Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T08:45:29.772Z Has data issue: false hasContentIssue false

11 - Synoptic and mesoscale rain producing systems in the humid tropics

from Part II - Hydrological processes in undisturbed forests

Published online by Cambridge University Press:  12 January 2010

M. Bonell
Affiliation:
Division of Water Sciences, UNESCO, 1 rue Miollis, 75732 Paris Cedex 15, France
J. Callaghan
Affiliation:
Bureau of Meteorology, Brisbane, Australia
G. Connor
Affiliation:
Bureau of Meteorology, Townsville, Australia
M. Bonell
Affiliation:
UNESCO, Paris
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
Get access

Summary

INTRODUCTION

A key facet of the hydrology and climatology of the humid tropics is the occurrence of more persistent high-rainfall intensities compared with those occurring over the higher latitudes. The equivalent hourly intensities of short-term rainfalls of, for example, over one minute, are commonly one or two orders of magnitude higher than those experienced in humid temperate areas (Bonell, 1993). Thus, the magnitude of rainfall is one of the principal drivers in accounting for the much wider range of preferred pathways of storm runoff in tropical forests (see Bonell, this volume). Less well appreciated in the literature is a possible linkage between preferred pathways of storm runoff and the spatial and temporal variability of different rain-producing meteorological systems. For example, there is a substantial difference in the range of rainfall intensity-frequency-duration characteristics identified with tropical cyclone-prone areas (e.g. northeast Queensland) as against tropical islands where trade wind ‘stream’ showers are more persistent (e.g. the Hawaiian Islands). Moreover, within the outer tropics, there can be a significant seasonal change in synoptic-scale meteorology systems and corresponding rainfall characteristics (notably rain intensities). In northeast Queensland, the dominant pathways of storm runoff in tropical forest show dramatic changes over a few months in response to a change from a monsoon regime of persistent tropical depressions (and cyclones) through to a regime dominated by upper troughs, and finally, stream showers associated with the SE trades (Bonell and Gilmour, 1980; Bonell et al., 1991).

Type
Chapter
Information
Forests, Water and People in the Humid Tropics
Past, Present and Future Hydrological Research for Integrated Land and Water Management
, pp. 194 - 266
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AMMA (African Monsoon Multidisciplinary Analyses) (2002) On African Monsoon and its components, CNES, CNRS/INSU, IRD, Météo-France, version February 2002, 52 pp + 14 Figures (available from web site: http://medias.obs-mip.fr/amma)
Asselin de Beauville, C. (1995) Air mass characteristics as related to tropical wave precipitation over Lesser Antilles archipelago. Atmospheric Research 36: 157–170CrossRefGoogle Scholar
Atkinson, B. W. (1981). Mesoscale Atmosphere Circulations, Academic Press, London
Austin, G. R., Rauber, R. M., Ochs, H. T. III and Miller, L. J. (1996) Tradewind clouds and Hawaiian rainbands. Mon. Weath. Rev., 124: 2126–21512.0.CO;2>CrossRefGoogle Scholar
Avila, L. A. and Pasch, R. J. (1992). Atlantic tropical systems of 1991. Mon. Weath. Rev. 120: 2688–26962.0.CO;2>CrossRefGoogle Scholar
Barcelo, A., Robert, R. and Coudray, J. (1997). A Major Rainfall Event: The 27 February–5 March 1993 Rains on the Southeastern Slope of Piton de la Fournaise Massif (Reunion Island, Southwest Indian Ocean). Mon. Weath. Rev. 125: 3341–33462.0.CO;2>CrossRefGoogle Scholar
Berndtsson, R. and Niemczynowicz, J. (1988). Spatial and temporal scales in rainfall analysis – some aspects and future perspectives. J. Hydrol. 100: 293–313CrossRefGoogle Scholar
Betts, A. (1974). Thermodynamic classification of tropical convective soundings. Mon. Weath. Rev., 102: 760–7642.0.CO;2>CrossRefGoogle Scholar
Bidin, K. (2001). Spatio-temporal variability in rainfall and wet-canopy evaporation within a small catchment recovering from selective tropical forestry. Unpublished PhD thesis, University of Lancaster, Lancaster, UK pp 201
