Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T20:39:42.873Z Has data issue: false hasContentIssue false

35 - The RNase A mismatch method for the genetic characterization of viruses

Published online by Cambridge University Press:  04 May 2010

Adrian J. Gibbs
Affiliation:
Australian National University, Canberra
Charles H. Calisher
Affiliation:
Colorado State University
Fernando García-Arenal
Affiliation:
Universidad Politécnica de Madrid
Get access

Summary

Introduction and background

Point mutation has gained a lot of attention in molecular biology because of the implication of this genomic alteration in medicine and pathology, such as genetic disorders and cancers. The RNase A mismatch method was developed for the detection of point mutations related to the activation of the K-ras oncogene in colon tumours using RNA: RNA hybrids (Winter et al., 1985) and to the diagnosis of genetic disorders with RNA:DNA hybrids (Myers, Larin & Maniatis, 1985).

RNA viruses are characterized by great genetic variability. This implies the occurrence of frequent mutation in the genome of different isolates. Some of these mutations are involved in phenotypic properties, such as virulence, tropism, resistance to antiviral drugs and other characteristics (Domingo et al., 1985). They are also the basis for evolutionary studies and strain comparison. Mutations in RNA viruses have been detected by Tl oligonucleotide fingerprinting and lately by sequencing through cDNA.

Our group adapted the system of RNase A mismatch for studies on genetic variability of RNA viruses using influenza orthomyxovirus as a model (López-Galíndez et al., 1988) and Owen and Palukaitis (1988) to plant viruses. The system is based on the comparison by hybridization of a riboprobe from a reference strain with RNAs from different strains. Each one will give a complex pattern of bands resistant to the RNase A digestion which is specific for each one as a fingerprint. Comparing the different patterns we are able to draw a qualitative estimate of genetic relatedness and evolution of field strains (López-Galíndez et al., 1988, 1991).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×