Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T09:27:52.381Z Has data issue: false hasContentIssue false

1 - An Introduction to Radio Frequency Nanoelectronics

Published online by Cambridge University Press:  21 September 2017

T. Mitch Wallis
Affiliation:
National Institute of Standards and Technology, Boulder
Pavel Kabos
Affiliation:
National Institute of Standards and Technology, Boulder
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., and Smalley, R. E., “C60: Buckminsterfullerene,” Nature 318 (1985) pp. 162163.CrossRefGoogle Scholar
Wong, H.-S. P. and Akinwande, D., Carbon Nanotube and Graphene Device Physics (Cambridge University Press, 2011).Google Scholar
Smalley, R. E., “Discovering the Fullerenes,” Nobel Lecture, December 7, 1996.Google Scholar
Steinhogl, W., Schindler, G., Steinlesberger, G., Traving, M., and Engelhardt, M., “Comprehensive Study of the Resistivity of Copper Wires with Lateral Dimensions of 100 nm and Smaller,” Journal of Applied Physics 97 (2005) art. no. 023706.CrossRefGoogle Scholar
Toimil Molares, M. E., Hohberger, E. M., Schaeflein, C., Blick, R. H., Neumann, R., and Trautmann, C., “Electrical Characterization of Electrochemically Grown Single Copper Nanowires,” Applied Physics Letters 82 (2003) pp. 21392141.CrossRefGoogle Scholar
Javey, A., Qi, P., Wang, Q., and Dai, H., “Ten- to 50-nm-long Quasi-Ballistic Carbon Nanotube Devices Obtained without Complex Lithography,” Proceedings of the National Academy of Sciences of the United States of America 101 (2004) pp. 1340813410.CrossRefGoogle ScholarPubMed
Close, G. F., Yasuda, S., Paul, B., Fujita, S., and Wong, H.-S. P., “A 1 GHz Integrated Circuit with Carbon Nanotube Interconnects and Silicon Transistors,” Nano Letters 8 (2008) pp. 706709.CrossRefGoogle ScholarPubMed
Close, G. F., Yasuda, S., Paul, B., Fujita, S., and Wong, H.-S. P., Close, G. F., Yasuda, S., Paul, B., Fujita, S., and Wong, H.-S. P., “Measurement of Subnanosecond Delay through Multiwall Carbon-Nanotube Local Interconnects on a CMOS Integrated Circuit,” IEEE Transactions on Electron Devices 56 (2009) pp. 4349.CrossRefGoogle Scholar
Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Nuemaier, D., Seabaugh, A., Banerjee, S. K., and Colombo, L., “Electronics Based on Two-Dimensional Materials,” Nature Nanotechnology 9 (2014) pp. 768779.CrossRefGoogle ScholarPubMed
Miao, X., Chabak, K., Zhang, C., Mohseni, P. K., Walker, D., and Li, X., “High-Speed Planar GaAs Nanowire Arrays with fmax > 75 GHz by Wafer-Scale Bottom-Up Growth,” Nano Letters 15 (2015) pp. 27802786.CrossRefGoogle ScholarPubMed
Gu, F., Zhang, L., Yin, X., and Tong, L., “Polymer Single-Nanowire Optical Sensors,” Nano Letters 8 (2008) pp. 27572761.CrossRefGoogle ScholarPubMed
Duan, X., Huang, Y., Cui, Y., Wang, J., and Lieber, C. M., “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices,” Nature 409 (2001) pp. 6669.CrossRefGoogle ScholarPubMed
Motayed, A., He, M., Davydov, A. V., Melngailis, J., and Mohammad, S. N., “Realization of Reliable GaN Nanowire Transistors Utilizing Dielectrophoretic Alignment Technique,” Journal of Applied Physics 100 (2006) art. no. 114310.CrossRefGoogle Scholar
