Skip to main content Accessibility help
×
  • Cited by 4
Publisher:
Cambridge University Press
Online publication date:
October 2017
Print publication year:
2017
Online ISBN:
9781316888858

Book description

Waves and flows are pervasive on and within Earth. This book presents a unified physical and mathematical approach to waves and flows in the atmosphere, oceans, rivers, volcanoes and the mantle, emphasizing the common physical principles and mathematical methods that apply to a variety of phenomena and disciplines. It is organized into seven parts: introductory material; kinematics, dynamics and rheology; waves in non-rotating fluids; waves in rotating fluids; non-rotating flows; rotating flows; and silicate flows. The chapters are supplemented by 47 'fundaments', containing knowledge that is fundamental to the material presented in the main text, organized into seven appendices: mathematics; dimensions and units; kinematics; dynamics; thermodynamics; waves; and flows. This book is an ideal reference for graduate students and researchers seeking an introduction to the mathematics of waves and flows in the Earth system, and will serve as a supplementary textbook for a number of courses in geophysical fluid dynamics.

Reviews

'At last! An applied mathematician who ably explains complicated geophysical phenomena thoroughly and transparently. Read, enjoy and learn! I have.'

Paul Roberts - University of California, Los Angeles

'This is a feast for mathematically literate oceanographers and atmospheric scientists and a crucial reference for established mathematicians who may be embarking on research in one of these disciplines. The amazing array of types of wave and flow is systematically analyzed by presenting them as examples of fundamental principles with shared mathematical features. The comprehensive coverage of the subject ensures both immediate usefulness and an extended life as a reference work.'

Frank Stacey - formerly of CSIRO

'… a unique book … The holistic approach - of including the history, basic properties, relevance and modern usage of waves in the diverse areas of geophysics - makes the book an ideal companion for every geophysicist and a valuable resource in every library.'

Ibrahim Eltayeb - Sultan Qaboos University, Oman

'This book is an important contribution to geophysics and applied mathematics. Its goal is to present a unified approach to geophysical waves and flows in a systematic manner. The omni-pervasive subject that it discusses makes it attractive for researchers both in geophysics and astrophysics. Furthermore, the structure of this volume is a multilayered one, so that it can be accessed by a variety of audiences.'

