Rodriguez, R., Contreras, A., Villoris, J. G., and Grandas, F. (2010). “Acquired hepatocerebral degeneration: clinical charateristics and MRI findings,” Eur. J. Neurol. 17: 1463–70.CrossRefGoogle Scholar
Flora, S. J. S. and Pachauri, V. (2010). “Chelation in metal intoxication,” Int. J. Environ. Res. Public Health 7: 2745–88.CrossRefGoogle ScholarPubMed
Flynn, M. R. and Susi, P. (2009). “Neurological risks associated with manganese exposure from welding operation – a literature review,” Int. J. Hyg. Environ. Health 212: 459–69.CrossRefGoogle Scholar
Fretham, S., Caito, S. W., Martinez-Finley, E. J., and Aschner, M. (2012). “Mechanisms and modifiers of ethylmercury-induced neurotoxicity,” Toxicol. Res. 10:1039/c2tx20010d.Google Scholar
Goetz, C. (2010). “Shaking up the Salpêtrière: Jean-Martin Charcot and mercury-induced tremor,” Neurology 74: 1739–42.CrossRefGoogle ScholarPubMed
Gordon, M. F., Abrams, R. I., Rubin, D. B., Barr, W. B., and Correa, D. D. (1995). “Bismuth subsalicylate toxicity as a cause of prolonged encephalopathy with myoclonus,” Mov. Disord. 10: 220–2.CrossRefGoogle ScholarPubMed
Grandjean, P. and Herz, K. (2011). “Methylmercury and brain development: imprecision and underestimation of developmental neurotoxicity in humans,” Mt. Sinai J. Med. 78: 107–18.CrossRefGoogle ScholarPubMed
Guilarte, T. N., Burton, N. C., McGlothan, J. L., Verina, T., Zhou, Y., Alexander, M., et al. (2008). “Impairment of nigrostriatal dopamine neurotransmission by manganese is mediated by pre-synaptic mechanism(s): implications to manganese-induced parkinsonism,” J. Neurochem. 107: 1236–47.CrossRefGoogle ScholarPubMed
Guilarte, T. N., McGlothan, J. L., Degaonkar, M., Chen, M. K., Barker, P. B., and Syversen, T., et al. (2006). “Evidence for cortical dysfunction and widespread manganese accumulation in the nonhuman primate brain following chronic manganese exposure: a 1H-MRS and MRI study,” Toxicol. Sci. 94: 351–8.CrossRefGoogle ScholarPubMed
Halbach, S., Vogt, S., Köhler, W., Felgenhauer, N., Welzl, G., Kremers, L., et al. (2008). “Blood and urine mercury levels in adult amalgam patients of a randomized controlled trial: interaction of Hg species in erythrocytes,” Environ. Res. 107: 69–78.CrossRefGoogle ScholarPubMed
Harada, M. (2010). “Congenital Minamata disease: intrauterine methylmercury poisoning,” Birth Defects Res. 88: 906–9.Google Scholar
Herrero Hernandez, E., Discalzi, G., Valentini, C., Venturi, F., Chiò, A., Carmellino, C., et al. (2006). “Follow-up of patients affected by manganese-induced Parkinsonism after treatment with CaNa2EDTA,” Neurotoxicology 27: 333–9.CrossRefGoogle ScholarPubMed
Herrero Hernandez, E., Valentini, M. C., and Discalzi, G. (2002). “T1 weighted hyperintensity in basal ganglia at brain magnetic resonance imaging: are different pathologies sharing a common mechanism?Neurotoxicology 23: 669–74.CrossRefGoogle ScholarPubMed
Howarth, D. (2012). “Lead exposure – implications for general practice,” Aust. Fam. Physician 41: 311–15.Google ScholarPubMed
