Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-15T17:41:38.324Z Has data issue: false hasContentIssue false

14 - Pollinators as drivers of plant distribution and assemblage into communities

Published online by Cambridge University Press:  05 January 2012

Sébastien Patiny
Affiliation:
Université de Mons-Hainaut, Belgium
Get access

Summary

Introduction

Understanding the factors that mold species distributions and communities has a long tradition in ecology and biogeography (Wallace 1876; Clements 1916; Phillips 1931). Recently, this topic has greatly benefited from technical and statistical developments, notably those that allow the prediction of the nature and distribution of species assemblages under different environmental conditions (Ferrier and Guisan 2006). Given the current perspective of climate change, this matter is critical for yielding realistic forecasts of the responses of species and communities to global change scenarios (Adler and HilleRisLambers 2008). However, whereas a large number of studies have focused on abiotic drivers, such as climatic (Guisan and Zimmermann 2000) or edaphic (Alvarez et al. 2009) factors, it is widely recognized that biotic factors can additionally strongly influence the distribution and assemblage of species (Pulliam 2000; Lortie et al. 2004). For example several studies have emphasized the importance of competitors and facilitators (Leathwick and Austin 2001; Heikkinen et al. 2007, Pellissier et al. 2010a) in delimiting species ranges. Pollination is among the main biotic factors that control the ecology, distribution, and assemblage of vascular plants. Whereas the pollen of gymnosperm species is predominantly dispersed by wind, the majority of angiosperms are dispersed by animal vectors (Barth 1991). Despite the recognition of pollination as a major facet of plant ecology, the importance of pollinators for predicting plant distribution has not been thoroughly investigated in recent decades. There is a strong need to characterize plant–pollinator interactions at large spatial scales and especially with respect to dynamic communities, whose compositions and patterns of relative species abundance vary in time and space.

Recent research on pollinators, while considering spatial variation, has mostly focused on how coevolution with pollinators can generate within-species geographic variation in the morphology of plant species, leading to plant speciation. In contrast, studies on the ecological links between plant and pollinator species have generally focused on a limited number of taxa and sites, with temporal replicates instead of observations across geographic space. Yet, the intensity and nature of interactions between plants and their pollinators often varies spatially, possibly because the ranges of interacting species do not completely overlap (Thompson 1988) and can cause plant fitness variation across its range. For instance, Espíndola et al. (2011) showed, by examining the entire distribution range of the lure-and-trap Arum maculatum, that pollination was not accomplished by a single specialized fly species as previously thought; instead, pollination was achieved by two fly species that showed distinct regional relative densities, despite being sympatric over a large portion of the plant’s distribution. Segregation of sites with either one or two pollinators followed the cline of environmental gradients related to precipitation. But even for less specialized species, changes in pollinators’ density along environmental gradients can, in turn, affect the pollination of the species and cause pollen limitation (Gómez et al. 2010). In our opinion, the lack of spatial replicates in biotic pollination studies can be mostly explained by the large sampling effort required to properly