Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T01:19:06.050Z Has data issue: false hasContentIssue false

Chapter 2 - The Role of Geophysics in Carbon Capture and Storage

from Part I - Introduction

Published online by Cambridge University Press:  19 April 2019

Thomas L. Davis
Affiliation:
Colorado School of Mines
Martin Landrø
Affiliation:
Norwegian University of Science and Technology, Trondheim
Malcolm Wilson
Affiliation:
New World Orange BioFuels
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aki, K., and Richards, P. G. (1980). Quantitative seismology: Theory and methods. San Francisco: W. H. Freeman. DOI:10.1017/S0016756800034439Google Scholar
Calvert, R. (2005). Insights and methods for 4D reservoir monitoring and characterization. Society of Exploration Geophysicists. www.amazon.com/Insights-Methods-4D-Reservoir-Charterization/dp/1560801360CrossRefGoogle Scholar
Carbon Storage Taskforce. (2009). National carbon mapping and infrastructure plan. Department of Resources, Energy and Tourism (DRET), Australia.Google Scholar
Caspari, E., Müller, T. M., and Gurevich, B. (2011). Time-lapse sonic logsreveal patchy CO2 saturationin-situ. Geophysics Research Letters, 38: L13301. DOI:10.1029/2011GL046959.Google Scholar
Claerbout, J. (1968). Synthesis of a layered medium from its acoustic transmission response. Geophysics, 33(2): 264269. https://doi.org/10.1190/1.1439927CrossRefGoogle Scholar
Cole, S., Lumley, D., Meadows, M., and Tura, A. (2002). Pressure and saturation inversion of 4D seismic data by rock physics forward modeling. Technical Program Expanded Abstracts. Society of Exploration Geophysicists, 24752478. DOI:10.1190/1.1817221.Google Scholar
Daley, T. M., Myer, L. R., Peterson, J. E., Majer, E. L., and Hoversten, G. M. (2008). Time-lapse crosswell seismic and VSP monitoring of injected CO2 in a brine aquifer. Environmental Geology, 54(8): 16571665. DOI:10.1007/s00254-007–0943-z.CrossRefGoogle Scholar
Davis, T., Terrell, M. J., Benson, R. D., Cardona, R., Kendall, R. R., and Winarsky, R. (2003). Multicomponent seismic characterization and monitoring of the CO2 flood at Weyburn Field, Saskatchewan. Leading Edge, 22(7): 696697. DOI:10.1190/1.1599699.CrossRefGoogle Scholar
Dvorkin, J., and Nur, A. (1996). Elasticity of high-porosity sandstones: Theory for two North Sea data sets. Geophysics, 61: 13631370. DOI:10.1190/1.1444059.CrossRefGoogle Scholar
Emberley, S., Hutcheon, I., Shevalier, M., Durocher, K., Gunter, W. D., and Perkins, E. H. (2004). Geochemical monitoring of fluid-rock interaction and CO2 storage at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan, Canada. Energy. https://ideas.repec.org/a/eee/energy/v29y2004i9p1393-1401.htmlCrossRefGoogle Scholar
Gernert, J., and Span, R. (2016). EOS–CG: A Helmholtz energy mixture model for humid gases and CCS mixtures. Journal of Chemical Thermodynamics, 93: 274293. https://doi.org/10.1016/j.jct.2015.05.015CrossRefGoogle Scholar
Glubokovskikh, S., Pevzner, R., Dance, T., et al. (2016). Seismic monitoring of CO2 geosequestration: CO2CRC Otway case study using full 4D FDTD approach. International Journal of Greenhouse Gas Control, 49: 201–216. https://doi.org/10.1016/j.ijggc.2016.02.02CrossRefGoogle Scholar
Guilbot, J., and Smith, B. (2002). 4D constrained depth conversion for reservoir compaction estimation: Application to Ekofisk Field. Leading Edge, 21(3): 302308. http://dx.doi.org/10.1190/1.1463782CrossRefGoogle Scholar
Hatchell, P., and Bourne, S. (2005). Rocks under strain: Strain-induced time-lapse time shifts are observed for depleting reservoirs. Leading Edge, 24(12): 12221225. http://library.seg.org/doi/abs/10.1190/1.2149624CrossRefGoogle Scholar
Issa, N., and Lumley, D. (2015). Passive seismic imaging at depth using ambient noise fields recorded in a shallow buried sensor array. Australian Society of Exploration Geophysicists. library.seg.org/doi/pdf/10.1071/ASEG2015ab135CrossRefGoogle Scholar
Issa, N., Lumley, D., and Pevzner, R. (2017). Passive seismic imaging at reservoir depths using ambient seismic noise recorded at the Otway CO2 geological storage research facility. Geophysical Journal International, 209(3): 16221628. https://doi.org/10.1093/gji/ggx109CrossRefGoogle Scholar
