Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-18T00:59:04.433Z Has data issue: false hasContentIssue false

20 - Rodent models of hemorrhagic stroke

Published online by Cambridge University Press:  04 November 2009

Fatima A. Sehba
Affiliation:
Department of Neurosurgery Mount Sinai School of Medicine 1 Gustave L. Levy Place Box 1136 New York, NY 10029 USA
Joshua B. Bederson
Affiliation:
Department of Neurosurgery Mount Sinai School of Medicine 1 Gustave L. Levy Place Box 1136 New York, NY 10029 USA
Turgut Tatlisumak
Affiliation:
Helsinki University Central Hospital
Marc Fisher
Affiliation:
University of Massachusetts Medical School
Get access

Summary

Introduction

Under normal physiological conditions, neurons do not come in direct contact with blood. The blood–brain barrier, consisting of astrocyte end feet, extracellular matrix, and endothelial cells, forms an elaborate meshwork that surrounds blood vessels and regulates the selective passage of blood elements and nutrients to the neurons. When an artery in the brain ruptures, blood envelopes cells in the surrounding tissue, upsets the blood supply provided by the injured vessel and disturbs the delicate chemical equilibrium essential for neurons to function. This is called hemorrhagic stroke and accounts for approximately 20% of all strokes.

Hemorrhagic stroke has been less investigated than ischemic stroke although it represents a significant clinical problem. Direct tissue destruction, tissue compression around the hematoma, and an inflammatory response lead to neuronal injury and neurological deficits after hemorrhagic strokes. The size of the hematoma has a direct relationship with the clinical outcome. The hematoma causes mass effect and compresses the surrounding tissue, contributing to the neuronal death at the margin of the hematoma and in the penumbral region around the hematoma. Decreasing the space-occupying effect by aspiration of the hematoma and decreasing inflammation ameliorate the neurological deficits after hemorrhagic stroke.

A number of experimental cerebral hemorrhagic models have been developed to study the mechanisms underlying cerebral bleeding and resulting pathophysiology. The knowledge gained has helped in identifying many factors that contribute to rupture of an artery or an aneurysm.

Type
Chapter
Information
Handbook of Experimental Neurology
Methods and Techniques in Animal Research
, pp. 345 - 365
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altumbabic, M, Peeling, J, Del Bigio, MR. Intracerebral hemorrhage in the rat: effects of hematoma aspiration. Stroke 1998, 29: 1917–1922; discussion 1922–1923.CrossRefGoogle ScholarPubMed
Del Bigio, MR, Yan, HJ, Buist, R, Peeling, J. Experimental intracerebral hemorrhage in rats: magnetic resonance imaging and histopathological correlates. Stroke 1996, 27: 2312–2319; discussion 2319–2320.CrossRefGoogle ScholarPubMed
Del Bigio, MR, Yan, HJ, Campbell, TM, Peeling, J. Effect of fucoidan treatment on collagenase-induced intracerebral hemorrhage in rats. Neurol Res. 1999, 21: 415–419.CrossRefGoogle ScholarPubMed
Mendelow, AD. Mechanisms of ischemic brain damage with intracerebral hemorrhage. Stroke 1993, 24: 1115–1117; discussion 1118–1119.Google ScholarPubMed
Rosenberg, GA, Mun-Bryce, S, Wesley, M, Kornfeld, M. Collagenase-induced intracerebral hemorrhage in rats. Stroke 1990, 21: 801–807.CrossRefGoogle ScholarPubMed