Black, M. L., Gamache, J. F., Marks, F. D. Jr., Samsury, C. E. and Willoughby, H. E. 2002. Eastern Pacific hurricanes Jimena of 1991 and Olivia of 1994: the effect of vertical shear on structure and intensity. Mon. Weath. Rev. 130(9): 2291–23122.0.CO;2>CrossRefGoogle Scholar
Blanchard, D. O., Cotton, W. R. and Brown, J. M. (1998). Mesoscale Circulation Growth under Conditions of Weak Inertial Instability. Mon. Weath. Rev. 126: 118–1402.0.CO;2>CrossRefGoogle Scholar
Bonell, M. (1991). Progress and future research needs in water catchment conservation within the wet tropical coast of NE Queensland. In: Tropical Rainforest Research in Australia: Present Status and Furure Directions for the Institute for Tropical Rainforest Studies, Proceedings of a Workshop held in Townsville, Australia, 4–6 May, 1990 Institute for Tropical Rainforest Studies, James Cook University, Townsville, pp 59–86
Bonell, M. (1993). Progress in the understanding of runoff generation dynamics in forests. J. Hydrol., 150: 217–275CrossRefGoogle Scholar
Bonell, M. (1998). Possible impacts of climate variability and change on tropical forest hydrology. Climatic change 39: 215–272. Based on the WWF Conference on the Potential Impacts of Climate Change on Tropical Forest Ecosystems, Puerto Rico, 24–28 April 1995CrossRefGoogle Scholar
Bonell, M. (2004) Selected Issues on Mountain Hydrology of the Humid Tropics. Conference on Forestry and Forest Products 1999 Series: Forestry and Land Use Perspectives, 31 March–1 April 1999, Kuala Lumpur, Malaysia, 25 pp. To be published as a UNESCO Technical Document in Hydrology (UNESCO Jakarta Office), in press
Bonell, M. with Balek, J. (1993). Recent Scientific Developments and Research Needs in Hydrological Processes of The Humid Tropics. (In) Hydrology and Water Management in the Humid Tropics: Bonell, M., Hufschmidt, M. M. and Gladwell, J. 4: 167–260CrossRef
Bonell, M. and Gilmour, D. A. (1980). Variations in short-term rainfall intensity in relation to synoptic climatological aspects of the humid tropical north-east Queensland coast. Singapore J. Trop. Geog. 1(2): 16–30CrossRefGoogle Scholar
Bonell, M., Gilmour, D. A. and Cassels, D. S. (1991). The links between synoptic climatology and the runoff response of rainforest catchments on the wet tropical coast of north-eastern Queensland. In: P. A. Kershaw and G. Werran, (eds.) Australian National Rain Forests Study Report 2: 27–62, Australian Heritage Commission, Canberra, Australia
Bracken, W. E. and Bosart., L. F., (2000). The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128: 353–3762.0.CO;2>CrossRefGoogle Scholar
Brunt, A. T. (1966). Rainfall associated with tropical cyclones in the northeast Australian regions. Aust. Met. Mag., 14: 85–109Google Scholar
Bureau of Meteorology (1989). Darwin Tropical Diagnostic Statement, April 1989, 8(4), Bureau of Meteorology Research Section, Darwin
Burpee, R. W. (1972). The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci. 29: 77–902.0.CO;2>CrossRefGoogle Scholar
Burpee, R. W. (1974). Characteristics of the North African easterly waves during the summers of 1968 and 1969. J. Atmos. Sci. 31: 1556–15702.0.CO;2>CrossRefGoogle Scholar
Carbone, R. E., Cooper, W. A., and Lee, W. C. (1995). On the forcing of flow reversal along the windward slopes of Hawaii. Mon. Weath. Rev., 123: 3466–34802.0.CO;2>CrossRefGoogle Scholar
Carlson, T. N. (1969a) Synoptic histories of three African disturbances that developed into Atlantic hurricanes. Mon. Weath. Rev. 97: 256–2762.3.CO;2>CrossRefGoogle Scholar
Carlson, T. N. (1969b). Some remarks on African disturbances and their progress over the tropical Atlantic. Mon. Weath. Rev. 97: 716–7262.3.CO;2>CrossRefGoogle Scholar
Cerveny, R. S. and Newman, L. E., (2000). Climatological Relationships between Tropical Cyclones and Rainfall. Mon. Weath. Rev., 128: 3329–33362.0.CO;2>CrossRefGoogle Scholar
Chang, C.-P., Erickson, J. E. and Lau, K. M. (1979). Northeasterly cold surges and near – equatorial disturbances over the winter MONEX area during December 1974. Part 1 synoptic aspects. Mon. Weath. Rev., 107, 812–8292.0.CO;2>CrossRefGoogle Scholar
