Skip to main content Accessibility help
  • Print publication year: 2019
  • Online publication date: January 2019

Chapter 13 - Prevention of Epileptogenesis in Animal Models

from Part III - Predicting the Response to Therapeutic Interventions
1.Shorvon, SD. The etiologic classification of epilepsy. Epilepsia. 2011;52:1052–7.
2.Giblin, KA, Blumenfeld, H. Is epilepsy a preventable disorder? New evidence from animal models. Neuroscience. 2010;16(3):253–75.
3.Banerjee, PN, Filippi, D, Allen Hauser, W. The descriptive epidemiology of epilepsy—a review. Epilepsy Res. 2009;85:3145.
4.Blumenfeld, H. New strategies for preventing epileptogenesis: perspective and overview. Neurosci Lett. 2011;497(3):153–4.
5.Chahboune H, , Mishra, AM, DeSalvo, MN, et al. DTI abnormalities in anterior corpus callosum of rats with spike-wave epilepsy. NeuroImage. 2009;47(2):459–66.
6.Mishra, AM, Bai, X, Sanganahalli, BG, Waxman, SG. Decreased resting functional connectivity after traumatic brain injury in the rat. PLOS ONE. 2014;9(4):e95280.
7.Van Luijtelaar, G, Mishra, AM, Edelbroek, P, et al. Anti-epileptogenesis: electrophysiology, diffusion tensor imaging and behavior in a genetic absence model. Neurobiol Dis. 2013;60:126–38.
8.Blumenfeld, H, Klein, JP, Schridde, U, et al. Early treatment suppresses the development of spike-wave epilepsy in a rat model. Epilepsia. 2008;49(3):400–9.
9.Shorvon, SD. A history of neuroimaging in epilepsy 1909–2009. Epilepsia. 2009;50:3949.
10.Filler, AG. The history, development and impact of computed imaging in neurological diagnosis and neurosurgery: CT, MRI, and DTI. Nat Proc. 2009. Available at:
11.Patterson, JL, Carapetian, SA, Hageman, JR, Kelley, KR. Febrile seizures. Pediatr Ann. 2013;42:249–54.
12.Dubé, C, Yu, H, Nalcioglu, O, Baram, TZ. Serial MRI after experimental febrile seizures: altered T2 signal without neuronal death. Ann Neurol. 2004;56(3):709–14.
13.Dube, M, Ravizza, T, Hamamura, M, et al. Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J Neurosci. 2010;30(22):7484–94.
14.Choy, M, Dubé, CM, Patterson, K, et al. Neurobiology of disease: a novel, noninvasive, predictive epilepsy biomarker with clinical potential. J Neurosci. 2014;34(26):8672–84.
15.Pagni, CA, Zenga, F. Prevention and treatment of post-traumatic epilepsy. Expert Rev Neurother. 2006;6(8):1223–33.
16.Pitkänen, A, McIntosh, T. Animal models of post-traumatic epilepsy. J Neurotrauma. 2006;23(2):241–61.
17.Kharatishvili, I, Sierra, A, Immonen, RJ, Gröhn, OHJ, Pitkänen, A. Quantitative T2 mapping as a potential marker for the initial assessment of the severity of damage after traumatic brain injury in rat. Exp Neurol. 2009;217(1):154–64.
18.Immonen, RJ, Kharatishvili, I, Gröhn, H, Pitkänen, A, Gröhn, OHJ. Quantitative MRI predicts long-term structural and functional outcome after experimental traumatic brain injury. NeuroImage. 2009;45(1):19.
19.Roch, C, Leroy, C, Nehlig, A, Namer, IJ. Predictive value of cortical injury for the development of temporal lobe epilepsy in 21-day-old rats: an MRI approach using the lithium-pilocarpine model. Epilepsia. 2002;43(10):1129–36.
20.van Eijsden, P, Notenboom, RGE, Wu, O, et al. In vivo 1H magnetic resonance spectroscopy, T2-weighted and diffusion-weighted MRI during lithium-pilocarpine-induced status epilepticus in the rat. Brain Res. 2004;1030(1):11–8.
