Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T19:41:37.522Z Has data issue: false hasContentIssue false

4 - On Specifying Graphical Models for Causation and the Identification Problem

Published online by Cambridge University Press:  24 February 2010

Donald W. K. Andrews
Affiliation:
Yale University, Connecticut
James H. Stock
Affiliation:
Harvard University, Massachusetts
Get access

Summary

ABSTRACT

This paper (which is mainly expository) sets up graphical models for causation, having a bit less than the usual complement of hypothetical counterfactuals. Assuming the invariance of error distributions may be essential for causal inference, but the errors themselves need not be invariant. Graphs can be interpreted using conditional distributions, so that we can better address connections between the mathematical framework and causality in the world. The identification problem is posed in terms of conditionals. As will be seen, causal relationships cannot be inferred from a data set by running regressions unless there is substantial prior knowledge about the mechanisms that generated the data. The idea can be made more precise in several ways. There are few successful applications of graphical models, mainly because few causal pathways can be excluded on a priori grounds. The invariance conditions themselves remain to be assessed.

INTRODUCTION

In this paper, I review the logical basis for inferring causation from regression equations, proceeding by example. The starting point is a simple regression; next is a path model, and then simultaneous equations (for supply and demand). After that come nonlinear graphical models. The key to making a causal inference from nonexperimental data by regression is some kind of invariance, exogeneity being a subsidiary problem. Parameters need to be invariant to interventions: this well-known condition will be stated here with a little more precision than is customary. Invariance is also needed for (i) errors or (ii) error distributions, a topic that has attracted less attention. Invariance for distributions is a weaker assumption than invariance for errors.

Type
Chapter
Information
Identification and Inference for Econometric Models
Essays in Honor of Thomas Rothenberg
, pp. 56 - 79
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×