Huang, C. C., Chu, N. S., Lu, C. S., Chen, R. S., Schulzer, M., and Calne, D. B. (2007). “The natural history of neurological manganism,” Parkinsonism Relat. Disord. 13: 143–5.CrossRefGoogle ScholarPubMed
Huang, C. C., Weng, Y. H., Lu, C. S., Chu, N. S., and Yen, T. C. (2003). “Dopamine transporter binding in chronic manganese intoxication,” J. Neurol. 250: 1335–9.CrossRefGoogle ScholarPubMed
Iqbal, M., Monaghan, T., and Redmond, J. (2012). “Manganese toxicity with ephedrone abuse manifesting as parkinsonism: a case report,” J. Med. Case Report 6: 52.CrossRefGoogle ScholarPubMed
Jain, S. and Ferrando, S. J. (2011). “Manganese neurotoxicity presenting with depression, psychosis and catatonia,” Psychosomatics 52: 74–7.CrossRefGoogle ScholarPubMed
Jiang, Y., Zheng, W., Long, L., Zhao, W., Li, X., Mo, X., et al. (2007). “Brain magnetic resonance imaging and manganese concentrations in red blood cells of smelting workers: search for biomarkers of manganese exposure,” Neurotoxicology 28: 126–35.CrossRefGoogle ScholarPubMed
Jiang, Y. M., Mo, X. A., Du, F. Q., Fu, X., Zhu, X. Y., Gao, H. Y., et al. (2006). “Effective treatment of manganese-induced occupational Parkinsonism with p-aminosalicylic acid: a case of 17-year follow-up study,” J. Occup. Environ. Med. 48: 644–9.CrossRefGoogle ScholarPubMed
Josephs, K. A., Ahlskog, J. E., Klos, K. J., Kumar, N., Fealey, R. D., Trennerry, M. R., et al. (2005). “Neurologic manifestations in welders with pallidal MRI T1 hyperintensity,” Neurology 64: 2033–9.CrossRefGoogle ScholarPubMed
Kalita, J. and Misra, U. K. (2006). “Sequelae of thallium poisoning: clinical and neurophysiological follow-up,” Eur. Neurol. 56: 253–5.CrossRefGoogle ScholarPubMed
Karri, S. K., Saper, R. B., and Kales, S. N. (2008). “Lead encephalopathy due to traditional medicines,” Curr. Drug Saf. 3: 54–9.CrossRefGoogle ScholarPubMed
Kenangil, G., Ertan, S., Sayilir, I., and Özekmekci, S. (2006). “Progressive motor syndrome in a welder with pallidal T1 hyperintensity on MRI: a two-year follow-up,” Mov. Disord. 21: 2197–200.CrossRefGoogle Scholar
Kim, Y., Jeong, K. S., Song, H. J., Lee, J. J., Seo, J. H., Kim, G. C., et al. (2011). “Altered white matter microstructural integrity revealed by voxel-wise analysis of diffusion tensor imaging in welders with manganese exposure,” Neurotoxicology 32: 100–9.CrossRefGoogle ScholarPubMed
Korogi, Y., Takahashi, M., Okajima, T., and Eto, K. (1998). “MR findings of Minamata disease: organic mercury poisoning,” J. Magn. Reson. Imaging 8: 308–16.CrossRefGoogle ScholarPubMed
Kurttio, P., Vartiainen, T., and Savolainen, K. (1990). “Environmental and biological monitoring of exposure to ethylenebisdithicarbamate fungicides and ethylenethiourea,” Br. J. Ind. Med. 47: 203–6.Google ScholarPubMed
Levin, O. S. (2005). “‘Ephedron’ encephalopathy,” Zh. Nevrol. Psikhiatr. Im S. S. Korsakova 105: 12–20.Google ScholarPubMed
Lin, C. Y., Liou, S. H., Hsiech, C. M., Ku, M. C., and Tsai, S. Y. (2011). “Dose-response relationship between cumulative mercury exposure index and specific uptake ratio in the striatum on Tc-99m TRODAT SPECT,” Clin. Nucl. Med. 36: 689–93.CrossRefGoogle ScholarPubMed