Chang, J.-H. and Lau, L. S. (1993). Appendix: A definition of the Humid Tropics. (In) Hydrology and Water Management in the Humid Tropics: Bonell, M., Hufschmidt, M. M. and Gladwell, J. S. pp. 571–574CrossRef
Chen, L. and Gray, W. M. (1986). Global view of the upper level outflow patterns associated with tropical cyclone intensity change during FGGE. Department of Atmospheric Science Paper No. 392, Colorado State University, Fort Collins, CO, 80523, 126pp
Chen, Y.-L., and Feng, J. (1995). The influences of inversion height on precipitation and airflow over the island of Hawaii. Mon. Weath. Rev., 123: 1660–16762.0.CO;2>CrossRefGoogle Scholar
Chen, S. S. and Houze, R. A. Jr. (1997). Diurnal Variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Int. J. Climatol. 123: 357–388Google Scholar
Churchill, D. D and Houze, R. A. Jr. (1984). Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci. 41: 933–9602.0.CO;2>CrossRefGoogle Scholar
Cifelli, R. and Rutledge, S. A. (1994). Vertical motion structure in maritime continent mesoscale convective systems: Results from a 50 HRz profiler. J. Atmos. Sci. 51: 2631–26522.0.CO;2>CrossRefGoogle Scholar
Cifelli, R. and Rutledge, S. A. (1998). Vertical motion, diabatic heating, and rainfall characteristics in north Australia convective systems. Q. J. R. Meteorol. Soc. 124: 1133–1162CrossRefGoogle Scholar
Concise Experimental Plan, LBA: (1996). The Large Scale Biosphere – Atmosphere Experiment in Amazonia (LBA), Compiled by the LBA Science Planning Group, 40pp. Available from LBA project offices:- Centro de Previsao de Tempo e Estudos Climaticos, Institutio Nacional de Pesquisas Espaciais (INPE), 12630–000 Cachoeira Paulista, SP, Brazil; (EU-LBA office) DLO Winand Staring Centre for Integrated Land, Soil and Water Research, PO Box 125, NL-6700AC Wageningen, The Netherlands and (North American LBA-office) NASA, 300 E Street SW, DC 20546 Washington, USA
Connor, G. J. (1999). An exploratory study into synoptic classification techniques for tropical precipitation forecasting. Aust. Met. Mag., 48: 241–253Google Scholar
Connor, G. J., and Bonell, M. (1998). Air mass and dynamic parameters affecting trade wind precipitation on the northeast Queensland tropical coast. Int. J. Climatol., 18: 1357–13723.0.CO;2-Z>CrossRefGoogle Scholar
Connor, G. J. and Woodcock, F. (2000). The application of synoptic stratification to precipitation forecasting in the trade wind regime. Weath. Forecasting, 15: 276–2972.0.CO;2>CrossRefGoogle Scholar
Cotton, W. R., Lin, M.-S., Mc Anelly, R. L. and Tremback, J. J. (1989). A composite model of mesoscale convective complexes. Mon. Weath. Rev., 117: 765–7832.0.CO;2>CrossRefGoogle Scholar
Cronin, M. F., Bond, N., Fairall, C., Hare, J., McPhaden, M. J. and Weller, R. A. (2002). Enhanced oceanic and atmospheric monitoring underway in eastern pacific. EOS, 83(19), 7 May 2002, pp. 205, 210–211CrossRefGoogle Scholar
Crowe, P. R. (1971). Concepts in Climatology, Longmans, London, 589 pp
Dharssi, I., Kershaw, R. and Tao, W. K. (1997). Sensitivity of a simulated tropical squall line to long-wave radiation. Q.J.R. Meteorol. Soc. 123: 187–206CrossRefGoogle Scholar
Dudhia, J. (1989). Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensionnal model. J. Atmos. Sci. 46: 3077–31072.0.CO;2>CrossRefGoogle Scholar
Duvel, J. P. and Kandel, R. S. (1985). Regional-scale diurnal variations of outgoing infrared radiation observed by METEOSAT. J. Climate Appl. Meteorol. 24: 335–3492.0.CO;2>CrossRefGoogle Scholar
Elassien, A. (1951). Slow thermally or frictionally controlled meridional circulation in acircular vortex. Astrophys. Norv. 5: 19–60Google Scholar
Elsenbeer, H., Cassel, D. K. and Zuniga, L. (1994). Throughfall in the terra firme forest of western Amazonia. J. Hydrol.(NZ), 32(2): 30–44Google Scholar
Eltahir, E. A. B. and Bras, R. L. (1994). Precipitation Recycling in the Amazon Basin. Quart. J. Roy. Meteorol. Soc., 120: 861–880CrossRefGoogle Scholar
Everitt, B. (1980). Cluster analysis. 2nd Edition, Social Science Research Council. Heinemann, London, 136ppCrossRef
Ferraro, R., Vicente, G., Ba, M., Gruber, A., Scofield, R., Li, Q. and Weldon, R. (1999). Satellites Techniques Yield Insight into Devastating Rainfall from Hurricane Mitch. EOS, Trans. Am. Geophy. Un. 80, No 43: 505, 512–514CrossRefGoogle Scholar