Sinar, EJ, Mendelow, AD, Graham, DI, Teasdale, GM. Experimental intracerebral hemorrhage: effects of a temporary mass lesion. J. Neurosurg. 1987, 66: 568–576.CrossRefGoogle ScholarPubMed
Bederson, JB, Germano, IM, Guarino, L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke 1995, 26: 1086–1091.CrossRefGoogle Scholar
Veelken, JA, Laing, RJ, Jakubowski, J. The Sheffield model of subarachnoid hemorrhage in rats. Stroke 1995, 26: 1279–1283; discussion 1284.CrossRefGoogle ScholarPubMed
Wang, YC, Lin, CW, Shen, CC, Lai, SC, Kuo, JS. Tissue plasminogen activator for the treatment of intraventricular hematoma: the dose–effect relationship. J. Neurol. Sci. 2002, 202: 35–41.CrossRefGoogle ScholarPubMed
Cherian, SS, Love, S, Silver, IA, et al. Posthemorrhagic ventricular dilation in the neonate: development and characterization of a rat model. J. Neuropathol. Exp. Neurol. 2003, 62: 292–303.CrossRefGoogle ScholarPubMed
Aikawa, H, Suzuki, K. Experimental chronic subdural hematoma in mice: gross morphology and light microscopic observations. J. Neurosurg. 1987, 67: 710–716.CrossRefGoogle ScholarPubMed
Andaluz, N, Zuccarello, M, Wagner, KR. Experimental animal models of intracerebral hemorrhage. Neurosurg. Clin. N. Am. 2002, 13: 385–393.CrossRefGoogle ScholarPubMed
Clark, W, Gunion-Rinker, L, Lessov, N, Hazel, K. Citicoline treatment for experimental intracerebral hemorrhage in mice. Stroke 1998, 29: 2136–2140.CrossRefGoogle ScholarPubMed
Kobari, M, Gotoh, F, Tomita, M, et al. Bilateral hemispheric reduction of cerebral blood volume and blood flow immediately after experimental cerebral hemorrhage in cats. Stroke 1988, 19: 991–996.CrossRefGoogle ScholarPubMed
Coulter, DM, Gooch, WM. Falling intracranial pressure: an important element in the genesis of intracranial hemorrhage in the beagle puppy. Biol. Neonate 1993, 63: 316–326.CrossRefGoogle ScholarPubMed
Kaufman, HH, Pruessner, JL, Bernstein, DP, et al. A rabbit model of intracerebral hematoma. Acta Neuropathol. (Berlin) 1985, 65: 318–321.CrossRefGoogle ScholarPubMed
Del Zoppo, GJ, Copeland, BR, Waltz, TA, et al. The beneficial effect of intracarotid urokinase on acute stroke in a baboon model. Stroke 1986, 17: 638–643.CrossRefGoogle Scholar
Mun-Bryce, S, Wilkerson, AC, Papuashvili, N, Okada, YC. Recurring episodes of spreading depression are spontaneously elicited by an intracerebral hemorrhage in the swine. Brain Res. 2001, 888: 248–255.CrossRefGoogle ScholarPubMed
Bullock, R, Brock-Utne, J, Dellen, J, Blake, G. Intracerebral hemorrhage in a primate model: effect on regional cerebral blood flow. Surg. Neurol. 1988, 29: 101–107.CrossRefGoogle Scholar
Masuda, T, Dohrmann, GJ, Kwaan, HC, Erickson, RK, Wollman, RL. Fibrinolytic activity in experimental intracerebral hematoma. J. Neurosurg. 1988, 68: 274–278.CrossRefGoogle ScholarPubMed
Cossu, M, Dorcaratto, A, Pau, A, et al. Changes in infratentorial blood flow following experimental cerebellar haemorrhage: a preliminary report. Ital. J. Neurol. Sci. 1991, 12: 69–73.Google ScholarPubMed
Kleiser, B, Reempts, J, Deuren, B, et al. Favourable effect of flunarizine on the recovery from hemiparesis in rats with intracerebral hematomas. Neurosci. Lett. 1989, 103: 225–228.CrossRefGoogle ScholarPubMed