Johnston, D. H. (2013). Practical applications of time-lapse seismic data. Society of Exploration Geophysicists. http://dx.doi.org/10.1190/1.9781560803126CrossRefGoogle Scholar
Kamei, R., and Lumley, D. (2017). Full waveform inversion of repeating seismic events to estimate time-lapse velocity changes. Geophysical Journal International, 209(2): 12391264.Google Scholar
Kamei, R., Jang, U., Lumley, D., et al. (2017). Time-lapse full waveform inversion for monitoring near-surface microbubble injection. Expanded Abstracts, European Association of Engineering Geosciece (EAGE), Paris, France. DOI:10.3997/2214–4609.201700956.CrossRefGoogle Scholar
Kragh, E., and Christie, P. (2002). Seismic repeatability, normalized RMS, and predictability. Leading Edge, 21(7): 640647. DOI:10.1190/1.1497316.CrossRefGoogle Scholar
Landrø, M. (1999). Discrimination between pressure and fluid saturation changes from time-lapse seismic data. In Expanded Abstracts, 69th Annual International Meeting. Society of Exploration Geophysicists, 1651–1654.CrossRefGoogle Scholar
Landrø, M. (2001). Discrimination between pressure and fluid saturation changes from time-lapse seismic data. Geophysics, 66(3): 836–844. http://dx.doi.org/10.1190/1.1444973CrossRefGoogle Scholar
Lebedev, M. (2012). Geophysics laboratory: Otway rock physics tests. In B. Evans, R. Rezaee, V. Rasouli, et al., Milestone Report for ANLEC Project #3–1110-0122. http://anlecrd.com.au/projects/predicting-co-sub-2-sub-injectivity-properties-for-application-at-ccs-sites/Google Scholar
Lumley, D. (1995a). Seismic time-lapse monitoring of subsurface fluid flow. PhD thesis, Stanford University.Google Scholar
Lumley, D. E. (1995b). Seismic monitoring of hydrocarbon fluid flow. Journal of Mathematical Imaging and Vision, 5(4): 287296. DOI:10.1007/BF01250285.CrossRefGoogle Scholar
Lumley, D. E. (2001). Time-lapse seismic reservoir monitoring. Geophysics, 66: 5053.CrossRefGoogle Scholar
Lumley, D. E. (2006). Nonlinear uncertainty analysis in reservoir seismic modeling and inverse problems: Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 2037–2041. DOI:10.1190/1.2369936.CrossRefGoogle Scholar
Lumley, D. (1996–present). 4D seismic reservoir monitoring: Course book.Google Scholar
Lumley, D. (2010). 4D seismic monitoring of CO2 sequestration. Leading Edge, 29(2): 150155. DOI:10.1190/1.3304817.CrossRefGoogle Scholar
Lumley, D., and Shragge, J. (2013). Advanced concepts in active and passive seismic monitoring using full wavefield techniques. Extended Abstracts, Australian Society of Exploration Geophysicists, 2013: 14. https://doi.org/10.1071/ASEG2013ab167CrossRefGoogle Scholar
Lumley, D., Adams, D. C., Meadows, M., Cole, S., and Wright, R. (2003a). 4D seismic data processing issues and examples. Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 1394–1397. DOI:10.1190/1.1817550.CrossRefGoogle Scholar
Lumley, D., Adams, D., Meadows, M., Cole, S., and Ergas, R. (2003b). 4D seismic pressure-saturation inversion at Gullfaks Field, Norway. First Break, 21, September, European Association of Geoscientists and Engineers (EAGE).CrossRefGoogle Scholar
Lumley, D., Meadows, M., Cole, C., and Adams, D. (2003c). Estimation of reservoir pressure and saturations by crossplot inversion of 4D seismic attributes. Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 1513–1516. DOI:10.1190/1.1817582.CrossRefGoogle Scholar
Lumley, D., Adams, D., Wright, R., Markus, D., and Cole, S. (2008). Seismic monitoring of CO2 geo‐sequestration: Realistic capabilities and limitations. Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 28412845. DOI:10.1190/1.3063935.CrossRefGoogle Scholar
Lumley, D., King, A., Pevzner, R., et al. (2016). Feasibility and design for passive seismic monitoring at the SW Hub CO2 Geosequestration Site. Australian National Low Emissions Council (ANLEC) R&D Project Number 7‐0212‐0203. http://anlecrd.com.au/reports_storage/Google Scholar
Mathieson, A., Wright, I., Roberts, D., and Ringrose, P. (2009). Satellite imaging to monitor CO2 movement at Krechba, Algeria. Energy Procedia, 1(1): 22012209. DOI:10.1016/j.egypro.2009.01.286.CrossRefGoogle Scholar