21.Choy, M, Cheung, KK, Thomas, DL, Gadian, DG, Lythgoe, MF, Scott, RC. Quantitative MRI predicts status epilepticus-induced hippocampal injury in the lithium-pilocarpine rat model. Epilepsy Res. 2010;88 (2–3):221–30.
22.Roch, C, Leroy, C, Nehlig, A, Namer, IJ. Magnetic resonance imaging in the study of the lithium-pilocarpine model of temporal lobe epilepsy in adult rats. Epilepsia. 2002;43(4):325–35.
23.Nairismägi, J, Gröhn, OHJ, Kettunen, MI, Nissinen, J, Kauppinen, RA, Pitkänen, A. Progression of brain damage after status epilepticus and its association with epileptogenesis: a quantitative MRI study in a rat model of temporal lobe epilepsy. Epilepsia. 2004;45(9):1024–34.
24.Jupp, B, Williams, JP, Tesiram, YA, Vosmansky, M, O’Brien, TJ. Hippocampal T2 signal change during amygdala kindling epileptogenesis. Epilepsia. 2006;47(1):41–6.
25.Ashburner, J, Friston, KJ. Voxel-based morphometry—the methods. NeuroImage. 2000;11(6 p. 1):805–21.
26.Maguire, EA, Gadian, DG, Johnsrude, IS, et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA. 2000;97(8):4398–403.
27.Wolf, OT, Dyakin, V, Patel A, et al. Volumetric structural magnetic resonance imaging (MRI) of the rat hippocampus following kainic acid (KA) treatment. Brain Res. 2002;934(2):8796.
28.Shultz, SR, Cardamone, L, Liu, YR, et al. Can structural or functional changes following traumatic brain injury in the rat predict epileptic outcome? Epilepsia. 2013;54(7):1240–50.
29.Kharatishvili, I, Immonen, R, Gro, O, Pitka, A, Gröhn, O, Pitkänen, A. Quantitative diffusion MRI of hippocampus as a surrogate marker for post-traumatic epileptogenesis. Brain. 2007;130(130):3155–68.
30.Liu, YR, Cardamone, L, Hogan, RE, et al. Progressive metabolic and structural cerebral perturbations after traumatic brain injury: an in vivo imaging study in the rat. J Nucl Med. 2010;51(11):1788–95.
31.Immonen, R, Kharatishvili, I, Gröhn, O, Pitkänen, A, Pitkanen, A. MRI biomarkers for post-traumatic epileptogenesis. J Neurotrauma. 2013;30:1305–9.
32.Gupta, RK, Cloughesy, TF, Sinha, U, et al. Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol. 2000;50(3):215–26.
33.Mishra, AM, Gupta, RK, Jaggi, RS, et al. Role of diffusion-weighted imaging and in vivo proton magnetic resonance spectroscopy in the differential diagnosis of ring-enhancing intracranial cystic mass lesions. J Comput Assist Tomogr. 2004;28(4):540–7.
34.Nagarajan, R, Sarma, MK, Thames, AD, Castellon, SA, Hinkin, CH, Thomas, MA. 2D MR spectroscopy combined with prior-knowledge fitting is sensitive to HCV-associated cerebral metabolic abnormalities. Int J Hepatol. 2012;2012:179365.
35.Filibian, M, Frasca, A, Maggioni, D, Micotti, E, Vezzani, A, Ravizza, T. In vivo imaging of glia activation using 1H-magnetic resonance spectroscopy to detect putative biomarkers of tissue epileptogenicity. Epilepsia. 2012;53(11):1907–16.
36.Duncan, J. Magnetic resonance spectroscopy. Epilepsia. 1996;37(7):598605.
37.Lee, EM, Park, GY, Im, KC, et al. Changes in glucose metabolism and metabolites during the epileptogenic process in the lithium-pilocarpine model of epilepsy. Epilepsia. 2012;53(5):860–9.