Deinsberger, W, Vogel, J, Kuschinsky, W, Auer, LM, Boker, DK. Experimental intracerebral hemorrhage: description of a double injection model in rats. Neurol. Res. 1996, 18: 475–477.CrossRefGoogle ScholarPubMed
Nath, FP, Jenkins, A, Mendelow, AD, Graham, DI, Teasdale, GM. Early hemodynamic changes in experimental intracerebral hemorrhage. J. Neurosurg. 1986, 65: 697–703.CrossRefGoogle ScholarPubMed
Kingman, TA, Mendelow, AD, Graham, DI, Teasdale, GM. Experimental intracerebral mass: description of model, intracranial pressure changes and neuropathology. J. Neuropathol. Exp. Neurol. 1988, 47: 128–137.CrossRefGoogle ScholarPubMed
Hickenbottom, SL, Grotta, JC, Strong, R, Denner, , Aronowski, J. Nuclear factor-kappa B and cell death after experimental intracerebral hemorrhage in rats. Stroke 1999, 30: 2472–2477; discussion 2477–2478.CrossRefGoogle ScholarPubMed
Belayev, L, Saul, I, Curbelo, K, et al. Experimental intracerebral hemorrhage in the mouse: histological, behavioral, and hemodynamic characterization of a double-injection model. Stroke 2003, 34: 2221–2227.CrossRefGoogle ScholarPubMed
Thiex, R, Kuker, W, Muller, HD, et al. The long-term effect of recombinant tissue-plasminogen-activator (rt-PA) on edema formation in a large-animal model of intracerebral hemorrhage. Neurol. Res. 2003, 25: 254–262.CrossRefGoogle Scholar
Ropper, AH, Zervas, NT. Cerebral blood flow after experimental basal ganglia hemorrhage. Ann. Neurol. 1982, 11: 266–271.CrossRefGoogle ScholarPubMed
Yang, GY, Betz, AL, Chenevert, TL, Brunberg, JA, Hoff, JT. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood–brain barrier permeability in rats. J. Neurosurg. 1994, 81: 93–102.CrossRefGoogle ScholarPubMed
Hua, Y, Keep, RF, Schallert, T, Hoff, JT, Xi, G. A thrombin inhibitor reduces brain edema, glioma mass and neurological deficits in a rat glioma model. Acta Neurochir. (Suppl.) 2003, 86: 503–506.Google Scholar
Kitaoka, T, Hua, Y, Xi, G, et al. Effect of delayed argatroban treatment on intracerebral hemorrhage-induced edema in the rat. Acta Neurochir. (Suppl.) 2003, 86: 457–461.Google ScholarPubMed
Gong, C, Hoff, JT, Keep, RF. Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res. 2000, 871: 57–65.CrossRefGoogle ScholarPubMed
Xue, M, Del Bigio, MR. Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death. Neurosci. Lett. 2000, 283: 230–232.CrossRefGoogle ScholarPubMed
Gong, C, Boulis, N, Qian, J, et al. Intracerebral hemorrhage-induced neuronal death. Neurosurgery 2001, 48: 875–882; discussion 882–883.Google ScholarPubMed
Terai, K, Suzuki, M, Sasamata, M, Miyata, K. Amount of bleeding and hematoma size in the collagenase-induced intracerebral hemorrhage rat model. Neurochem. Res. 2003, 28: 779–785.CrossRefGoogle ScholarPubMed
Peeling, J, Yan, HJ, Chen, SG, Campbell, M, Del Bigio, MR. Protective effects of free radical inhibitors in intracerebral hemorrhage in rat. Brain Res. 1998, 795: 63–70.CrossRefGoogle ScholarPubMed
Matsushita, K, Meng, W, Wang, X, et al. Evidence for apoptosis after intercerebral hemorrhage in rat striatum. J. Cereb. Blood Flow Metab. 2000, 20: 396–404.CrossRefGoogle ScholarPubMed
Valdes, Lopez E, Lain, Hernandez A, Calandre, L, et al. Time window for clinical effectiveness of mass evacuation in a rat balloon model mimicking an intraparenchymatous hematoma. J. Neurol. Sci. 2000, 174: 40–46.CrossRefGoogle Scholar