Lin, T. J., Hung, D. Z., Kao, C. H., Hu, W. H., and Yang, D. Y. (1998). “Unique cerebral dysfunction following triphenyltin acetate poisoning,” Hum. Exp. Toxicol. 17: 403–5.CrossRefGoogle ScholarPubMed
Ljung, K. and Vahter, M. (2007). “Time to re-evaluate the guideline value for manganese in drinking water?Environ. Health Perspect. 115: 1533–8.CrossRefGoogle ScholarPubMed
Lucchini, R. G., Guazzetti, S., Zoni, S., Donna, F., Peter, S., Zacco, A., et al. (2012a). “Tremor, olfactory and motor changes in Italian adolescents exposed to historical ferro-manganese emission,” Neurotoxicology 33: 687–96.CrossRefGoogle ScholarPubMed
Lucchini, R. G., Riva, M. A., Sironi, V. A., and Porro, A. (2012b). “Torvis oculis: occupational roots of behavioural neurotoxicology in the last two centuries and beyond,” Neurotoxicology 33: 652–9.CrossRefGoogle ScholarPubMed
Masur, L. S. (2011). “A review of the use of mercury in historic and current ritualistic and spiritual practices,” Environ. Med. 16: 314–20.Google ScholarPubMed
Menezes-Filho, J. A., Novaes Cde, O., Moreira, J. C., Sarcinelli, P. N., and Mergler, D. (2011). “Elevated manganese and cognitive performance in school-aged children and their mothers,” Environ. Res. 111: 156–63.CrossRefGoogle ScholarPubMed
Michalke, B., Halbach, S., and Nischwitz, V. (2009). “JEM spotlight: metal speciation related to neurotoxicity in humans,” J. Environ. Monit. 11: 939–54.CrossRefGoogle ScholarPubMed
Miyasaki, J. M. (2011). “Chorea caused by toxins,” Handb. Clin. Neurol. 100: 335–46.CrossRefGoogle ScholarPubMed
Nagatomo, S., Umehara, F., Hanada, K., Nobuhara, Y., Takenaga, S., Arimura, K., et al. (1999). “Manganese intoxication during total parenteral nutrition: report of two cases and review of the literature,” J. Neurol. Sci. 162: 102–5.CrossRefGoogle ScholarPubMed
Oken, E. and Bellinger, D. C. (2008). “Fish consumption, methylmercury and child neurodevelopment,” Curr. Opin. Pediatr. 20: 178–83.CrossRefGoogle ScholarPubMed
Olivero-Verbel, J., Caballero-Gallardo, K., and Marrugo Negrete, J. (2011). “Relationship between localization of gold mining areas and hair mercury levels in people from Bolivar, north of Colombia,” Biol. Trace Elem. Res. 144: 118–32.CrossRefGoogle ScholarPubMed
Ono, K., Komai, K., and Yamada, M. (2002). “Myoclonic involuntary movement associated with chronic manganese poisoning,” J. Neurol. Sci. 199: 93–6.CrossRefGoogle ScholarPubMed
Oomen, J. W., Smits, B. W., Swinkels, D. W., Schreurs, B. W., Bloem, B. R., and Hedriks, M. P. (2011). “A toxic shot from the hip,” J. Neurol. Neurosurg. Psychiatry 82: 353–4.CrossRefGoogle ScholarPubMed
Ovaska, H., Wood, D. M., House, I., Dargan, P. I., Jones, A. L., and Murray, S. (2008). “Severe iatrogenic bismuth poisoning with bismuth iodoform paraffin paste treated with DMPS chelation,” Clin. Toxicol. 46: 855–7.CrossRefGoogle ScholarPubMed
Pease, H. L. and Holt, R. F. (1977). “Manganese ethylenebis(dithocarbamate) (Maneb)/ethylenethiourea (ETU) residue studies on five crops treated with ethylenebis(dithiocarbamate) (EBDC) fungicides,” J. Agric. Food Chem. 25: 561–7.CrossRefGoogle Scholar
