Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T04:27:09.443Z Has data issue: false hasContentIssue false

2 - Was Einstein Right? A Centenary Assessment

from Part One - Einstein's Triumph

Published online by Cambridge University Press:  05 June 2015

Clifford M. Will
Affiliation:
University of Florida
Abhay Ashtekar
Affiliation:
Pennsylvania State University
Beverly K. Berger
Affiliation:
Formerly Program Director for Gravitational Physics, National Science Foundation
James Isenberg
Affiliation:
University of Oregon
Malcolm MacCallum
Affiliation:
University of Bristol
Get access

Summary

Introduction

When general relativity was born 100 years ago, experimental confirmation was almost a side issue. Admittedly, Einstein did calculate observable effects of general relativity, such as the perihelion advance of Mercury, which he knew to be an unsolved problem, and the deflection of light, which was subsequently verified. But compared to the inner consistency and elegance of the theory, he regarded such empirical questions as almost secondary. He famously stated that if the measurements of light deflection disagreed with the theory he would “feel sorry for the dear Lord, for the theory is correct!”.

By contrast, today at the centenary of Einstein's towering theoretical achievement, experimental gravitation is a major component of the field, characterized by continuing efforts to test the theory's predictions, both in the solar system and in the astronomical world, to detect gravitational waves from astronomical sources, and to search for possible gravitational imprints of phenomena originating in the quantum, high-energy or cosmological realms.

The modern history of experimental relativity can be divided roughly into four periods: Genesis, Hibernation, a Golden Era, and the Quest for Strong Gravity. The Genesis (1887–1919) comprises the period of the two great experiments which were the foundation of relativistic physics – the Michelson–Morley experiment and the Eötvös experiment – and the two immediate confirmations of general relativity – the deflection of light and the perihelion advance of Mercury. Following this was a period of Hibernation (1920–1960) during which theoretical work temporarily outstripped technology and experimental possibilities, and, as a consequence, the field stagnated and was relegated to the backwaters of physics and astronomy.

But beginning around 1960, astronomical discoveries (quasars, pulsars, cosmic background radiation) and new experiments pushed general relativity to the forefront. Experimental gravitation experienced a Golden Era (1960–1980) during which a systematic, world-wide effort took place to understand the observable predictions of general relativity, to compare and contrast them with the predictions of alternative theories of gravity, and to perform new experiments to test them.