Dayen, J.-F., Mahmood, A., Golubev, D. S., Roch-Jeune, I., Salles, P., and Dujardin, E., “Side-Gated Transport in Focused-Ion-Beam-Fabricated Multilayered Graphene Nanoribbons,” Small 4 (2008) pp. 716720.CrossRefGoogle ScholarPubMed
Natelson, D., “Mechanical Break Junctions: Enormous Information in a Nanoscale Package,” ACS Nano 6 (2012) pp. 28712876.CrossRefGoogle Scholar
Ho, W., “Single-Molecule Chemistry,” Journal of Chemical Physics 117 (2002) pp. 1103311061.CrossRefGoogle Scholar
Behabtu, N., Young, C. C., Tsentalovich, D. E., Kleinerman, O., Wang, X., Ma, A. W. K., Bengio, E. A., ter Waarbeek, R. F., de Jong, J. J., Hoogerwerf, R. E., Fairchild, S. B., Ferguson, J. B., Maruyama, B., Kono, J., Talmon, Y., Cohen, Y., Otto, M. J., and Pasquali, M., “Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity,” Science 339 (2013) pp. 182186.CrossRefGoogle ScholarPubMed
Binnig, G., Rohrer, H., Gerber, Ch., and Weibel, E., “Surface Studies by Scanning Tunneling Microscopy,” Physical Review Letters 49 (1982) pp. 5761.CrossRefGoogle Scholar
Binnig, G., Quate, C. F., and Gerber, Ch., “Atomic Force Microscope,” Physical Review Letters 56 (1986) pp. 930933.CrossRefGoogle ScholarPubMed
Teppati, V., Ferrero, A., and Sayed, M. (Eds.), Modern RF and Microwave Measurement Techniques (Cambridge University Press, 2013).CrossRefGoogle Scholar
Plombon, J. J., O’Brien, K. P., Gstrein, F., Dubin, V. M., and Jiao, Y., “High Frequency Electrical Properties of Individual and Bundled Carbon Nanotubes,” Applied Physics Letters 90 (2007) art. no. 063106.CrossRefGoogle Scholar
Rice, P., Wallis, T. M., Russek, S. E., and Kabos, P., “Broadband Electrical Characterization of Multiwalled Carbon Nanotubes and Contacts,” Nano Letters 7 (2007) pp. 10861090.CrossRefGoogle ScholarPubMed
Hao, L., Cox, D., Lees, K., Gallop, J. C., See, P., Clarke, R., Janssen, T. J. B. M., Zhang, R. F., and Wei, F., “Fabrication and Characterization of Carbon Nanotubes as r.f. Interconnects,” 2012 12th IEEE Conference on Nanotechnology (IEEE NANO) (2012) pp. 15.Google Scholar
Li, S., Yu, Z., Yen, S.-F., Tang, W. C., and Burke, P. J., “Carbon Nanotube Transistor Operation at 2.6 GHz,” Nano Letters 4 (2004) pp. 753756.CrossRefGoogle Scholar
Bethoux, J. M., Happy, H., Dambrine, G., Derycke, V., Goffman, M., and Burgoin, J. P., “An 8-GHz ft Carbon Nanotube Field-Effect Transistor for Gigahertz Range Applications,” IEEE Electron Device Letters 27 (2006) pp. 681683.CrossRefGoogle Scholar
Vandenbrouck, S., Madjour, K., Theon, D., Dong, Y., Li, Y., Lieber, C. M., and Gaquiere, C., “12 GHz FMAX GaN/AlN/AlGaN Nanowire MISFET,” IEEE Electron Device Letters 30 (2009) pp. 322324.CrossRefGoogle Scholar
Wang, T., Jeppson, K., Olofsson, N., Campbell, E. E. B., and Liu, J., “Through Silicon Vias Filled with Planarized Carbon Nanotube Bundles,” Nanotechnology 20 (2009) art. no. 485203.CrossRefGoogle ScholarPubMed
Weber, J. C., Schlager, J. B., Sanford, N. A., Imtiaz, A., Wallis, T. M., Mansfield, L. M., Coakley, K. J., Bertness, K. A., Kabos, P., and Bright, V. M., “A Near-Field Scanning Microwave Microscope for Characterization of Inhomogeneous Photovoltaics,” Review of Scientific Instruments 83 (2012) art. no. 083702.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×