describe the plant–pollinator network throughout the entire distribution range of a plant. Another frequent bias in such studies is the absence of an accurate examination of pollen transfer, which is associated with plant fitness (Alarcón 2010). Observing the biotic vectors that visit flowers does not necessarily provide information on the nature and efficiency of the pollination process (e.g. the visitors could steal nectar without pollinating the plant, or local change in pollinator behavior could modify the intensity of pollination). Although a plant may attract a wide range of flower visitors, only a few groups can act as efficient pollinators (Bawa 1990). Consequently, drawing conclusions about the dependency of plants on particular biotic vectors may be misleading if pollination efficiency is not examined for each floral visitor (Reynolds and Fenster 2008; Kay and Sargent 2009).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, P. B.HilleRisLambers, J. 2008 The influence of climate and species composition on the population dynamics of ten prairie forbsEcology 89 3049CrossRefGoogle Scholar
Aizen, M. A. 2003 Down-facing flowers, hummingbirds and rainTaxon 52 67580CrossRefGoogle Scholar
Alarcón, R. 2010 Congruence between visitation and pollen-transport networks in a California plant-pollinator communityOikos 119 35CrossRefGoogle Scholar
Alvarez, N.Thiel-Egenter, C.Tribsch, A.Holderegger, R.Manel, S.Schönswetter, P.Taberlet, P.Brodbeck, S.Gaudeul, M.Gielly, L.Küpfer, P.Mansion, G.Negrini, R.Paun, O.Pellecchia, M.Rioux, D.Schüpfer, F.Van Loo, M.Winkler, M.Gugerli, F. 2009 History or ecology? Substrate type as a major driver of spatial genetic structure in Alpine plantsEcology Letters 12 632CrossRefGoogle ScholarPubMed
Araújo, M. B.Guisan, A. 2006 Five (or so) challenges for species distribution modellingJournal of Biogeography 33 1677CrossRefGoogle Scholar
Armbruster, W. S.Edwards, M. E.Debevec, E. M. 1994 Floral character displacement generates assemblage structure of Western Australian Triggerplants (Stylidium)Ecology 75 315CrossRefGoogle Scholar
Arnold, S. E. J.Savolainen, V.Chittka, L. 2009 Flower colours along an alpine altitude gradient, seen through the eyes of fly and bee pollinatorsArthropod–Plant Interaction 3 27CrossRefGoogle Scholar
Arroyo, M. T. K.Armesto, J. J.Primack, R. 1982 Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variationAmerican Journal of Botany 69 82CrossRefGoogle Scholar
Ashman, T. L.Knight, T. M.Steets, J. A.Amarasekare, P.Burd, M.Campbell, D. R.Dudash, M. R.Johnston, M. O.Mazer, S. J.Mitchell, R. J.Morgan, M. T.Wilson, W. G. 2004 Pollen limitation of plant reproduction: ecological and evolutionary causes and consequencesEcology 85 2408CrossRefGoogle Scholar
Baker, H. G. 1955 Self-compatibility and establishment after long-distance dispersalEvolution 9 347Google Scholar
Baker, H. G.Hurd, P. D. JR. 1968 Intrafloral ecologyAnnual Review of Entomology 13 385CrossRefGoogle Scholar
Barth, F. G. 1991 Insects and Flowers: the Biology of a PartnershipPrinceton, NJPrinceton University PressGoogle Scholar
Bassin, L.Alvarez, N.Pellissier, L.Triponez, Y. 2011 Ecological niche overlap in sister species: how do oil-collecting bees Macropis europaea and M. fulvipes (Hymenoptera: Melittidae) avoid competition and hybridization?Apidologie 42CrossRefGoogle Scholar
Bawa, K. S. 1990 Plant–pollinator interaction in tropical rain forestsAnnual Review of Ecology and Systematics 21 399422CrossRefGoogle Scholar
Botes, C.Johnson, S. D.Cowling, R. M. 2008 Coexistence of succulent tree aloes: partitioning of bird pollinators by floral traits and flowering phenologyOikos 117 875CrossRefGoogle Scholar
Campbell, D.Bischoff, M.Lord, J.Robertson, A. 2010 Flower color influences insect visitation in alpine New ZealandEcology 91 2638CrossRefGoogle ScholarPubMed