Ichimi, K, Kuchiwaki, H, Inao, S, Shibayama, M, Yoshida, J. Responses of cerebral blood flow regulation to activation of the primary somatosensory cortex during electrical stimulation of the forearm. Acta Neurochir. (Suppl.) 1997, 70: 291–292.Google ScholarPubMed
Nakashima, K, Yamashita, K, Uesugi, S, Ito, H. Temporal and spatial profile of apoptotic cell death in transient intracerebral mass lesion of the rat. J. Neurotrauma 1999, 16: 143–151.CrossRefGoogle ScholarPubMed
Kawakami, N, Kashiwagi, S, Kitahara, T, Yamashita, T, Ito, H. Effect of local administration of basic fibroblast growth factor against neuronal damage caused by transient intracerebral mass lesion in rats. Brain Res. 1995, 697: 104–111.CrossRefGoogle ScholarPubMed
Whitelaw, A. Intraventricular haemorrhage and posthaemorrhagic hydrocephalus: pathogenesis, prevention and future interventions. Semin. Neonatol. 2001, 6: 135–146.CrossRefGoogle ScholarPubMed
Engelhard, HH, Andrews, CO, Slavin, KV, Charbel, FT. Current management of intraventricular hemorrhage. Surg. Neurol. 2003, 60: 15–21; discussion 21–22.CrossRefGoogle ScholarPubMed
Heide-Jalving, M, Kamphuis, PJ, Laan, MJ, et al. Short- and long-term effects of neonatal glucocorticoid therapy: is hydrocortisone an alternative to dexamethasone? Acta Paediatr. 2003, 92: 827–835.CrossRefGoogle Scholar
Pleacher, MD, Vohr, BR, Katz, KH, Ment, LR, Allan, WC. An evidence-based approach to predicting low IQ in very preterm infants from the neurological examination: outcome data from the indomethacin Indomethacin Intraventricular Hemorrhage Prevention Trial. Pediatrics 2004, 113: 416–419.CrossRefGoogle ScholarPubMed
Naff, NJ, Williams, MA, Rigamonti, D, Keyl, PM, Hanley, DF. Blood clot resolution in human cerebrospinal fluid: evidence of first-order kinetics. Neurosurgery 2001, 49: 614–619; discussion 619–621.Google ScholarPubMed
Yapicioglu, H, Narli, N, Satar, M, Soyupak, S, Altunbasak, S. Intraventricular streptokinase for the treatment of posthaemorrhagic hydrocephalus of preterm. J. Clin. Neurosci. 2003, 10: 297–299.CrossRefGoogle ScholarPubMed
Goddard, J, Lewis, RM, Armstrong, DL, Zeller, RS. Moderate, rapidly induced hypertension as a cause of intraventricular hemorrhage in the newborn beagle model. J. Pediatr. 1980, 96: 1057–1060.CrossRefGoogle ScholarPubMed
Goddard, J, Lewis, RM, Alcala, H, Zeller, RS. Intraventricular hemorrhage: an animal model. Biol. Neonate 1980, 37: 39–52.CrossRefGoogle Scholar
Conner, ES, Lorenzo, AV, Welch, K, Dorval, B. The role of intracranial hypotension in neonatal intraventricular hemorrhage. J. Neurosurg. 1982, 58: 204–209.CrossRefGoogle Scholar
Goddard, J, Lewis, RM, Armstrong, DL, Zeller, RS. Intraventricular and subependymal cell plate hemorrhages following hypovolemic hypotension and volume expansion in the newborn beagle: relationship to hemodynamic changes. Ann Neurol. (Abstract) 1980, 8: 224.Google Scholar
Ment, LR, Stewart, WB, Duncan, CC, Lambrecht, R. Beagle puppy model of intraventricular hemorrhage. J. Neurosurg. 1982, 57: 219–223.CrossRefGoogle ScholarPubMed
Pasternak, JF, Groothuis, DR, Fischer, JM, Fischer, DP. Regional cerebral blood flow in the beagle puppy model of neonatal intraventricular hemorrhage: studies during systemic hypertension. Neurology 1983, 33: 559–566.CrossRefGoogle ScholarPubMed
Goddard, J, Armstrong, DL, Michael, L. Regional cerebral blood flow in the beagle model of intraventricular hemorrhage during volume expansion following acute hemorrhagic hypotension. Ann Neurol. (Abstract) 1981, 10: 305.Google Scholar