Type
Chapter
Information
General Relativity and Gravitation
A Centennial Perspective
, pp. 49 - 96
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Will, C. M. 1993. Was Einstein Right?: Putting General Relativity to the Test. 2nd edn. New York: Basic Books.
[2] Will, C. M. 1993. Theory and Experiment in Gravitational Physics. 2nd edn. Cambridge; New York: Cambridge University Press.CrossRefGoogle Scholar
[3] Will, C. M. 2006. Living Rev. Relativity, 9. http://www.livingreviews.org/lrr-2006-3.
[4] Will, C. M. 2014. Living Rev. Relativity, 17. http://www.livingreviews.org/lrr-2014-4.
[5] Will, C. M. 2010. Am. J. Phys., 78, 1240–1247.CrossRef
[6] Dicke, R. H. 1964. Experimental relativity. Pages 165-313 of: DeWitt, C., and DeWitt, B. (eds), Relativity, Groups and Topology. New York; London: Gordon and Breach.Google Scholar
[7] Schlamminger, S. et al. 2008. Phys. Rev. Lett., 100, 041101.CrossRef
[8] Merlet, S. et al. 2010. Metrologia, 47, L9–L11.CrossRef
[9] Müller, H., Peters, A., and Chu, S. 2010. Nature, 463, 926–929.CrossRef
[10] Wolf, P. et al. 2011. Class. Quantum Grav., 28, 145017.CrossRef
[11] Hogan, J. M., Johnson, D. M. S., and Kasevich, M. A. 2009. Light-pulse atom interferometry. Page 411 of: Arimondo, E., Ertmer, W., Schleich, W. P., and Rasel, E. M. (eds), Atom Optics and Space Physics: Proceedings of the International School of Physics “Enrico Fermi”, Course 168. IOS Press Amsterdam.Google Scholar
[12] Fischbach, E. et al. 1992. Metrologia, 29, 213–260.CrossRef
[13] Speake, C. C., and Will, C. M. 2012. Class. Quantum Grav., 29, 180301.CrossRef
[14] Adelberger, E. G. et al. 2009. Prog.Part. Nucl.Phys., 62, 102–134.CrossRef
[15] Will, C. M. 2006. Special relativity: A centenary perspective. Page 33 of: Damour, T., Darrigol, O., Duplantier, B., and Rivasseau, V. (eds), Einstein, 1905-2005: Poincare Seminar 2005. Basel: Birkauser Verlag.Google Scholar
[16] Mattingly, D. 2005. Living Rev. Relativity, 8. http://www.livingreviews.org/lrr-2005-5.
[17] Liberati, S. 2013. Class. Quantum Grav., 30, 133001.CrossRef
[18] Kostelecký, V. A., and Russell, N. 2011. Rev. Mod. Phys., 83, 11–31.CrossRef
[19] Kostelecký, V. A., and Tasson, J. D. 2011. Phys. Rev. D, 83, 016013.CrossRef
[20] LoPresto, J. C., Schrader, C., and Pierce, A. K. 1991. Astrophys. J., 376, 757–760.CrossRef
[21] Guéna, J.etal. 2012. Phys.Rev. Lett., 109, 080801.
[22] Peil, S. et al. 2013. Phys. Rev. A, 87, 010102.CrossRef
[23] Leefer, N. et al. 2013. Phys.Rev. Lett., 111, 060801.CrossRef
[24] Ashby, N. 2003. Living Rev. Relativity, 6. http://www.livingreviews.org/lrr-2003-1.
[25] Will, C. M., 2000. Einstein's relativity and everyday life. http://www.physicscentral.com/ writers/writers-00-2.html.
[26] Dyson, F. J. 1972. The fundamental constants and their time variation. Pages 213–236 of: Salam, A., and Wigner, E. (eds), Aspects of Quantum Theory. Cambridge; New York: Cambridge University Press.Google Scholar
[27] Uzan, J.P. 2011. Living Rev. Relativity, 14. http://www.livingreviews.org/lrr-2011-2.
[28] King, J. A. et al. 2012. Mon. Not. Roy. Astr. Soc., 422, 3370–3414CrossRef
[29] Kanekar, N. et al. 2012. Astrophys. J. Lett., 746, L16.CrossRef
[30] Lentati, L. et al. 2013. Mon. Not. Roy. Astr. Soc., 430, 2454–2463CrossRef
[31] Turyshev, S. G., and Toth, V. T. 2010. Living Rev. Relativity, 131. http://www.livingreviews. org/lrr-2010-4.
[32] Turyshev, S. G.etal. 2012. Phys. Rev. Lett., 108, 241101.
[33] Schutz, B. F. 2009. A First Course in General Relativity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
[34] Poisson, E., and Will, C. M. 2014. Gravity: Newtonian, Post-Newtonian, Relativistic. Cambridge: Cambridge University Press.Google Scholar