Frank, N. L. (1970). Atlantic tropical systems of 1969. Mon. Weath. Rev. 98: 307–3142.3.CO;2>CrossRefGoogle Scholar
Garreaud, R. D. and Wallace, J. M. (1997). The Diurnal March of Convective Cloudiness over the Americas. Mon. Weath. Rev. 125: 3157–31712.0.CO;2>CrossRefGoogle Scholar
Garreaud, R. D. and Wallace, J. M. (1998). Summertime Incursions of Midlatitude Air into Subtropical and Tropical South America. Mon. Weath. Rev., 126: 2713–27332.0.CO;2>CrossRefGoogle Scholar
Garstang, M., Massie, H. L. Jr., Halverson, J., Greco, S. and Scala, J. (1994). Amazon Coastal Squall Lines. Part I: Structure and Kinematics. Mon. Weath. Rev. 122: 608–6222.0.CO;2>CrossRefGoogle Scholar
Giambelluca, T. W., Nullet, M. A. and Schroeder, T. A. (1986). Rainfall Atlas of Hawaii, Dept. of Land and Natural Resources. State of Hawaii, 267 pp
Glahn, H. R. (1985). Yes, precipitation forecasts have improved. Bull. Am. Met. Soc., 66: 820–830Google Scholar
Gong, C. and Eltahir, E.: (1996). Sources of moisture for rainfall in west Africa, Wat. Resour. Res., 32: 3115–3121CrossRefGoogle Scholar
Gray, W. and Jacobson, R. W. (1977). Diurnal variation of deep cumulus convection. Mon. Weath. Rev. 105: 1171–11882.0.CO;2>CrossRefGoogle Scholar
Gray, W. M., Landsea, C. W., Mielke, P. W. Jr. and Berry, K. J. (1994). Predicting Atlantic basin seasonal tropical cyclone activity by June 1. Weath. Forecasting 9: 103–1152.0.CO;2>CrossRefGoogle Scholar
Greco, S., Swap, R., Garstang, M., Ulanski, S., Shipham, M., Harriss, R. C., Talbot, R., Andreae, M. O. and Artaxo, P. (1990). Rainfall and Surface Kinematic Conditions Over Central Amazonia During ABLE 2B. J. Geophys. Res. 95: 17,001–17,014CrossRefGoogle Scholar
Griffiths, J. F. (1972). Climates of Africa, World Survey of Climatology 10, Elsevier, Amsterdam, 604 pp
Haertel, P. T. and Johnson, R. H. (1998). Two-day disturbances in the equatorial western Pacific. Q. J. R. Meteorol. Soc. 124: 615–636CrossRefGoogle Scholar
Hall, A. J. (1984). Hydrology in tropical Australia and Papua New Guinea. Hydrol. Sci. J. 29: 399–423CrossRefGoogle Scholar
Hellin, J., Haight, M. and Marks, F. (1999). Rainfall characteristics of hurricane Mitch. Nature, 399: 316CrossRefGoogle Scholar
Hirschberg, P. A., and Fritsch, J. M. (1991a). Tropopause undulations and the development of extratropical cyclones. Part I: Overview and observations from a cyclone event. Mon. Weath. Rev. 119: 496–5172.0.CO;2>CrossRefGoogle Scholar
Hirschberg, P. A., and Fritsch, J. M., (1991b). Tropopause undulations and the development of extratropical cyclones. Part II: Diagnostic analysis and conceptual modal. Mon. Weath. Rev. 119: 518–5502.0.CO;2>CrossRefGoogle Scholar
Hirschberg, P. A., and Fritsch, J. M., (1993a). A study of the development of extratropical cyclones with an analytic model. Part I: The effects of stratospheric structure. J. Atmos. Sci. 50: 311–3072.0.CO;2>CrossRefGoogle Scholar
Hirschberg, P. A., and Fritsch, J. M., (1993b). On understanding height tendency. Mon. Weath. Rev. 121: 2646–26612.0.CO;2>CrossRefGoogle Scholar
Hirschberg, P. A., and Fritsch, J. M., (1994). A study of the development of extratropical cyclones with an analytic model. Part II: Sensitivity to tropospheric structure and analysis of height tendency dynamics. Mon. Weath. Rev. 122: 2312–23302.0.CO;2>CrossRefGoogle Scholar
Hodnett, M. G., Vendrame, I., O. Marques Filho, A., Oyama, M. D. and Tomasella, J., (1997). Soil water storage and groundwater behaviour in a catenary sequence beneath forest in central Amazonia: I Comparisons between plateau, slope and valley floor, Hydrol. Earth Sys. Sc., 1(2), 265–277CrossRefGoogle Scholar
Holland, G. J. and Merrill, R. T. (1984). On the dynamics of tropical cyclone structure change. Q. J. R. Met. Soc., 110: 723–745CrossRefGoogle Scholar
Holton, J. R. (1979). An Introduction to Dynamic Meteorology, Academic Press, New York, 309pp
Hoskins, B. J., Draghici, I. and Davies, H. C. (1978). A new look at the Omega equation. Q. J. R. Met. Soc. 104: 31–38CrossRefGoogle Scholar
Hoskins, B. L., McIntyre, M. E., and Robertson, A. W. (1985). On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111: 877–946CrossRefGoogle Scholar