Perl, D. and Olanow, C. W. (2007). “The neuropathology of manganese-induced parkinsonism,” J. Neuropath. Exp. Neurol. 66: 675–82.CrossRefGoogle ScholarPubMed
Racette, B. A., Aschner, M., Guilarte, T. R., Dydak, U., Criswell, S. R., and Zheng, W. (2012). “Pathophysiology of manganese-associated neurotoxicity,” Neurotoxicology 33: 881–6.CrossRefGoogle ScholarPubMed
Racette, B. A., Tabbal, S. D., Jennings, D., Good, L., Perlmutter, J. S., and Evanof, B. (2005). “Prevalence of parkinsonism and relationship to exposure in a large sample of Alabama welders,” Neurology 64: 230–5.CrossRefGoogle Scholar
Riojas-Rodríguez, H., Solís-Vivanco, R., Schilmann, A., Montes, S., Rodríguez, S., Ríos, C., et al. (2010). “Intellectual function in Mexican children living in a mining area and environmentally exposed to manganese,” Environ. Health Perspect. 118: 1465–70.CrossRefGoogle Scholar
Rodier, J. (1955). “Manganese poisoning in Moroccan miners,” Brit. J. Industr. Med. 12: 21–35.Google ScholarPubMed
Sadek, A. H., Rauch, R., and Schulz, P. E. (2003). “Parkinsonism due to manganism in a welder,” Int. J. Toxicol. 22: 393–401.CrossRefGoogle Scholar
Sanotsky, Y., Lesyk, R., Fedoryshyn, L., Komnatska, I., Matviyenko, Y., and Fahn, S. (2007). “Manganic encephalopathy due to ‘ephedrone’ abuse,” Mov. Disord. 22: 1337–43.CrossRefGoogle ScholarPubMed
Santamaria, A. B. and Sulsky, S. I. (2010). “Risk assessment of an essential element: manganese,” J. Tox. Environ. Health 73: 128–55.CrossRefGoogle ScholarPubMed
Selikhova, M., Fedoryshyn, L., Matviyenko, Y., Komnatska, I., Kyrylchuk, M., Krolicki, L., et al. (2008). “Parkinsonism and dystonia caused by the illicit use of ephedrone – a longitudinal study,” Mov. Disord. 23: 2224–31.CrossRefGoogle ScholarPubMed
Sikk, K., Haldre, S., Aquilonius, S. M., and Taba, P. (2011). “Manganese-induced parkinsonism due to ephedrone abuse,” Parkinson’s Disease D865319:1–8, .Google Scholar
Sikk, K., Taba, P., Haldre, S., Bergquist, J., Nyholm, D., Askmark, H., et al. (2010). “Clinical, neuroimaging and neurophysiological features in addicts with manganese-ephedrone exposure,” Acta Neurol. Scand. 121: 237–43.CrossRefGoogle ScholarPubMed
Sikkema, J. K., Alleman, J. E., Kee Ong, S., and Wheelock, T. D. (2011). “Mercury regulation, fate, transport, transformation, and abatement within cement manufacturing facilities: Review,” Sci. Total Environ. 409: 4167–78.CrossRefGoogle ScholarPubMed
Silbernagel, S. M., Carpenter, D. O., Gilbert, S. G., Gochfeld, M., Groth, III E., Hightower, J. M., et al. (2011). “Recognizing and preventing overexposure to methylmercury from fish and seafood consumption: information for physicians,” J. Toxicol. ID 983072, .CrossRef
Siva, N. (2012). “Thiomersal vaccines debate continues ahead of UN meeting,” Lancet Neurol. 379: 2328.CrossRefGoogle ScholarPubMed
Stanwood, G. D., Leitch, D. B., Savchenko, V., Wu, J., Fitsanakis, V. A., Anderson, D. J., et al. (2009). “Manganese exposure is cytotoxic and alters dopaminergic and GABAergic neurons within the basal ganglia,” J. Neurochem. 110: 378–89.CrossRefGoogle ScholarPubMed