[35] Nordtvedt Jr., K. 1968. Phys. Rev., 169, 1017–1025
[36] Will, C. M. 1971. Astrophys. J., 163, 611–628.CrossRef
[37] Will, C. M., and Nordtvedt Jr., K. L. 1972. Astrophys. J., 177, 757–774.CrossRef
[38] Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1973. Gravitation. San Francisco: W. H. Freeman.Google Scholar
[39] Damour, T., and Esposito-Farèse, G. 1992. Class. Quantum Grav., 9, 2093–2176CrossRef
[40] Damour, T., and Nordtvedt Jr., K. 1993. Phys. Rev. Lett., 70, 2217–2219
[41] Damour, T., and Nordtvedt Jr., K. 1993. Phys. Rev. D, 48, 3436–3450CrossRef
[42] Fujii, Y., and Maeda, K.I. 2007. The Scalar-Tensor Theory of Gravitation. Cambridge: Cambridge University Press.Google Scholar
[43] Sotiriou, T. P., and Faraoni, V. 2010. Rev. Mod. Phys., 82, 451–497.CrossRef
[44] De Felice, A., and Tsujikawa, S. 2010. Living Rev. Relativity, 13. http://www.livingreviews. org/lrr-2010-3.
[45] Hellings, R. W., and Nordtvedt Jr., K. 1973. Phys. Rev. D, 7, 3593–3602CrossRef
[46] Jacobson, T., and Mattingly, D. 2001. Phys. Rev. D, 64, 024028.CrossRef
[47] Mattingly, D., and Jacobson, T. A. 2002. Relativistic gravity with a dynamical preferred frame. Pages 331–335 of: Kostelecky, V. (ed), CPT and Lorentz Symmetry II. Singapore; River Edge: World Scientific.Google Scholar
[48] Jacobson, T., and Mattingly, D. 2004. Phys. Rev. D, 70, 024003.CrossRef
[49] Eling, C., and Jacobson, T. 2004. Phys. Rev. D, 69, 064005.CrossRef
[50] Foster, B. Z., and Jacobson, T. 2006. Phys. Rev. D, 73, 064015.CrossRef
[51] Hořava, P. 2009. Phys. Rev. D, 79, 084008.CrossRef
[52] Blas, D., Pujolàs, O., and Sibiryakov, S. 2010. Phys. Rev. Lett., 104, 181302.CrossRef
[53] Blas, D., Pujolas, O., and Sibiryakov, S. 2011. J. High Energy Phys., 4, 18.CrossRef
[54] Jacobson, T. 2014. Phys.Rev. D, 89, 081501.CrossRef
[55] Bekenstein, J. D. 2004. Phys. Rev. D, 70, 083509.CrossRef
[56] Skordis, C. 2008. Phys. Rev. D, 77, 123502.CrossRef
[57] Sagi, E. 2009. Phys. Rev. D, 80, 044032.CrossRef
[58] Skordis, C. 2009. Class. Quantum Grav., 26, 143001.CrossRef
[59] Famaey, B., and McGaugh, S. S. 2012. Living Rev. Relativity, 15. http://www.livingreviews. org/lrr-2012-10.
[60] Hinterbichler, K. 2012. Rev. Mod. Phys., 84, 671–710.CrossRef
[61] Will, C. M. 1988. Am. J. Phys., 56, 413–415.CrossRef
[62] Shapiro, S. S., Davis, J. L., Lebach, D. E., and Gregory, J. S. 2004. Phys.Rev.Lett., 92, 121101.CrossRef
[63] Lambert, S. B., and Le Poncin-Lafitte, C. 2011. Astron. Astrophys., 529, A70.CrossRef
[64] Bolton, A. S., Rappaport, S., and Burles, S. 2006. Phys. Rev. D, 74, 061501.CrossRef
[65] Bertotti, B., Iess, L., and Tortora, P. 2003. Nature, 425, 374–376.CrossRef
[66] Fienga, A.etal. 2011. Cel. Mech.Dyn.Astron., 111, 363–385.
[67] Verma, A. K. et al. 2014. Astron. Astrophys., 561, A115.CrossRef
[68] Lucchesi, D. M., and Peron, R. 2014. Phys.Rev. D, 89, 082002.CrossRef
[69] Nordtvedt Jr., K. 1968. Phys. Rev., 169, 1014–1016
[70] Dicke, R. H. 1970. Gravitation and the Universe. Memoirs of the American Philosophical Society. Jayne Lecture for 1969, vol. 78. Philadelphia: American Philosophical Society.Google Scholar
[71] Merkowitz, S. M. 2010. Living Rev. Relativity, 13. http://www.livingreviews.org/lrr-2010-7.
[72] Williams, J. G., Turyshev, S. G., and Murphy Jr., T. W. 2004. Int. J. Mod. Phys. D, 13, 567–582.CrossRef
[73] Baeβler, S. et al. 1999. Phys. Rev. Lett., 83, 3585–3588
[74] Murphy, Jr., T.W. et al. 2012. Class. Quantum Grav., 29, 184005.CrossRef
[75] Stairs,I.H. etal. 2005. Astrophys. J., 632, 1060–1068
[76] Ransom, S. M.etal. 2014. Nature, 505, 520–524.