38.Alvestad, S, Hammer, J, Qu, H, Håberg, A, Ottersen, OP, Sonnewald, U. Reduced astrocytic contribution to the turnover of glutamate, glutamine, and GABA characterizes the latent phase in the kainate model of temporal lobe epilepsy. J Cereb Blood Flow Metab. 2011;31(8):1675–86.
39.Kuhl, DE, Engel, J Jr, Phelps, ME KA. Epileptic patterns of local computed, cerebral metabolism and perfusion in man: investigation by emission tomography of 18F-fluorodeoxyglucose and 13N-ammonia. Trans Am Neurol Assoc. 1978;103:52–3.
40.Dedeurwaerdere, S, Callaghan, PD, Pham, T, et al. PET imaging of brain inflammation during early epileptogenesis in a rat model of temporal lobe epilepsy. EJNMMI Res. 2012;2(1):60.
41.Jones, NC, Nguyen, T, Corcoran, NM, et al. Targeting hyperphosphorylated tau with sodium selenate suppresses seizures in rodent models. Neurobiol Dis. 2012;45(3):897901.
42.Virdee, K, Cumming, P, Caprioli, D, et al. Applications of positron emission tomography in animal models of neurological and neuropsychiatric disorders. Neurosci Biobehav Rev. 2012;36(4):1188–216.
43.Jupp, B, Williams, J, Binns, D, et al. Hypometabolism precedes limbic atrophy and spontaneous recurrent seizures in a rat model of TLE. Epilepsia. 2012;53(7):1233–44.
44.Goffin, K, Van, Paesschen W, Dupont, P, Van, Laere K. Longitudinal microPET imaging of brain glucose metabolism in rat lithium-pilocarpine model of epilepsy. Exp Neurol. 2009;217(1):205–9.
45.Guo, Y, Gao, F, Wang, S, et al. In vivo mapping of temporospatial changes in glucose utilization in rat brain during epileptogenesis: an 18F-fluorodeoxyglucose-small animal positron emission tomography study. Neuroscience. 2009;162(4):972–9.
46.Ogawa, S, Menon, RS, Tank, DW, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993;64(3):803–12.
47.Blumenfeld, H. Functional MRI studies of animal models in epilepsy. Epilepsia. 2007;48:1826.
48.Hyder, F. Dynamic imaging of brain function. Methods Mol Biol. 2009;489:321.
49.Ogawa, SLT. Blood oxygen level dependent MRI of the brain: effects of seizure induced by kainic acid in the rat. Proc Soc Magn Reson Med. 1992;1:501.
50.Friston, KJ, Frith, CD, Liddle, PF, Frackowiak, RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13(1):514.
51.Biswal, B, Yetkin, FZ, Haughton, VM, Hyde, JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.
52.Basser, PJ, Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111(3):209–19.
53.Ranjan, P, Mishra, AM, Kale, R, Saraswat, VA, Gupta, RK. Cytotoxic edema is responsible for raised intracranial pressure in fulminant hepatic failure: in vivo demonstration using diffusion-weighted MRI in human subjects. Metab Brain Dis. 2005;20(3):181–92.
54.Kale, RA, Gupta, RK, Saraswat, VA, et al. Demonstration of interstitial cerebral edema with diffusion tensor MR imaging in type C hepatic encephalopathy. Hepatology. 2006;43(4):698706.
55.Gupta, RK, Hasan, KM, Mishra, AM, et al. High fractional anisotropy in brain abscesses versus other cystic intracranial lesions. AJNR Am J Neuroradiol. 2005;26(5):1107–14.
56.Beaulieu, C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 2002;15(7–8):435–55.
57.Frey, L, Lepkin, A, Schickedanz, A, Huber, K, Brown, MS, Serkova, N. ADC mapping and T1-weighted signal changes on post-injury MRI predict seizure susceptibility after experimental traumatic brain injury. Neurol Res. 2014;36(1):2637.
58.Jansen, JFA, Lemmens, EMP, Strijkers, GJ, et al. Short- and long-term limbic abnormalities after experimental febrile seizures. Neurobiol Dis. 2008;32(2):293301.