Lorenzo, AV, Welch, K, Conner, S. Spontaneous germinal matrix and intraventricular hemorrhage in prematurely born rabbits. J. Neurosurg. 1982, 56: 404–410.CrossRefGoogle ScholarPubMed
Ment, LR, Stewart, WB, Duncan, CC, et al. Beagle puppy model of perinatal cerebral infarction: acute changes in cerebral blood flow and metabolism during hemorrhagic hypotension. J. Neurosurg. 1985, 63: 441–447.CrossRefGoogle ScholarPubMed
Ment, LR, Stewart, WB, Duncan, CC. Beagle puppy model of intraventricular hemorrhage: effect of superoxide dismutase on cerebral blood flow and prostaglandins. J. Neurosurg. 1985, 62: 563–569.CrossRefGoogle ScholarPubMed
Ment, LR, Stewart, WB, Duncan, CC. Beagle puppy model of intraventricular hemorrhage: ethamsylate studies. Prostaglandins 1984, 27: 245–256.CrossRefGoogle ScholarPubMed
Roux, PD, Winn, HR. Management of the ruptured aneurysm. Neurosurg. Clin. N. Am. 1998, 9: 525–540.Google ScholarPubMed
Broderick, JP, Brott, TG, Duldner, JE, Tomsick, T, Leach, A. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke 1994, 25: 1342–1347.CrossRefGoogle ScholarPubMed
Fisher, CM. Clinical syndromes in cerebral thrombosis, hypertensive hemorrhage, and ruptured saccular aneurysm. Clin. Neurosurg. 1975, 22: 117–147.CrossRefGoogle ScholarPubMed
Nornes, H. The role of intracranial pressure in the arrest of hemorrhage in patients with ruptured intracranial aneurysm. J. Neurosurg. 1973, 39: 226–234.CrossRefGoogle ScholarPubMed
Clower BR, Yoshioka J, Honma T, Smith R. Blood platelets and early intimal changes in cerebral arteries following experimental subarachnoid hemorrhage. In Wilkins, RL (ed.) Cerebral Vasospasm. New York: Ravens Press, 1988, pp. 335–341.Google Scholar
Furuichi, S, Endo, S, Haji, A, et al. Related changes in sympathetic activity, cerebral blood flow and intracranial pressure, and effect of an alpha-blocker in experimental subarachnoid haemorrhage. Acta Neurochir. 1999, 141: 415–423.CrossRefGoogle ScholarPubMed
Sehba, FA, Ding, WH, Chereshnev, I, Bederson, JB. Effects of S-nitrosoglutathione on acute vasoconstriction and glutamate release after subarachnoid hemorrhage. Stroke 1999, 30: 1955–1961.CrossRefGoogle ScholarPubMed
Sehba, FA, Schwartz, AY, Chereshnev, I, Bederson, JB. Acute decrease in cerebral nitric oxide levels after subarachnoid hemorrhage. J Cereb. Blood Flow Metab. 2000, 20: 604–611.CrossRefGoogle ScholarPubMed
Schwartz, AY, Sehba, FA, Bederson, JB. Decreased nitric oxide availability contributes to acute cerebral ischemia after subarachnoid hemorrhage. Neurosurgery 2000, 47: 208–214; discussion 214–215.Google ScholarPubMed
Hall, ED, Travis, MA. Effects of the nonglucocorticoid 21-aminosteroid U74006 F on acute cerebral hypoperfusion following experimental subarachnoid hemorrhage. Exp. Neurol. 1988, 102: 244–248.CrossRefGoogle Scholar
Sehba, FA, Bederson, JB. Mechanisms of injury after acute subarachnoid hemorrhage (SAH). Proceedings of the 17th Spasm Symposium, Osaka 2001, 17: 4–23.Google Scholar
Echlin, FA. Spasm of basilar and vertebral arteries caused by experimental subarachnoid hemorrhage. J. Neurosurg. 1965, 23: 1–11.CrossRefGoogle ScholarPubMed
Dorsch, N, Branston, NM, Symon, L, Jakubowski, J. Intracranial pressure changes following primate subarachnoid haemorrhage. Neurol. Res. 1989, 11: 201–204.CrossRefGoogle ScholarPubMed