Stepens, A., Logina, I., Liguts, V., Aldins, P., Ekšteina, I., Platkajs, A., et al. (2008). “A parkinsonian syndrome in methcathinone users and the role of manganese,” N. Eng. J. Med. 358: 1009–17.CrossRefGoogle ScholarPubMed
Stepens, A., Stagg, J. C., Platkajis, A., Boudrias, M. H., Johansen-Berg, H., and Donaghy, M. (2010). “White matter abnormalities in methcathinone abusers with an extrapyramidal syndrome,” Brain 133: 3676–84.CrossRefGoogle ScholarPubMed
Stokes-Riner, A., Thurston, S. W., Myers, G. J., Duffy, E. M., Wallace, J., Bonham, M., et al. (2011). “A longitudinal analysis of prenatal exposure to methylmercury and fatty acids in the Seychelles,” Neurotoxicol. Teratol. 33: 325–8.CrossRefGoogle ScholarPubMed
Tanner, C. (2010). “Advances in environmental epidemiology,” Mov. Disord. 25: S58–62.CrossRefGoogle ScholarPubMed
Tomicic, C., Vernez, D., Belem, T., and Berode, M. (2011). “Human mercury exposure associated with small-scale gold mining in Burkina Faso,” Int. Arch. Occup. Environ. Health 84: 539–46.CrossRefGoogle ScholarPubMed
Tsai, Y. T., Huang, C. C., Kuo, H. C., Wang, H. M., Shen, W. S., Shih, T. S., et al. (2006). “Central nervous system effects in acute thallium poisoning,” Neurotoxicology 27: 291–5.CrossRefGoogle ScholarPubMed
Tuschl, K., Clayton, P. T., Gospe, S. M., Jr., Gulab, S., Ibrahim, S., Singhi, P., et al. (2012). “Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man,” Am. J. Hum. Gen. 90; 457–66.CrossRefGoogle ScholarPubMed
Verina, T., Kiihl, S. F., Schneider, J. S., and Guilarte, T. R. (2011). “Manganese exposure induces microglia activation and dystrophy in the substantia nigra of non-human primates,” Neurotoxicology 32: 215–26.CrossRefGoogle ScholarPubMed
Wadia, N. H. (1961). “Manganese intoxication in Indian mines” in van Bogaert, L. V., Kafer, J. P., and Poch, G. F. (eds.), Tropical Neurology: Proceedings of 1st International Symposium (Buenos Aires: Lopez Libreris Editores S. R. L.).Google Scholar
Wang, J. D., Huang, C. C., Hwng, Y. H., Chiang, J. R., Lin, J. M., and Chen, J. S. (1989). “Manganese induced parkinsonism: an outbreak due to an unrepaired ventilation control system in a ferromanganese smelter,” Br. J. Indust. Med. 46: 856–9.Google Scholar
Yamada, M., Ohno, S., Okayasu, I., Okeda, R., Hatakeyama, S., Watanabe, H., et al. (1986). “Chronic manganese poisoning: a neuropathological study with determination of manganese distribution in the brain,” Acta Neuropathol. (Berl.) 70: 273–8.CrossRefGoogle Scholar
Yoo, C. I., Kim, Y., Jeong, K. S., Sim, C. S., Choy, N., Kim, J., et al. (2007). “A case of acute organotin poisoning,” Occup. Health 49: 305–10.CrossRefGoogle ScholarPubMed
Yorifuji, T., Tsuda, T., Inoue, S., Takao, S., and Harada, M. (2011). “Long-term exposure to methylmercury and psychiatric symptoms in residents of Minamata, Japan,” Environ. Int. 37: 907–13.CrossRefGoogle ScholarPubMed
Zayed, J., Vyskocil, A., and Kennedy, G. (1999). “Environmental contamination and human exposure to manganese – contribution of methylcyclopentadienyl manganese tricarbonyl in unleaded gasoline,” Int. Arch. Occup. Environ. Health 72: 7–13.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×