Cavender-Bares, J.Kozak, K. H.Fine, P. V. A.Kembel, S. W. 2009 The merging of community ecology and phylogenetic biologyEcology Letters 12 693CrossRefGoogle ScholarPubMed
Clements, F. E. 1916 Plant Succession: an Analysis of the Development of VegetationWashington, DCCarnegie Institution of WashingtonCrossRefGoogle Scholar
Collins, P. D.Harper, K. T.Pendelton, B. K. 1983 Comparative life history and floral characteristics of desert and mountain floras in UtahGreat Basin Naturalist 43 385Google Scholar
Cosacov, A.Naretto, J.Cocucci, A. A. 2008 Variation of pollinator assemblages and pollen limitation in a locally specialized system: the oil-producing Nierembergia linariifolia (Solanaceae)Annals of Botany 102 723CrossRefGoogle Scholar
Cruden, R. W. 1972 Pollinators in high-elevation ecosystems: relative effectiveness of birds and beesScience 176 1439CrossRefGoogle ScholarPubMed
Cruden, R. W. 1976 Variation, Breeding and Conservation of Tropical TreesBurley, J.Styles, B. T.Academic PressGoogle Scholar
Cruden, R. W.Kinsman, S.Stockhouse, II R. E.Linhart, Y. B. 1976 Fecundity, and the distribution of moth-flowered plantsBiotropica 8 20410CrossRefGoogle Scholar
Dalsgaard, B.González, A. M. M.Olesen, J. M.Ollerton, J.Timmermann, A.Andersen, L.H.Tossas, A.G. 2009 Plant–hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird sizeOecologia 159 757CrossRefGoogle ScholarPubMed
De Jager, M. L.Dreyer, L. L.Ellis, A. G. 2011 Do pollinators influence the assembly of flower colours within plant communities?Oecologia 166 543CrossRefGoogle ScholarPubMed
Devoto, M.Medan, D.Montaldo, N. H. 2005 Patterns of interaction between plants and pollinators along an environmental gradientOikos 109 461CrossRefGoogle Scholar
Dillon, M. E.Frazier, M. R.Dudley, R. 2006 Into thin air: physiology and evolution of alpine insectsIntegrative and Comparative Biology 46 49CrossRefGoogle ScholarPubMed
Elberling, H.Olesen, J. M. 1999 The structure of a high latitude plant-flower visitor system: the dominance of fliesEcography 22 314CrossRefGoogle Scholar
Elton, C. 1927 Animal EcologyLondon, UKSidgwick and JacksonGoogle Scholar
Espíndola, A.Pellissier, L.Alvarez, N. 2011 Variation in the proportion of flower visitors of A. maculatum along its distributional range in relation with community-based climatic niche analysisOikos 120 728CrossRefGoogle Scholar
Faegri, K.van der Pijl, L. 1979 The Principles of Pollination EcologyOxford, UKPergamon PressGoogle Scholar
Feldman, T. S.Morris, W. F.Wilson, W. G. 2004 When can two plant species facilitate each other’s pollination?Oikos 105 197CrossRefGoogle Scholar
Fenster, C. B.Armbruster, W. S.Wilson, P.Dudash, M. R.Thompson, J. D. 2004 Pollination syndromes and floral specializationsAnnual Review of Ecology, Evolution and Systematic 35 375CrossRefGoogle Scholar
Ferrier, S.Guisan, A. 2006 Spatial modelling of biodiversity at the community levelJournal of Applied Ecology 43 393CrossRefGoogle Scholar
Fontaine, C.Dajoz, I.Meriguet, J.Loreau, M. 2006 Functional diversity of plant–pollinator interaction webs enhances the persistence of plant communitiesPLoS Biology 4 129Google ScholarPubMed
Ghazoul, J. 2006 Floral diversity and the facilitation of pollinationJournal of Ecology 94 295CrossRefGoogle Scholar
Gómez, J. M.Abdelaziz, M.Lorite, J.Muñoz-Pajares, A. J.Perfectti, F. 2010 Change in pollinator fauna cause spatial variation in pollen limitationJournal of Ecology 98 1243CrossRefGoogle Scholar
González, A. M. M.Dalsgaard, B.Ollerton, J.Timmermann, A.Olesen, J. M.Andersen, L.Tossas, A. G. 2009 Effects of climate on pollination networks in the West IndiesJournal of Tropical Ecology 25 493506CrossRefGoogle Scholar
Grant, V.Grant, K. A. 1965 Flower Pollination in the Phlox FamilyNew YorkColumbia University PressGoogle Scholar