Mayberg, MR, Okada, T, Bark, DH. The significance of morphological changes in cerebral arteries after subarachnoid hemorrhage. J. Neurosurg. 1990, 72: 626–633.CrossRefGoogle ScholarPubMed
Johshita, H, Kassell, NF, Sasaki, T. Blood–brain barrier disturbance following subarachnoid hemorrhage in rabbits. Stroke 1990, 21: 1051–1058.CrossRefGoogle ScholarPubMed
Lougheed, WM, Tom, M. A method of introducing blood into the subarachnoid space in the region of the circle of Willis in dogs. J. Neurosurgery 1961, 4: 329–337.Google ScholarPubMed
Kapp, J, Mahaley, MS, Odom, GL. Cerebral arterial spasm. I. Evaluation of experimental variables affecting the diameter of the exposed basilar artery. J. Neurosurg. 1968, 29: 331–338.CrossRefGoogle Scholar
Barry, KJ, Gogjian, MA, Stein, BM. Small animal model for investigation of subarachnoid hemorrhage and cerebral vasospasm. Stroke 1979, 10: 538–541.CrossRefGoogle ScholarPubMed
Matz, PG, Copin, JC, Chan, PH. Cell death after exposure to subarachnoid hemolysate correlates inversely with expression of CuZn-superoxide dismutase. Stroke 2000, 31: 2450–2459.CrossRefGoogle ScholarPubMed
Schwartz, AY, Masago, A, Sehba, FA, Bederson, JB. Experimental models of subarachnoid hemorrhage in the rat: a refinement of the endovascular filament model. J. Neurosci. Methods 2000, 96: 161–167.CrossRefGoogle ScholarPubMed
Kader, A, Krauss, WE, Onesti, ST, Elliott, JP, Solomon, RA. Chronic cerebral blood flow changes following experimental subarachnoid hemorrhage in rats. Stroke 1990, 21: 577–581.CrossRefGoogle ScholarPubMed
Parra, A, McGirt, MJ, Sheng, H, et al. Mouse model of subarachnoid hemorrhage associated cerebral vasospasm: methodological analysis. Neurol. Res. 2002, 24: 510–516.CrossRefGoogle ScholarPubMed
Kamii, H, Kato, I, Kinouchi, H, et al. Amelioration of vasospasm after subarachnoid hemorrhage in transgenic mice overexpressing CuZn-superoxide dismutase. Stroke 1999, 30: 867–871; discussion 872.CrossRefGoogle ScholarPubMed
Nornes, H, Magnaes, B. Intracranial pressure in patients with ruptured saccular aneurysm. J. Neurosurg. 1972, 36: 537–547.CrossRefGoogle ScholarPubMed
Megyesi, JF, Vollrath, B, Cook, DA, Findlay, JM. In vivo animal models of cerebral vasospasm: a review. Neurosurgery 2000, 46: 448–460; discussion 460–461.CrossRefGoogle ScholarPubMed
Bederson, JB, Levy, AL, Ding, WH, et al. Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery 1998, 42: 352–360.CrossRefGoogle ScholarPubMed
Kamiya, K, Kuyama, H, Symon, L. An experimental study of the acute stage of subarachnoid hemorrhage. J. Neurosurg. 1983, 59: 917–924.CrossRefGoogle ScholarPubMed
Rasmussen, G, Hauerberg, J, Waldemar, G, Gjerris, F, Juhler, M. Cerebral blood flow autoregulation in experimental subarachnoid haemorrhage in rat. Acta Neurochir. 1992, 119: 128–133.CrossRefGoogle ScholarPubMed
Travis, MA, Hall, ED. The effects of chronic two-fold dietary vitamin E supplementation on subarachnoid hemorrhage-induced brain hypoperfusion. Brain Res. 1987, 418: 366–370.CrossRefGoogle ScholarPubMed
Matz, PG, Sundaresan, S, Sharp, FR, Weinstein, PR. Induction of HSP70 in rat brain following subarachnoid hemorrhage produced by endovascular perforation. J. Neurosurg. 1996, 85: 138–145.CrossRefGoogle ScholarPubMed
Sayama, T, Suzuki, S, Fukui, M. Role of inducible nitric oxide synthase in the cerebral vasospasm after subarachnoid hemorrhage in rats. Neurol. Res. 1999, 21: 293–298.CrossRefGoogle ScholarPubMed