Hoskins, B. J., Pedder, M. and Wyn, Jones D. 2003. The omega equation and Potential Vorticity. Q. J. R. Meteorol. Soc. 129: 3277–3303CrossRefGoogle Scholar
Houze, R. A. (1989). Observed structure of mesoscale covective systems and implications for large-scale heating. Q. J. R. Met. Soc. 115: 425–461CrossRefGoogle Scholar
Houze, R. A. and Rappaport, E. N. (1984). Air motions and precipitation structure of an early summer squall line over the eastern tropical Atlantic. J. Atmos. Sci. 41: 553–5742.0.CO;2>CrossRefGoogle Scholar
Jackson, I. J. (1986). Relationships between raindays, mean daily intensity and monthly rainfall in the tropics. J. Climatol. 6: 117–134CrossRefGoogle Scholar
Jackson, I. J. (1988). Daily rainfall over Northern Australia: deviations from the world pattern. J. Climatol. 8: 463–476CrossRefGoogle Scholar
Jackson, I. J. (1989). Climate, Water and Agriculture in the Tropics, 2nd edn., Longman, London
Jackson, I. J. and Weinand, H. (1994). Towards a classification of tropical rainfall stations. Int. J. Climatol. 14: 263–286CrossRefGoogle Scholar
Jackson, I. J. and Weinand, H. (1995). Classification of tropical rainfall stations: a comparison of clustering techniques. Int. J. Climatol. 15: 985–994CrossRefGoogle Scholar
Janowiak, J. E., Arkin, P. A. and Morrissey, M. (1994). An examination of the diurnal cycle in oceanic tropical rainfall using satellite and in situ data. Mon. Weath. Rev. 122: 2296–23112.0.CO;2>CrossRefGoogle Scholar
Kodama, K. and Barnes, G. M. (1997). Heavy rain events over the south-facing slopes of Hawaii: Attendant conditions. Weath. Forecasting, 12: 347–3672.0.CO;2>CrossRefGoogle Scholar
Laing, A. G. and Fritsch, J. M. (1993). Mesoscale convective complexes in Africa, Mon. Weath. Rev., 121: 2254–2263, 19932.0.CO;2>CrossRefGoogle Scholar
Landsea, C. W., Gray, W. M., Mielke, P. W. Jr. and Berry, K. J. (1998). Seasonal forecasting of Atlantic hurricane activity. Weather 49: 273–283CrossRefGoogle Scholar
Lau, N.-P., Chang, C.-P. And Chan, P. H. (1983). Short-term planetary scale interactions over the tropics and mid latitudes. Part II: Winter MONEX periods. Mon. Weath. Rev., 111: 1372–13882.0.CO;2>CrossRefGoogle Scholar
Lean, J. and Rowntree, P. R. (1997). Understanding the sensitivity of a GCM simulation of Amazonian deforestation to the specification of vegetation and soil characteristics. J. Climate, 10: 1216–12352.0.CO;2>CrossRefGoogle Scholar
Lean, J., Bunton, C. B., Nobre, C. A. and Rowntree, P. R.: (1996). The simulated impact of Amazonian deforestation on climate using measured ABRACOS vegetation characteristics. In: Amazonian Deforestation and Climate, Gash, J. H. C., Nobre, C. A., Roberts, J. M. and Victoria, R. L., eds., Wiley, Chichester, pp. 549–576
Lebel, T., Taupin, J. D. and D'Amato, N. (1997). Rainfall monitoring during HAPEX-Sahel. 1. General conditions and climatology. J. Hydrol. 188–189: 74–96CrossRefGoogle Scholar
Lebel, T., Braud, I. and Creutin, J.-D. (1998). A space-time rainfall disaggregation model adapted to Sahelian mesoscale convective complexes. Wat. Resour. Res. 34: 1711–1726CrossRefGoogle Scholar
Lenters, J. D. and Cook, K. H. (1999). Summertime Precipitation Variability over South America: Role of the Large-Scale Circulation. Mon. Weath. Rev. 127: 409–4312.0.CO;2>CrossRefGoogle Scholar
Leopold, L. B. (1949). The interaction of trade wind and sea breeze, Hawaii. J. Meteorol., 6: 312–3202.0.CO;2>CrossRefGoogle Scholar
Lockwood, J. G. (1984). The Southern Oscillation and El Niño. Progress in Physical Geography 8(1): 102–110CrossRefGoogle Scholar
Lyons, S. W. (1982). Empirical orthogonal function analysis of Hawaiian rainfall. J. Appl. Meteorol., 21: 1713–17292.0.CO;2>CrossRefGoogle Scholar
Lyons, W. F. and Bonell, M. (1992). Daily, meso-scale rainfall in the tropical wet/dry climate of the Townsville area, North-East Queensland during the 1988–1989 wet season: synoptic-scale airflow considerations. Int. J. Climatol. 12: 655–684CrossRefGoogle Scholar
Lyons, W. F. and Bonell, M. (1994). Regionalization of daily mesoscale rainfall in the tropical wet/dry climate of the Townsville area of North-East Queensland during the 1988–1989 wet season. Int. J. Climatol. 14: 135–163CrossRefGoogle Scholar