Mavko, G., Mukerji, T., and Dvorkin, J. (2009). The rock physics handbook: Tools for seismic analysis of porous media. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Meadows, M., Adams, D., Wright, R., Tura, A., Cole, S., and Lumley, D. (2005). Rock physics analysis for time-lapse seismic at Schiehallion Field, North Sea. Geophysical Prospecting, 53: 205213.CrossRefGoogle Scholar
Ostrander, W. (1984). Plane‐wave reflection coefficients for gas sands at non-normal angles of incidence. Geophysics, 49(10): 16371648. http://dx.doi.org/10.1190/1.1441571CrossRefGoogle Scholar
Pacala, S., and Socolow, R. (2004). Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305: 968972. DOI:10.1126/science.1100103.CrossRefGoogle ScholarPubMed
Pevzner, R., Shulakova, V., Kepic, A., and Urosevic, M. (2011). Repeatability analysis of land time-lapse seismic data: CO2CRC Otway pilot project case study. Geophysical Prospecting, 59: 6677. DOI:10.1111/j.1365–2478.2010.00907.CrossRefGoogle Scholar
Pevzner, R., Urosevic, M., Tertyshnikov, K., et al. (2017a). Stage 2C of the CO2CRC Otway Project: Seismic monitoring operations and preliminary results. Energy Procedia. www.sciencedirect.com/science/article/pii/S1876610217317344CrossRefGoogle Scholar
Pevzner, R., Urosevic, M., Popik, D., et al. (2017b). 4D surface seismic tracks small supercritical CO2 injection into the subsurface: CO2CRC Otway Project. International Journal of Greenhouse Gas Control, 63: 150157. https://doi.org/10.1016/j.ijggc.2017.05.008CrossRefGoogle Scholar
Rickett, J. E., and Lumley, D. E. (2001). Cross‐equalization data processing for time‐lapse seismic reservoir monitoring: A case study from the Gulf of Mexico. Geophysics, 66, Special Section, 10151025. DOI:10.1190/1.1487049.CrossRefGoogle Scholar
Ridsdill-Smith, T., Flynn, D., and Darling, S. (2008). Benefits of two-boat 4D acquisition, an Australian case study. Leading Edge, 27(7): 940944. DOI:10.1190/1.2954036.CrossRefGoogle Scholar
Saul, M., and Lumley, D. (2013). A new velocity-pressure-compaction model for uncemented sediments. Geophysical Journal International, 193(2): 905913. DOI:10.1093/gji/ggt005.CrossRefGoogle Scholar
Schuster, G. T. (2009). Seismic interferometry. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Shragge, J., and Lumley, D. (2013). Time-lapse wave-equation migration velocity analysis. Geophysics, 78(2): S6979.CrossRefGoogle Scholar
Shulakova, V., Pevzner, R., Dupuis, J. C., et al. (2015). Burying receivers for improved time-lapse seismic repeatability: CO2CRC Otway field experiment. Geophysical Prospecting, 63: 5569.CrossRefGoogle Scholar
Tura, A., and Lumley, D. E. (1998). Subsurface fluid-flow properties from time-lapse elastic-wave reflection data. In 43rd Annual Meeting, SPIE, Proceedings, 125–138.CrossRefGoogle Scholar
Tura, A., and Lumley, D. E. (1999). Estimating pressure and saturation changes from time-lapse AVO data. Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 16551658.CrossRefGoogle Scholar
van Gestel, J-P., Kommedal, J. H., Barkved, O. I., Mundal, I., Bakke, R., and Best, K. D. (2008). Continuous seismic surveillance of Valhall Field. Leading Edge, 27(12): 16161621. DOI:10.1190/1.3036964.CrossRefGoogle Scholar
Vanorio, T. (2015). Recent advances in time-lapse, laboratory rock physics for the characterization and monitoring of fluid-rock interactions. Geophysics, 80(2): WA49WA59. DOI:10.1190/geo2014-0202.1.CrossRefGoogle Scholar
Vialle, S., and Vanorio, T. (2011). Laboratory measurements of elastic properties of carbonate rocks during injection of reactive CO2-saturated water. Geophysics Research Letters, 38: L01302. DOI:10.1029/2010GL045606.CrossRefGoogle Scholar
Wapenaar, K., Draganov, D., Snieder, R., Campman, X., and Verdel, A. (2010). Tutorial on seismic interferometry: Part 1 – Basic principles and applications. Geophysics, 75(5): 75A211227. https://doi.org/10.1190/1.3457445CrossRefGoogle Scholar
White, D. J., Roach, L. A. N., and Roberts, B. (2015). Time-lapse seismic performance of a sparse permanent array: Experience from the Aquistore CO2 storage site. Geophysics, 80(2): WA35WA48. http://library.seg.org/doi/abs/10.1190/geo2014-0239.1CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×