Saito, A, Kamii, H, Kato, I, et al. Transgenic CuZn-superoxide dismutase inhibits NO synthase induction in experimental subarachnoid hemorrhage. Stroke 2001, 32: 1652–1657.CrossRefGoogle ScholarPubMed
Marshman, , Morice, AH, Thompson, JS. Increased efficacy of sodium nitroprusside in middle cerebral arteries following acute subarachnoid hemorrhage: indications for its use after rupture. J. Neurosurg Anesthesiol. 1998, 10: 171–177.CrossRefGoogle ScholarPubMed
Echlin, F. Experimental vasospasm, acute and chronic, due to blood in the subarachnoid space. J. Neurosurg. 1971, 35: 646–656.CrossRefGoogle ScholarPubMed
Peterson, JW, Roussos, L, Kwun, BD, et al. Evidence of the role of hemolysis in experimental cerebral vasospasm. J. Neurosurg. 1990, 72: 775–781.CrossRefGoogle ScholarPubMed
Meguro, T, Clower, BR, Carpenter, R, Parent, AD, Zhang, JH. Improved rat model for cerebral vasospasm studies. Neurol. Res. 2001, 23: 761–766.CrossRefGoogle ScholarPubMed
Gules, I, Satoh, M, Clower, BR, Nanda, A, Zhang, JH. Comparison of three rat models of cerebral vasospasm. Am. J. Physiol. Heart Circ. Physiol. 2002, 283: H2551–H2559.CrossRefGoogle ScholarPubMed
Hansen-Schwartz, J, Hoel, NL, Zhou, M, et al. Subarachnoid hemorrhage enhances endothelin receptor expression and function in rat cerebral arteries. Neurosurgery 2003, 52: 1188–1194; discussion 1194–1195.Google ScholarPubMed
Matz, PG, Fujimura, M, Lewen, A, Morita-Fujimura, Y, Chan, PH. Increased cytochrome c-mediated DNA fragmentation and cell death in manganese-superoxide dismutase-deficient mice after exposure to subarachnoid hemolysate. Stroke 2001, 32: 506–515.CrossRefGoogle ScholarPubMed
McGirt, MJ, Parra, A, Sheng, H, et al. Attenuation of cerebral vasospasm after subarachnoid hemorrhage in mice overexpressing extracellular superoxide dismutase. Stroke 2002, 33: 2317–2323.CrossRefGoogle ScholarPubMed
Ram, Z, Sahar, A, Hadani, M. Vasospasm due to massive subarachnoid haemorrhage: a rat model. Acta Neurochir. 1991, 110: 181–184.CrossRefGoogle ScholarPubMed
Solomon, RA, Antunes, JL, Chen, RY, Bland, L, Chien, S. Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: a new animal model. Stroke 1985, 16: 58–64.CrossRefGoogle ScholarPubMed
Tsuji, T, Cook, DA, Weir, BK, Handa, Y. Effect of clot removal on cerebrovascular contraction after subarachnoid hemorrhage in the monkey: pharmacological study. Heart Vessels 1996, 11: 69–79.CrossRefGoogle ScholarPubMed
Pickard, JD, Walker, V, Perry, S, et al. Arterial eicosanoid production following chronic exposure to a periarterial haematoma. J. Neurol. Neurosurg. Psychiatr. 1984, 47: 661–667.CrossRefGoogle ScholarPubMed
Megyesi, JF, Findlay, JM, Vollrath, B, Cook, DA, Chen, MH. In vivo angioplasty prevents the development of vasospasm in canine carotid arteries: pharmacological and morphological analyses. Stroke 1997, 28: 1216–1224.CrossRefGoogle ScholarPubMed
Prunell, GF, Mathiesen, T, Diemer, NH, Svendgaard, NA. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery 2003, 52: 165–175; discussion 175–176.Google ScholarPubMed
Gennarelli, TA, Thibault, . Biomechanics of acute subdural hematoma. J. Trauma 1982, 22: 680–686.CrossRefGoogle ScholarPubMed
Duhaime, AC, Gennarelli, LM, Yachnis, A. Acute subdural hematoma: is the blood itself toxic? J. Neurotrauma 1994, 11: 669–678.CrossRefGoogle ScholarPubMed