Machado, L. A. T., Rossow, W. B., Guedes, R. L. and Walker, A. W. (1998). Life cycle variations of mesoscale convective systems over the Americas. Mon. Weath. Rev. 126: 1631–16542.0.CO;2>CrossRefGoogle Scholar
Maddox, R. A. (1980). Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61: 1374–13872.0.CO;2>CrossRefGoogle Scholar
Manton, M. J. and Bonell, M. (1993). Climate and Rainfall Variability in the Humid Tropics. (In) Hydrology and Water Management in the Humid Tropics: Bonell, M., Hufschmidt, M. M. and Gladwell, J. S. 2: 13–33CrossRef
Mapes, B. E. and Houze, R. A. Jr. (1993). Cloud clusters and superclusters over the oceanic warm pool. Mon. Weath. Rev. 121: 1398–14152.0.CO;2>CrossRefGoogle Scholar
Marengo, J., Fisch, G. F., Vendrame, I., Cervantes Dias, P. G., Morales. C. A, (2001). Diurnal variability of rainfall in Southwest Amazonia during the LBA-WET AMC campaign of the summer of 1999. Unpublished manuscript
Matsuno, T. (1966). Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Japan 44: 25–42CrossRefGoogle Scholar
Matthews, A. J. and Kiladis, G. N. (1999). The Tropical-Extratropical Interaction between High-Frequency Transients and the Madden-Julian Oscillation. Mon. Weath. Rev. 127: 661–6772.0.CO;2>CrossRefGoogle Scholar
McBride, J. L. (1983). Satellite observation of the southern hemisphere monsoon during winter MONEX, Tellus, 35A (3): 189–197CrossRefGoogle Scholar
McBride, J. L. and Keenan, T. D., (1982). Climatology of tropical cyclone genesis in the Australian region. J. Climatol., 2: 13–33CrossRefGoogle Scholar
McRae, J. N. (1956). The formation and development of tropical cyclones during the 1955–56 summer in Australia. Proceedings of the Tropical Cyclone Symposium Brisbane 1956, Bureau of Meteorology, Australia, 233–262
Merritt, E. S. (1964). Easterly waves and perturbations, a reappraisal. J. Applied Met. 4: 367–3822.0.CO;2>CrossRefGoogle Scholar
Molinari, J., Knight, D., Dickinson, M., Vollaro, D. and Skubis, S. (1997). Potential Vorticity, Easterly Waves, and Eastern Pacific Tropical Cyclogenesis. Mon. Weath. Rev. 125: 2699–27082.0.CO;2>CrossRefGoogle Scholar
Molinari, J., Vollaro, D., Skubis, S and Dickinson, M. (2000). Origins and Mechanisms of Eastern Pacific Tropical Cyclogenesis: A Case Study. Mon. Weath. Rev., 128: 125–1392.0.CO;2>CrossRefGoogle Scholar
Molion, L. C. B.: (1993). Amazonia rainfall and its variability. In: Hydrology and Water Management in the Humid Tropics – Hydrological Research Issues and Strategies for Water Management, Bonell, M., Hufschmidt, M. M. and Gladwell, J. S., eds., Cambridge, pp. 99–111CrossRef
Neumann, C. J. (1979). On the use of deep layer mean geopotential height fields in statistical prediction of tropical cyclone motion. 6th Conference on Probability and Statistics in Atmospheric Sciences, Amer. Met. Society, Boston 32–38Google Scholar
Observatoire Réunionnais de l'EAU (1994) Le cyclone tropical Colina et les évènements hydrologiques majeurs du 1er trimestre 1993. Etude hydrologique générale
Ojo, O. (1977). The Climate of West Africa, Heinemann, London, 219 pp
Olsen, D. A., Junker, N. W., and Korty, B. (1995). Evaluation of 33 years of quantitative precipitation forecasting at NMC. Weath. Forecasting, 10: 498–5112.0.CO;2>CrossRefGoogle Scholar
Omotosho, J. B. (1985). The separate contributions of line squalls, thunderstorms and the monsoon to the total rainfall in Nigeria, J. Climatol., 5: 543–552CrossRefGoogle Scholar
Orlanski, I. (1975). A relatipnal subdivision of scales for atmosphere processes. Bull. Amer. Met. Soc. 56: 527–530Google Scholar
Palmen., E. (1948). On the formation and structure of tropical cyclones. Geophysics, 3, 26–38Google Scholar
Pielke, R. A., Avissar, R., Raupach, M., Dolman, A. J., Zeng, X. and Denning, A. S. (1998). Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Global Change Biology 4: 461–475CrossRefGoogle Scholar
Pielke, R. A., Walko, R. L., Steyaert, L. T., Vidale, P. L., Liston, G. E., Lyons, W. A. and Chase, T. N. (1999). The Influence of Anthropogenic; Landscape Changes on Weather in South Florida. Am. Meteorol. Soc. 127: 1663–1672Google Scholar