Grant, V.Grant, K. A. 1967 Effects of hummingbird migration on plant speciation in the California floraEvolution 21 457CrossRefGoogle ScholarPubMed
Guisan, A.Zimmermann, N. E. 2000 Predictive habitat distribution models in ecologyEcological Modelling 135 147CrossRefGoogle Scholar
Guisan, A.Thuiller, W. 2005 Predicting species distribution: offering more than simple habitat modelsEcology Letters 8 993CrossRefGoogle Scholar
Gumbert, A.Kunze, J.Chittka, L. 1999 Floral colour diversity in plant communities, bee colour space and a null modelProceedings of the Royal Society of London, Series B, Biological Sciences 266 1711CrossRefGoogle Scholar
Hainsworth, F. R.Wolf, L. L. 1972 Power for hovering flight in relation to body size in hummingbirdsThe American Naturalist 106 589CrossRefGoogle Scholar
Harder, L. D.Johnson, S. D. 2009 Darwin’s beautiful contrivances: evolutionary and functional evidence for floral adaptationNew Phytologist 183 530CrossRefGoogle ScholarPubMed
Harling, J. 1968 Meterological factors affecting the activity of night flying macrolepidopteraEntomologist 101 83Google Scholar
Hegland, S. J.Grytnes, J. A.Totland, Ø 2009 The relative importance of positive and negative interactions for pollinator attraction in a plant communityEcological Research 24 929CrossRefGoogle Scholar
Heikkinen, R. K.Luoto, M.Virkkala, R.Pearson, R. G.Körber, J. H. 2007 Biotic interactions improve prediction of boreal bird distributions at macroscalesGlobal Ecology and Biogeography 16 754CrossRefGoogle Scholar
Heithaus, R. E. 1974 The role of plant–pollinator interactions in determining community structureAnnals of the Missouri Botanical Garden 61 675CrossRefGoogle Scholar
Hutchinson, G. E. 1957 Concluding remarksCold Spring Harbor Symposia on Quantitative Biology 22 145CrossRefGoogle Scholar
Johnson, S. D.Bond, W. J. 1992 Habitat dependent pollination success in a Cape orchidOecologia 91 455CrossRefGoogle Scholar
Johnson, S. D.Peter, C. I.Nilsson, L. A.Ågren, J. 2003 Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plantsEcology 84 291927CrossRefGoogle Scholar
Johnson, S. D. 2010 The pollination niche and its role in the diversification and maintenance of the southern African floraProceedings of the Royal Society of London, Series B, Biological Sciences 365 499Google ScholarPubMed
Johnson, S. D.Anderson, B. 2010 Coevolution between food-rewarding flowers and their pollinatorsEvolution, Education and Outreach 3 329CrossRefGoogle Scholar
Juillet, N.Gonzalez, M. A.Page, P. A.Gigord, L. D. B. 2007 Pollination of the European food-deceptive (Orchidaceae): the importance of nectar-producing neighbouring plantsPlant Systematics and Evolution 265 123CrossRefGoogle Scholar
Kay, K. M.Sargent, R. D. 2009 The role of animal pollination in plant speciation: integrating ecology, geography, and geneticsAnnual Review of Ecology, Evolution, and Systematics 40 63756CrossRefGoogle Scholar
Kearns, C. A. 1992 Anthophilous fly distribution across an elevation gradientAmerican Midland Naturalist 127 172CrossRefGoogle Scholar
Kembel, S. W. 2009 Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure testsEcology Letters 12 949CrossRefGoogle ScholarPubMed
Kevan, P. G. 1972 Insect pollination of high arctic flowersJournal of Ecology 60 831CrossRefGoogle Scholar
Kleyer, M.Bekker, R. M.Knevel, I. C.Bakker, J. P.Thompson, K.Sonnenschein, M.Poschold, P.Van Groenendael, J. M.Klimes, L.Klimesova, J.Klotz, S.Rusch, G. M.Hermy, M.Adriaens, D.Boedeltje, G.Bossuyt, B.Dannemann, A.Endels, P.Götzenberger, L.Hodgson, J. G.Jackel, A.-K.Kühn, I.Kunzmann, D.Ozinga, W. A.römermann, C.Stadler, M.Schlegelmilch, J.Steendam, H. J.Tackenberg, O.Wilmann, B.Cornelissen, J. H. C.Eriksson, O.Garnier, E.Peco, B. 2008 The LEDA Traitbase: a database of life-history traits of Northwest European floraJournal of Ecology 96 1266CrossRefGoogle Scholar