Miller, JD, Bullock, R, Graham, DI, Chen, MH, Teasdale, GM. Ischemic brain damage in a model of acute subdural hematoma. Neurosurgery 1990, 27: 433–439.CrossRefGoogle Scholar
Sasaki, M, Dunn, L. A model of acute subdural hematoma in the mouse. J. Neurotrauma 2001, 18: 1241–1246.CrossRefGoogle ScholarPubMed
Orlin, JR, Thuomas, KA, Ponten, U, Bergstrom, K, Zwetnow, NN. MR imaging of experimental subdural bleeding: correlates of brain deformation and tissue water content, and changes in vital physiological parameters. Acta Radiol. 1997, 38: 610–620.Google ScholarPubMed
Zwetnow, NN, Orlin, JR, Wu, WH, Tajsic, N. Studies on supratentorial subdural bleeding using a porcine model. Acta Neurochir. 1993, 121: 58–67.CrossRefGoogle ScholarPubMed
Mauler, F, Hinz, V, Augstein, KH, Fassbender, M, Horvath, E. Neuroprotective and brain edema-reducing efficacy of the novel cannabinoid receptor agonist BAY 38–7271. Brain Res. 2003, 989: 99–111.CrossRefGoogle ScholarPubMed
Jiang, ZW, Gong, QZ, Di, X, Zhu, J, Lyeth, BG. Dicyclomine, an M1 muscarinic antagonist, reduces infarct volume in a rat subdural hematoma model. Brain Res. 2000, 852: 37–44.CrossRefGoogle Scholar
Patel, TR, Fujisawa, M, Schielke, GP, et al. Effect of intracerebral and subdural hematomas on energy-dependent transport across the blood–brain barrier. J. Neurotrauma 1999, 16: 1049–1055.CrossRefGoogle ScholarPubMed
Fujisawa, H, Maxwell, WL, Graham, DI, Reasdale, GM, Bullock, R. Focal microvascular occlusion after acute subdural haematoma in the rat: a mechanism for ischaemic damage and brain swelling? Acta Neurochir. (Suppl.) 1994, 60: 193–196.Google ScholarPubMed
Bullock, R, Butcher, SP, Chen, MH, Kendall, L, McCulloch, J. Correlation of the extracellular glutamate concentration with extent of blood flow reduction after subdural hematoma in the rat. J. Neurosurg. 1991, 74: 794–802.CrossRefGoogle ScholarPubMed
Inglis, FM, Bullock, R, Chen, MH, et al. Ischaemic brain damage associated with tissue hypermetabolism in acute subdural haematoma: reduction by a glutamate antagonist. Acta Neurochir. (Suppl.) 1990, 51: 277–279.Google ScholarPubMed
Di, X, Bullock, R. Effect of the novel high-affinity glycine-site N-methyl-d-aspartate antagonist ACEA-1021 on 125I-MK-801 binding after subdural hematoma in the rat: an in vivo autoradiographic study. J. Neurosurg. 1996, 85: 655–661.CrossRefGoogle Scholar
Kuroda, Y, Fujisawa, H, Strebel, S, Graham, DI, Bullock, R. Effect of neuroprotective N-methyl-d-aspartate antagonists on increased intracranial pressure: studies in the rat acute subdural hematoma model. Neurosurgery 1994, 35: 106–112.CrossRefGoogle ScholarPubMed
Glover, D, Labadie, EL. Physiopathogenesis of subdural hematomas. II. Inhibition of growth of experimental hematomas with dexamethasone. J. Neurosurg. 1976, 45: 393–397.CrossRefGoogle Scholar
Apfelbaum, RI, Guthkelch, AN, Shulman, K. Experimental production of subdural hematomas. J. Neurosurg. 1974, 40: 336–346.CrossRefGoogle ScholarPubMed
Watanabe, S, Shimada, H, Ishii, S. Production of clinical form of chronic subdural hematoma in experimental animals. J. Neurosurg. 1972, 37: 552–561.CrossRefGoogle ScholarPubMed
Aikawa, H, Suzuki, K. Experimental chronic subdural hematoma: ultrasound studies on the neomembrane. Ann. Neurol. 1988, 24: 479–480.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×