Putty, M. R., Prasad, V. S. R. K. and Ramaswamy, R., (2000). A study of the rainfall intensity pattern in western Ghats, Karnataka. In: Proc. Workshop on Watershed Development in Western Ghats Region of India, 28–29 February 2000, Varadan, K. M. (Ed.), Centre for Water Resources Development and Management, Kozhikode-673 571, Kerala.: pp 44–51
Pytharoulis, I. and Thorncroft, C. D, (1999). The low-level structure of African easterly waves in 1995. Mon. Weath. Rev. 127: 2266–22802.0.CO;2>CrossRefGoogle Scholar
Ramage, C. S., (1968). Role of a ‘Maritime Continent’ in the atmospheric circulation. Mon. Weath. Rev. 96: 365–3702.0.CO;2>CrossRefGoogle Scholar
Ramage, C. S., and Schroeder, T. A. (1999). Trade wind rainfall atop Mount Waialeale, Kauai. Mon. Weath. Rev. 127: 2217–22262.0.CO;2>CrossRefGoogle Scholar
Rasmussen, R. M., Smolarkiewicz, P. K., and Warner, J. (1989). On the dynamics of Hawaiian cloud bands: Comparison of model results with observations and island climatology. J. Atmos. Sci. 46: 1589–16082.0.CO;2>CrossRefGoogle Scholar
Raymond, D. J. (1994). Convective processes and tropical atmospheric circulations. Q. J. R. Meteorol. Soc. 120: 1431–1455CrossRefGoogle Scholar
Raymond, D. J. and Lewis, S. A. (1995). Rotating convective disturbances in the trades. Q. J. R. Meteorol. Soc. 121: 271–299CrossRefGoogle Scholar
Reed, R. J. and Recker, E. E. (1971). Structure and properties of synoptic wave disturbance in the equatorial western Pacific. J. Atmos. Sci. 28: 1117–11332.0.CO;2>CrossRefGoogle Scholar
Reed, R. J., Hollingsworth, A., Heckley, W. and Delsol, F. (1988a). An evaluation of the performance of the ECMWF forecasting operational system in analyzing and forecasting easterly wave disturbances over Africa and the tropical Atlantic. Mon. Weath. Rev. 116: 824–8652.0.CO;2>CrossRefGoogle Scholar
Reed, R. J., Klinker, E. and Hollingsworth, A. (1988b). The structure and characteristics of African easterly wave disturbances as determined from the ECMWF operational analysis/forecast system. Meteor. Atmos. Phys. 38: 22–33CrossRefGoogle Scholar
Riehl, H. (1954). Tropical meteorology. McGraw-Hill, New York
Ritchie, E. A. and Holland, G. H. (1999). Large-Scale Patterns Associated with Tropical Cyclogenesis in the Western Pacific. Mon. Weath. Rev. 127: 2027–20432.0.CO;2>CrossRefGoogle Scholar
Roux, F. (1998). The oceanic mesoscale convective system observed with airborne Doppler radars on 9 February 1993 during TOGA-COARE: Structure, evolution and budgets. Q. J. R. Meteorol. Soc. 124: 585–614Google Scholar
Sadler, J. C. (1967). On the origin of tropical vortices. Proc. Of working panel on tropical dynamic meteorology, Monterey, California, Navy Weather Research Facility, Report 12-1167-132, 39–75. Available from the department of Meteorology, University of Hawaii
Sadler, J. C. (1975a). The upper tropospheric circulation over the global tropics, Dept. of Meteorolgy, University of Hawaii
Sadler, J. C. (1975b). The monsoon circulation and cloudiness over the GATE area. Mon. Weath. Rev. 104: 369–3872.0.CO;2>CrossRefGoogle Scholar
Sadler, J. C. (1978). Mid-season typhoon development and intensity changes and the Tropical Upper Tropospheric Trough. Mon. Weath. Rev. 106: 1137–11522.0.CO;2>CrossRefGoogle Scholar
Sadler, J. C., Lander, M. A., Hori, A. M. and Oda, L. K. (1987). Tropical Marine Climatic Atlas, Volume I (Indian Ocean and Atlantic Ocean) and Volume II (Pacific Ocean), Department of Meteorology, University of Hawaii
Saito, K., Keenan, T., Holland, G. and Puri, K. (2001). Numerical Simulation of the Diurnal Evolution of Tropical Island Convection over the Maritime Continent. Mon. Weath. Rev. 129: 378–4002.0.CO;2>CrossRefGoogle Scholar
Salati, E., Dallo'Olio, A., Marsui, E. and Gat, J. R. (1979). Recycling of Water in the Amazon Basin: An Isotope Study. Wat. Resour. Res. 15: 1250–1258CrossRefGoogle Scholar
Shapiro, L. J. (1986). The three-dimensionnal structure of synoptic-scale disturbances over the tropical Atlantic. Mon. Weath. Rev. 114: 1876–18912.0.CO;2>CrossRefGoogle Scholar
Shay, L. K. (1988). Ocean Processes excited by tropical cyclones. Rapporteur Reports of the Fourth WMO International Workshop on Tropical Cyclones (IWTC-IV), Haikou, China