[77] Shao, L., and Wex, N. 2012. Class. Quantum Grav., 29, 215018.CrossRef
[78] Shao, L. etal. 2013. Class. Quantum Grav., 30, 165019.CrossRef
[79] Shao, L., and Wex, N. 2013. Class. Quantum Grav., 30, 165020.CrossRef
[80] Konopliv, A. S. et al. 2011. Icarus, 211, 401–428.CrossRef
[81] Williams, J. G., Turyshev, S. G., and Boggs, D. H. 2004. Phys. Rev. Lett., 93, 261101.CrossRef
[82] Deller, A. T., Verbiest, J. P. W., Tingay, S. J., and Bailes, M. 2008. Astrophys. J. Lett., 685, L67–L70.CrossRef
[83] Lazaridis, K. et al. 2009. Mon. Not. Roy. Astr. Soc., 400, 805–814.CrossRef
[84] Guenther, D. B., Krauss, L. M., and Demarque, P. 1998. Astrophys. J., 498, 871–876.CrossRef
[85] Copi, C. J., Davis, A. N., and Krauss, L. M. 2004. Phys. Rev. Lett., 92, 171301.CrossRef
[86] Bambi, C., Giannotti, M., and Villante, F. L. 2005. Phys. Rev. D, 71, 123524.CrossRef
[87] Everitt, C. W. F. etal. 2011. Phys. Rev. Lett., 106, 221101.CrossRef
[88] Ciufolini, I., and Pavlis, E. C. 2004. Nature, 431, 958–960.CrossRef
[89] Ciufolini, I., Pavlis, E. C., and Peron, R. 2006. New Ast., 11, 527–550.CrossRef
[90] Weisberg, J. M., Nice, D. J., and Taylor, J. H. 2010. Astrophys. J., 722, 1030–1034CrossRef
[91] Damour, T., and Taylor, J. H. 1992. Phys.Rev. D, 45, 1840–1868
[92] Kramer, M. 1998. Astrophys. J., 509,856-860.CrossRef
[93] Weisberg, J. M., and Taylor, J. H. 2002. Astrophys. J., 576, 942–949.CrossRef
[94] Burgay, M. et al. 2003. Nature, 426, 531–533.CrossRef
[95] Lyne, A. G. et al. 2004. Science, 303, 1153–1157CrossRef
[96] Kramer, M. et al. 2006. Science, 314, 97–102.CrossRef
[97] Breton, R. P. et al. 2008. Science, 321, 104.CrossRef
[98] Freire, P. C. C. et al. 2012. Mon. Not. Roy. Astr. Soc., 423, 3328–3343CrossRef
[99] Bhat, N. D. R., Bailes, M., and Verbiest, J. P. W. 2008. Phys. Rev. D, 77, 124017.CrossRef
[100] Damour, T., and Esposito-Farese, G. 1998. Phys.Rev. D, 58, 042001.CrossRef
[101] Creighton, J. D. E., and Anderson, W. G. 2011. Gravitational-Wave Physics and Astron-omy: An Introduction to Theory, Experiment and Data Analysis. Cambridge; New York: Wiley.CrossRefGoogle Scholar
[102] Amaro-Seoane, P. et al. 2012. Class. Quantum Grav., 29, 124016.CrossRef
[103] Blanchet, L. 2014. Living Rev. Relativity, 17. http://www.livingreviews.org/lrr-2014-2.
[104] Yunes, N., and Pretorius, F. 2009. Phys. Rev. D, 80, 122003.CrossRef
[105] Mishra, C. K., Arun, K. G., Iyer, B. R., and Sathyaprakash, B. S. 2010. Phys. Rev. D, 82, 064010.
[106] Will, C. M. 1998. Phys. Rev. D, 57, 2061.CrossRef
[107] Gair, J. R., Vallisneri, M., Larson, S. L., and Baker, J. G. 2013. Living Rev. Relativity, 16. http://www.livingreviews.org/lrr-2013-7.
[108] Yunes, N., and Siemens, X. 2013. Living Rev. Relativity, 16. http://www.livingreviews.org/lrr-2013-9.
[109] Narayan, R., and McClintock, J. E. 2008. New Astron. Rev., 51, 733–751.CrossRef
[110] Psaltis, D. 2004. Measurements of black hole spins and tests of strong-field general relativity. Pages 29–35 of: Kaaret, P., Lamb, F., and Swank, J. (eds), X-Ray Timing 2003: Rossi and Beyond. AIP Conference Proceedings vol. 714. Melville: American Institute of' Physics.Google Scholar
[111] Reynolds, C. S. 2013. Space Sci. Rev. On Line, 1–18.
[112] Reynolds, C. S. 2013. Class. Quantum Grav., 30, 244004.CrossRef
[113] Doeleman, S. et al. 2009. Imaging an event horizon: Submm-VLBI of a supermassive black hole. Page 68 of: Astro 2010: The Astronomy and Astrophysics Decadal Survey.Google Scholar
[114] Will, C. M. 2008. Astrophys. J. Lett., 674, L25–L28.CrossRef
[115] Psaltis, D. 2008. Living Rev. Relativity, 11. http://www.livingreviews.org/lrr-2008-9.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×