Silvia De Bianchi Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 2 of 2



Page 2 of 2


References
Allen, J. J., Shockling, M. A., Kunkel, G. J. & Smits, A. J. (2007). Turbulent flow in smooth and rough pipes. Philos. T. Roy. Soc. A Google Scholar, 365(1852), 699–714.
Argus, D. F., Gordon, R. G. & DeMets, C. (2011). Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, 12 CrossRef | Google Scholar(11), doi:10.1029/2011GC003751.
Bak, P. (1996). How Nature Works: The Science of Self-organized Criticality. New York CrossRef | Google Scholar: Springer.
Ball, F. K. (1956). The theory of strong katabatic winds. Aust. J. Phys., 9 CrossRef | Google Scholar, 373–386.
Bascom, W. (1964). Waves and Beaches. Garden City, New York Google Scholar: Doubleday.
Batchelor, G. K. (1972). Sedimentation in a dilute dispersion of spheres. J. Fluid Mech., 52 CrossRef | Google Scholar(2), 245–268.
Borch, R. S. & Green, H, W. II (1987). Dependence of creep in olivine on homologous temperature and its implications for flow in the mantle. Nature, 330 CrossRef | Google Scholar, 345–348.
Chow, V. T. (1985). Open Channel Hydraulics. New York Google Scholar: McGraw–Hill.
Čížková, H., van den Berg, A. P., Spakman, W. CrossRef | Google Scholar & Matyska, C. (2012). The viscosity of Earth's lower mantle inferred from sinking speed of subducted lithosphere. Phys. Earth Planet In., 200–201, 56–62; doi:10.1016/j.pepi.2012.02.010.
Clement, A. C. & Peterson, L. C. (2008). Mechanisms of abrupt climate change of the last glacial period. Rev. Geophys, 46 CrossRef | Google Scholar(4), doi:10.1029/2006RG000204.
Courtillot, V. & Renne, P. R. (2003). On the ages of flood basalt events. C. R. Geosciences, 335 CrossRef | Google Scholar(1), 113–140.
Cullen, S. (2005). Trees and wind: a practical consideration of the drag equation velocity exponent for urban tree risk management. J. Arboriculture, 31 Google Scholar(3), 101–113.
Davaille, A. & Limare, A. (2009). Laboratory studies of mantle convection. Vol. VII of Treatise on Geophysics, Amsterdam Google Scholar: Elsevier.
Davies, G. F. & Richards, M. A. (1992). Mantle convection. J. Geol, 100 CrossRef | Google Scholar(2), 151–206.
Davison, A. (1956).My Ship Is So Small. New York Google Scholar: William Sloan Associates.
de Koker, N. & Stixrude, L. (2009). Self-consistent thermodynamic description of silicate liquids, with application to the shock melting of MgO periclase and MgSiO3 perovskite. Geophys. J. Int., 178 CrossRef | Google Scholar(1), 162–179.
de Rooy, W. C., Bechtold, P., Fröhlic, K., Hohenegger, C., Jonker, H., Mironov, D., Siebsema, A. P., Teixeira, J. & Yano, J.-I. (2013). Entrainment and detrainment in cumulus convection: an overview. Q. J. Roy. Meteor. Soc., 139 CrossRef | Google Scholar(670), 1–19.
Dettman, J. W. (1969). Mathematical Methods in Physics and Engineering. New York Google Scholar: McGraw–Hill.
Drazin, P. G. & Reid, W. H. (1981). Hydrodynamic Stability Google Scholar. Cambridge University Press.
Dukhovskoy, D.M. & Morey, S. L. (2010 CrossRef | Google Scholar). Simulation of the Hurricane Dennis storm surge and considerations of vertical resolution. Natural Hazards, doi:10.1007/s11069-010- 9684-5.
Dye, S. T. (2012). Geoneutrinos and the radioactive power of the Earth. Rev. Geophys., 50 CrossRef | Google Scholar(3), doi:10.1029/2012RG000400.
Dyer, K. R. & Soulsby, R. L. (1988). Sand transport on the continental shelf. Annu. Rev. Fluid Mech., 20 CrossRef | Google Scholar, 295–324.
Dziewonski, A. & Anderson, D. L. (1981), Preliminary reference Earth model. Phys. Earth Planet. In., 25 Google Scholar, 297–356.
Ellison, T. H. (1956). Atmospheric turbulence. In G.K., Batchelor & R. M., Davies, eds., Surveys in Mechanics Google Scholar. Cambridge University Press, pp. 400–430.
Emanuel, K. A. (1986). An air-sea interaction theory for tropical cyclones. Part I. J. Atmos. Sci., 43 CrossRef | Google Scholar, 585–604.
Emanuel, K. A. (1991). The theory of hurricanes. Annu. Rev. Fluid Mech., 23 CrossRef | Google Scholar, 179–196.
Forsythe, A. R. (1959). Theory of Differential Equations, 6th edn. New York Google Scholar: Dover Publications.
Furlong, K. P. & Chapman, D. S. (2013). Heat flow, heat generation and the thermal state of the lithosphere. Annu. Rev. Earth Pl. Sc., 41 CrossRef | Google Scholar, 385–410.
Griffiths, R. W. (2000). The dynamics of lava flows. Annu. Rev. Fluid Mech., 32 CrossRef | Google Scholar, 477–518.
Guazzelli, É. & Hinch, J. (2011). Fluctuations and instability in sedimentation. Annu. Rev. Fluid Mech., 43 CrossRef | Google Scholar, 97–116.