Shinoda, M., Okatani, T. and Saloum, M. (1999). Diurnal variations of rainfall over Niger in the West African Sahel: a comparison between wet and drought Years. Int. J. Climatol. 19: 81–943.0.CO;2-F>CrossRefGoogle Scholar
Smolarkiewicz, P. K., Rasmussen, R. M., and Clark, T. L. (1988). On the dynamics of Hawaiian cloud bands: Island forcing. J. Atmos. Sci., 45: 1872–19052.0.CO;2>CrossRefGoogle Scholar
Sumner, G. N. (1988). Precipitation – Processes and Analyses. Wiley, Chichester
Sumner, G. N. and Bonell, M. (1986). Circulation and daily rainfall in the north Queensland wet season 1979–1982. J. Climatol. 6: 531–549CrossRefGoogle Scholar
Sumner, G. N. and Bonell, M. (1988). Variation in the spatial organisation of daily rainfall during the north Queensland wet season, 1979–82. Theor. Appl. Climatol. 39: 59–72CrossRefGoogle Scholar
Takehashi, T. (1986). Wind shear effects on water accumulation and rain duration in Hawaiian warm clouds. J. Meteorol. Soc. Japan, 64: 575–584CrossRefGoogle Scholar
Tao, W.-K., Lang, S., Simpson, J., Sui, C.-H., Ferrier, B. and Chou, M.-D. (1996). Mechanisms of cloud-radiation interaction in the tropical latitudes. J. Atmos. Sci. 53: 2624–26512.0.CO;2>CrossRefGoogle Scholar
Taylor, C. M. and Lebel, T. (1998). Observational Evidence of Persistent Convective-Scale Rainfall Patterns. Mon. Weath. Rev. 126: 1597–16072.0.CO;2>CrossRefGoogle Scholar
Taylor, C. M., Said, F. and Lebel, T. (1997). Interactions between the Land Surface and Mesoscale Rainfall Variability during HAPEX-Sahel. Mon. Weath. Rev. 125: 2211–22272.0.CO;2>CrossRefGoogle Scholar
Taylor, C. M., Clark, D. B. and Cox, P. M. (2000). Land surface controls on west African rainfall in a GCM. In: World Meteorological Organisation (2000) Proceedings of the workshop on west African monsoon variability and predictability (WAMAP). Geneva, WMO Tropical Meteorology Research Programme Report Series 63: 43–46
Thauvin, V. and Lebel, T. (1991). International workshop on precipitation measurement IV: EPSAT-NIGER- Study of rainfall over the Sahel at small time steps using a dense network of recording raingauges. Hydrol. Proc. 5: 251–260CrossRefGoogle Scholar
Thorncroft, C. D. (1995). An idealized study of African easterly waves. III: More realistic basic states. Q. J. R. Meteorol. Soc. 121: 1589–1614CrossRefGoogle Scholar
Thorncroft, C. D. and Hoskins, B. J. (1994a) An idealized study of African easterly waves. I: A linear view. Q. J. R. Meteorol. Soc. 120: 953–982CrossRefGoogle Scholar
Thorncroft, C. D. and Hoskins, B. J. (1994b). An idealized study of African easterly waves. II: A nonlinear view. Q. J. R. Meteorol. Soc. 120: 983–1015CrossRefGoogle Scholar
Thorncroft, C. D. and Rowell, D. P. (1998). Interannual Variability of African Wave Activity in a General Circulation Model. Int. J. Climatol. 18: 1305–13233.0.CO;2-N>CrossRefGoogle Scholar
Thorncroft, C. D. and Hodges, K. (2001). African Easterly Wave Variability and Its Realtionship to Atlantic Tropical Cyclone Activity. J. Clim., 14: 1166–11792.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. (1999). Atmospheric Moisture Recycling: Role of Advection and Local Evaporation. Am. Meteorol. Soc. 12: 1368–1381Google Scholar
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Am. Sci. Assoc. J. 58: 236–244CrossRefGoogle Scholar
Webster, P. J. and Lukas, R. (1992). TOGA COARE: The coupled ocean-atmosphere response experiment. Bull. Am. Meteorol. Soc. 73: 1377–14162.0.CO;2>CrossRefGoogle Scholar
Webster, P. J. and Stephens, G. L. (1980). Tropical upper-tropospheric extended clouds: Inferences from Winter MONEX. J. Atmos. Sci. 37: 1521–1541CrossRefGoogle Scholar
Williams, W. T. (ed.) (1976). Pattern Analysis in Agricultural Science. CSIRO and Elsevier, Melbourne
Wu, M. C., and Chan, J. C. L. (1997). Upper-Level features associated with winter monsoon surges over South China. Mon. Weath. Rev. 125: 317–3402.0.CO;2>CrossRefGoogle Scholar
Yuter, S. E. and Houze, R. A. Jr. (1998). The natural variability of precipitating clouds over the western pacific warm pool. Q. J. R. Meteorol. Soc. 124: 53–99CrossRefGoogle Scholar
Zheng, X. and Eltahir, E. A. B. (1998). The role of vegetation in the dynamics of west African monsoons. J. Climate 11: 2078–2096CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×