59.Wall, CJ, Kendall, EJ, Obenaus A. Rapid alterations in diffusion-weighted images with anatomic correlates in a rodent model of status epilepticus. Am J Neuroradiol. 2000;21(10):1841–52.
60.Sierra, A, Laitinen, T, Lehtimäki, K, Rieppo, L, Pitkänen, A, Gröhn, O. Diffusion tensor MRI with tract-based spatial statistics and histology reveals undiscovered lesioned areas in kainate model of epilepsy in rat. Brain Struct Funct. 2011;216(2):123–35.
61.Hippocampal, Nehlig A MRI and other structural biomarkers: experimental approach to epileptogenesis. Biomark Med. 2011;5(5):585–97.
62.Guo, JN, Kim, R, Chen, Y, et al. Impaired consciousness in patients with absence seizures investigated by functional MRI, EEG, and behavioural measures: a cross-sectional study. Lancet Neurol. 2016;15:1336–45.
63.Bai, X, Vestal, M, Berman, R, et al. Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J Neurosci. 2010;30(17):5884–93.
64.Vega, C, Vestal, M, DeSalvo, M, et al. Differentiation of attention-related problems in childhood absence epilepsy. Epilepsy Behav. 2010;19(1):82–5.
65.Vega, C, Guo, J, Killory, B, et al. Symptoms of anxiety and depression in childhood absence epilepsy. Epilepsia. 2011;52(8):e704.
66.Bai X, , Guo J, , Killory B, , et al. Resting functional connectivity between the hemispheres in childhood absence epilepsy. Neurology. 2011;76(23):1960–7.
67.Killory, BD, Bai, X, Negishi, M, et al. Impaired attention and network connectivity in childhood absence epilepsy. NeuroImage. 2011;56:2209–17.
68.Blumenfeld, H, Klein, JP, Schridde, U, et al. Early treatment suppresses the development of spike-wave epilepsy in a rat. Epilepsia. 2008;49(3):400–9.
69.Mishra, AM, Bai, X, Motelow, JE, et al. Increased resting functional connectivity in spike-wave epilepsy in WAG/Rij rats. Epilepsia. 2013;54(7):1214–22.
70.Klein, JP, Khera, DS, Nersesyan, H, Kimchi, EY, Waxman, SG, Blumenfeld, H. Dysregulation of sodium channel expression in cortical neurons in a rodent model of absence epilepsy. Brain Res. 2004;1000(1–2):102–9.
71.Blumenfeld H, , Lampert A, , Klein, JP, et al. Role of hippocampal sodium channel Nav1.6 in kindling epileptogenesis. Epilepsia. 2009;50(1):4455.
72.Dezsi, G, Ozturk, E, Stanic, D, et al. Ethosuximide reduces epileptogenesis and behavioral comorbidity in the GAERS model of genetic generalized epilepsy. Epilepsia. 2013;54(4):635–43.
73.Berg, AT, Levy, SR, Testa, FM, Blumenfeld, H. Long-term seizure remission in childhood absence epilepsy: might initial treatment matter? Epilepsia. 2014;55(4):551–7.
74.Yasuda, CL, Betting, LE, Cendes, F. Voxel-based morphometry and epilepsy. Expert Rev Neurother. 2010;10(6):975–84.
75.Bruggemann, JM, Wilke, M, Som, SS, Bye, AME, Bleasel, A, Lawson, JA. Voxel-based morphometry in the detection of dysplasia and neoplasia in childhood epilepsy: Limitations of grey matter analysis. J Clin Neurosci. 2009;16(6):780–5.
76.Henley, S, Ridgway, GR, Scahill, RI, Kassubek, J. Pitfalls in the use of voxel-based morphometry as a biomarker: examples from Huntington. Am J Neuroradiol. 2010;31:711–9.
77.Nersesyan, H, Hyder, F, Rothman, DL, Blumenfeld, H. Dynamic fMRI and EEG recordings during spike-wave seizures and generalized tonic-clonic seizures in WAG/Rij Rats. J Cereb Blood Flow Metab. 2004;24:589–99.