Havelock, T. H. (1908). The propagation of groups of waves in dispersive media, with applications to waves on water produced by a travelling disturbance. P. Roy. Soc. Lond. A Mat., 81 CrossRef | Google Scholar(549), 398–430.
Hellerman, S. & Rosenstein, M. (1983). Normal monthly wind stress over the world ocean with error-estimates. J. Phys. Oceanogr., 13 CrossRef | Google Scholar, 1093–1104.
Hodgkinson, J. H. & Stacey, F. D. (2017). A Practical Handbook of Earth Science Google Scholar. CRC Press.
Holton, J. R. (2004). An Introduction to Dynamic Meteorology. Burlington Google Scholar, MA: Elsevier Academic Press.
Hon, K., Kauahikaua, J., Denlinger, R. & MacKay, K. (1994). Emplacement and inflation of pahoepahoe sheet flows: Observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol. Soc. Am. Bull., 106 CrossRef | Google Scholar(3), 351–370.
Jaupart, C., Labrosse, S., Lucazeau, F. & Mareschal, J.-C. (2015). Temperatures, heat, and energy in the mantle of the Earth. In G., Schubert, ed., Treatise on Geophysics, 2nd edn, vol. 7. Oxford CrossRef | Google Scholar: Elsevier, pp. 223–270.
Jones, M. D. & Savino, J. M. (2015). Supervolcano: The Catastrophic Event that Changed the Course of Human History. Pronoun Google Scholar.
King, S. D. (2016). Reconciling laboratory and observational models of mantle rheology in geodynamic modelling. J. Geodyn., 100 CrossRef | Google Scholar, 33–50.
Lansing, A. (1959). Endurance: Shackleton's Incredible Voyage. New York Google Scholar: McGraw–Hill.
Lay, T., Hernlund, J. & Buffett, B. A. (2008). Core–mantle boundary heat flow. Nat. Geosci., 1 CrossRef | Google Scholar, 25–32.
Lewellen, W. S. (1993 Google Scholar). The tornado: its structure, dynamics, prediction and hazards. Vol. 79 of Geophysical Monograph Series. American Geophysical Union.
Li, D., Katul, G. G. & Zilininkevich, S. J. (2015). Revisiting the turbulent Prandtl number in an idealized atmospheric surface layer. J. Atmos. Sci., 72 CrossRef | Google Scholar, 2394–2401. doi:10.1175/JAS-D-14-0335.1.
Liu, J., Song, M., Hu, Y. & Ren, X. (2012). Changes in the strength and width of the Hadley circulation since 1871. Clim. Past., 8 CrossRef | Google Scholar, 1169–1157.
Loper, D. E. (1991). The nature and consequences of thermal interactions twixt core and mantle. J. Geomagn. Geoelectr., 43 CrossRef | Google Scholar(2), 79–91.
Loper, D. E. (2009). Earth's habitable loop: water, atmospheric structure, the geomagnetic field and plate tectonics. Acta Geod. Geophys. Hu., 44 CrossRef | Google Scholar, 265–269. doi:10.1556/AGeod. 44.2009.3.2.
Loper, D. E. & Lay, T. (1995). The core–mantle boundary region. J. Geophys. Res. – Sol. Ea., 100 CrossRef | Google Scholar(B4), 6397–6420.
Løvholt, F., Kaiser, G., Glimsdal, S., Scheele, L., Harbitz, C. B. & Pedersen, G. (2012). Modeling propagation and inundation of the 11 March 2011 Tohoku tsunami. Nat. Hazards Earth Syst. Sci., 12 CrossRef | Google Scholar, 1017–28.
Madsen, O. S. (1976). A realistic model of the wind-induced Ekman boundary layer. J. Phys. Oceanogr., 7 CrossRef | Google Scholar, 248–255.
Mason, B., Pyle, D. M. & Oppenheimer, C. (2004). The size and frequency of the largest explosive eruptions on Earth. B. Volcanol., 66 CrossRef | Google Scholar(8), 735–748.
Mastin, L. G. & M., Ghiorso, S. (2000 Google Scholar). A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits (vers. 1.05b, April 2008): U.S. Geological Survey Open-File Report 00-209. https://pubs.usgs.gov/of/2000/0209/.
Morey, S. L., Baig, S., Bourassa, M. A., Dukhovskoy, D. S. & O'Brien, J. J. (2006). Remote forcing contribution to storm-induced sea level rise during Hurricane Dennis. Geophys. Res. Lett., 33 CrossRef | Google Scholar(19), L19603. doi:10.1029/2006GL027021
Murphy, G. M. (1960). Ordinary Differential Equations and Their Solutions. Princeton Google Scholar: Van Nostrand.
Ni, H., Hui, H. & Steinle-Newmann, G. (2015 CrossRef | Google Scholar). Transport properties of silicate melts. Rev. Geophys., doi:10.1002/2015RG000485.
Olson, P. (2016). Mantle control of the geodynamo: Consequences of top-down regulation. Geochem. Geophys. Geosy., 17 Google Scholar, 1935–1956, doi:10.1002/ 2016GC006334.
Olver, F. J. W., Lozer, D. W., Boisvert, R. F. & Clark, C. W. (2010). NIST Handbook of Mathematical Functions Google Scholar. Cambridge University Press. http://dlmf.nist.gov.
Parish, T. R. (1988). Surface winds over the Antarctic continent: a review. Rev. Geophys., 26 CrossRef | Google Scholar, 169–180.
Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H. & Wallace, P. J. (2013). Why do mafic arc magma contain 4 wt% water on average? Earth Planet. Sc. Lett., 364 Google Scholar, 168–179.
Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. (2012). Thermal and electrical conductivity of iron at Earth's core conditions. Nature, 485 CrossRef | Google Scholar, 355–360.
Putirka, K. D., Perfit, M., Reynolds, F. J. & Jackson, M. G. (2007). Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem. Geol., 214 CrossRef | Google Scholar(3–4), 177–206 doi:10.1016/j.chemgeo.2007.01.014.
Rahmstorf, S. (2003). Timing of abrupt climate change: a precise clock. Geophys. Res. Lett., 30 CrossRef | Google Scholar(10). doi:10.1029/2003GL017115.
Rahmstorf, S. (2006). Thermohaline ocean circulation. In S. A., Elias, ed., Encyclopedia of Quaternary Sciences. Amsterdam Google Scholar: Elsevier.
Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S. & Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in atlantic ocean overturning circulation. Nature Climate Change, 5 CrossRef | Google Scholar(5), 475–480. doi:http://dx.doi.org/10.1038/nclimate2554.
Richards, M. A., Duncan, R. A. & Courtillot, V. E. (1989). Flood basalts and hot-spot tracks: plume heads and tails. Science, 246 CrossRef | Google Scholar, 103–107.
Roberts, G. O. (1979). Fast viscous Bénard convection. Geophys. Astro. Fluid, 12 CrossRef | Google Scholar(1), 235–272.
Robock, A., (2000). Volcanic eruptions and climate. Rev. Geophys., 38 CrossRef | Google Scholar(2), 191–219.
Schlichting, H. (1968). Boundary Layer Theory, 6th edn. New York Google Scholar: McGraw–Hill.
Schmittner, A., Chiang, J. C. H. & Hemming, S. R. (eds.) (2007 CrossRef | Google Scholar). Ocean Circulation: Mechanisms and Impacts – Past and Future Changes of Meridional Overturning. Vol. 173 of Geophysical Monograph Series. doi:10.1029/GM173.
Shockling, M. A., Allen, J. J. & Smits, A. J. (2006). Roughness effects in turbulent pipe flow. J. Fluid Mech., 564 CrossRef | Google Scholar, 267–285.
Sellin, R. J. H. (1969). Flow in Channels. London Google Scholar: Macmillan.
Shearer, P. M. (2009). Introduction to Seismology Google Scholar, 2nd edn. Cambridge University Press.
Smith, S. D. (1980). Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10 CrossRef | Google Scholar, 709–726.
Sovilla, B., McElwaine, J. N. & Loug, M. Y. (2015). The structure of powder snow avalanches. Comptes Rendus Physique, 16 CrossRef | Google Scholar(1), 97–104.
Stacey, F. D. (1991). Effects on the core of structure within D. Geophys. Astro. Fluid, 60 CrossRef | Google Scholar, 157–163.
Stacey, F. D. (2010). Thermodynamics of the Earth. Rep. Prog. Phys., 73 CrossRef | Google Scholar(4). doi:10.1088/00 34-4885/73/4/046801.
Stacey, F. D. & Davis, P. M. (2008). Physics of the Earth Google Scholar, 4th edn. Cambridge University Press.
Stacey, F. D. & Loper, D. E. (2007). A revised estimate of the conductivity of iron alloy at high pressure and implications for the core energy balance. Phys. Earth Planet. In., 161 CrossRef | Google Scholar(1–2), 13–18.
Stommel, H. (1947). Entrainment of air into a cumulus cloud. J. Meteorology, 4 CrossRef | Google Scholar, 91–94.
Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus, 13 CrossRef | Google Scholar(2), 224–230.
Storchak, D. A., Schweitzer, J. & Bormann, P. (2003). The IASPEI Seismic Phase List. Seismological Res. Lett., 74 CrossRef | Google Scholar(6), 761–772.
Sverdrup, H. U. (1947).Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33 CrossRef | Google Scholar(11), 318–326.
Tozer, D. C. (1972). The present thermal state of the terrestrial planets. Phys. Earth Planet. In., 6 CrossRef | Google Scholar(1–3), 182–197.
Vilajosana, I., Khazardze, G., Surñach, E., Lied, E. & Kristensen, K. (2007). Snow avalanche speed determination using seismic methods. Cold Reg. Sci. Technol., 49 CrossRef | Google Scholar(1), 2–10.
Wallace, P. J., Planck, T., Edmonds, M. & Hauri, E. H. (2015). Volatiles in Magmas. In H., Sigurdsson, B., Holton, S., McNutt, H., Rymer & J., Stix, eds., The Encyclopedia of Volcanoes CrossRef | Google Scholar. Academic Press, pp. 163–183.
Williams, H. & McBirney, A. R. (1979). Volcanology. San Francisco Google Scholar: Freeman, Cooper and Co.
Yalin, M. S. (1992). River Mechanics. Oxford Google Scholar: Pergamon Press.
Zhang, Y., Xu, Z., Zhu, M. & Wang, H. (2007). Silicate melt properties and volcanic eruptions. Rev. Geophys., 45 CrossRef | Google Scholar(4), doi:10.1029/2006RG000216.
Zwillinger, D. (1998). Handbook of Differential Equations Google Scholar, 3rd edn. Academic Press.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 7926 *
Loading metrics...

Book summary page views

Total views: 7122 *
Loading metrics...

* Views captured on Cambridge Core between 26th October 2017 - 2nd April 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.