78.Mishra, AM, Ellens, DJ, Schridde, U, et al. Where fMRI and electrophysiology agree to disagree: corticothalamic and striatal activity patterns in the WAG/Rij rat. J Neurosci. 2011;31(42):15053–64.
79.Meeren, HKM, Pijn, JPM, Van Luijtelaar, ELJM, Coenen, AML, Lopes da Silva, FH. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci. 2002;22(4):1480–95.
80.Nersesyan, H, Herman, P, Erdogan, E, Hyder, F, Blumenfeld, H. Relative changes in cerebral blood flow and neuronal activity in local microdomains during generalized seizures. J Cereb Blood Flow Metab. 2004;1057–68.
81.Tenney, J, Duong, T, King, J. Corticothalamic modulation during absence seizures in rats: a functional MRI assessment. Epilepsia. 2003;44(9):1133–40.
82.Schridde, U, Khubchandani, M, Motelow, JE, Sanganahalli, BG, Hyder, F, Blumenfeld, H. Negative BOLD with large increases in neuronal activity. Cereb Cortex. 2008;18(8):1814–27.
83.DeSalvo, MN, Schridde, U, Mishra, AM, et al. Focal BOLD fMRI changes in bicuculline-induced tonic-clonic seizures in the rat. NeuroImage. 2010;50(3):902–9.
84.Gotman, J, Grova, C, Bagshaw, A, Kobayashi, E, Aghakhani, Y, Dubeau, F. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci USA. 2005;102(42):15236–40.
85.Hamandi, K, Laufs, H, Nöth, U, Carmichael, DW, Duncan, JS, Lemieux, L. BOLD and perfusion changes during epileptic generalised spike wave activity. NeuroImage. 2008;39(2):608–18.
86.Labate, A, Briellmann, RS, Abbott, DF, Waites, AB, Jackson, GD. Typical childhood absence seizures are associated with thalamic activation. Epileptic Disord. 2005;7(4):373–7.
87.Biswal, B, Yetkin, FZ, Haughton, VM, Hyde, JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.
88.Waites, AB, Briellmann, RS, Saling, MM, Abbott, DF, Jackson, GD. Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol. 2006;59:335–43.
89.Muroi, J, Okuno, T, Kuno, C, et al. An MRI study of the myelination pattern in West syndrome. Brain Dev. 1996;18:179–84.
90.Schropp, C, Staudt, M, Staudt, F, et al. Delayed myelination in children with West syndrome: an MRI-study. Neuropediatrics. 1994;25:116–20.
91.Boska, MD, Hasan, KM, Kibuule, D, et al. Quantitative diffusion tensor imaging detects dopaminergic neuronal degeneration in a murine model of Parkinson’s disease. Neurobiol Dis. 2007;26(3):590–6.
92.Obenaus, A, Jacobs, RE. Magnetic resonance imaging of functional anatomy: use for small animal epilepsy models. Epilepsia. 2007;48(2002):11–7.
93.Song, S-K, Kim, JH, Lin, S-J, Brendza, RP, Holtzman, DM. Diffusion tensor imaging detects age-dependent white matter changes in a transgenic mouse model with amyloid deposition. Neurobiol Dis. 2004;15(3):640–7.
94.Gulani, V, Webb, AG, Duncan, ID, Lauterbur, PC. Apparent diffusion tensor measurements in myelin-deficient rat spinal cords. Magn Reson Med. 2001;45(2):191–5.
95.Harsan, LA, Poulet, P, Guignard, B, et al. Brain dysmyelination and recovery assessment by noninvasive in vivo diffusion tensor magnetic resonance imaging. J Neurosci Res. 2006;83(3):392402.
96.Concha, L, Livy, D, Gross, D, Wheatley, B, Beaulieu, C. Direct correlation between diffusion tensor imaging and electron microscopy of the fornix in humans with temporal lobe epilepsy. Proc 16th Sci Meet Int Soc Magn Reson Med. 2008;566.
97.Hui, ES, Fu, QL, So, KF, Wu, EX. Diffusion tensor MR study of optic nerve degeneration in glaucoma. Proc Annu Int Conf IEEE Eng Med Biol. 2007;4312–5.