Klotz, S.Kühn, I.Durka, W. 2002 BIOLFLOR – eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38 Bonn, GermanyBundesamt für Naturschutz.Google Scholar
Knight, T. M.Steets, J. A.Vamosi, J. C.Mazer, S. J.Burd, M.Campbell, D. R.Dudash, M. R.Johnston, M.Mitchell, R. J.Ashman, T. L. 2005 Pollen limitation of plant reproduction: ecological and evolutionary causes and consequencesAnnual Review of Ecology, Evolution and Systematics 36 467CrossRefGoogle Scholar
Körner, C. 2003 Alpine Plant LifeBerlin, GermanySpringerCrossRefGoogle Scholar
Kraft, N. J. BRenato, V.David, D. 2008 Functional traits and niche-based tree community assembly in an Amazonian forestScience 322 5802CrossRefGoogle Scholar
Lavorel, S.McIntyre, S.Landsberg, J.Forbes, T. D. A. 1997 Plant functional classifications: from general groups to specific groups based on response to disturbanceTrends in Ecology and Evolution 12 474CrossRefGoogle ScholarPubMed
Lázaro, A.Hegland, S. J.Totland, Ø 2008 The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communitiesOecologia 157 249CrossRefGoogle ScholarPubMed
Leathwick, J. R.Austin, M. P. 2001 Competitive interactions between tree species in New Zealand’s old-growth indigenous forestsEcology 82 2560CrossRefGoogle Scholar
Lortie, C. J.Brooker, R. W.Choler, P.Kikvidze, Z.Michalet, R.Pugnaire, F. I.Callaway, R. M. 2004 Rethinking plant community theoryOikos 107 4338CrossRefGoogle Scholar
MacArthur, R. H.Levins, R. 1967 The limiting similarity, convergence, and divergences of coexisting speciesThe American Naturalist 101 377CrossRefGoogle Scholar
Mani, M. S. 1962 Introduction to High Altitude Entomology: Insect Life Above Timberline in the North-Western HimalayasLondon, UKMethuenGoogle Scholar
McEwen, J. R.Vamosi, J. C. 2010 Floral colour versus phylogeny in structuring subalpine flowering communitiesProceedings of the Royal Society of London, Series B, Biological Sciences 277 2957CrossRefGoogle ScholarPubMed
McGill, B. J.Enquist, B. J.Weiher, E.Westoby, M. 2006 Rebuilding community ecology from functional traitsTrends in Ecology and Evolution 21 17885CrossRefGoogle ScholarPubMed
Moeller, D. A. 2004 Facilitative interactions among plants via shared pollinatorsEcology 85 3289CrossRefGoogle Scholar
Moeller, D. A. 2005 Pollinator community structure and sources of spatial variation in plant–pollinator interactions in Clarkia xantiana ssp xantianaOecologia 142 2837CrossRefGoogle ScholarPubMed
Michez, D.Patiny, S. 2005 World revision of the oil-collecting bee genus Panzer 1809 (Hymenoptera:Apoidea:Melittidae) with a description of a new species from LaosAnnales de la Société entomologique de France 41 15CrossRefGoogle Scholar
Mitchell, R. J.Flanagan, R. J.Brown, B. J.Waser, N. M.Karron, J. D. 2009 New frontiers in competition for pollinationAnnals of Botany 103 1403CrossRefGoogle ScholarPubMed
Müller, H. 1881 Die Alpenblumen, ihre Befruchtung durch Insecten und ihre Anpassungen an dieselbenLeipzig, GermanyW. EnglemannGoogle Scholar
Muchhala, N.Potts, M. D. 2007 Character displacement among bat-pollinated flowers of the genus : analysis of mechanism, process, and patternProceedings of the Royal Society B 274 2731CrossRefGoogle ScholarPubMed
Olesen, J. M.Dupont, Y. L.Ehlers, B. K.Hansen, D. M. 2007 The openness of a flower and its number of flower-visitor speciesTaxon 56 729CrossRefGoogle Scholar
Olesen, J. M.Bascompte, J.Dupont, Y. L.Elberling, H.Rasmussen, C.Jordano, P. 2011 Missing and forbidden links in mutualistic networksProceedings of the Royal Society B 278 725CrossRefGoogle ScholarPubMed
Ollerton, J.Killick, A.Lamborn, E.Watts, S.Whiston, M. 2007 Multiple meanings and modes: on the many ways to be a generalist flowerTaxon 56 717CrossRefGoogle Scholar
Opler, P. A. 1978 The Biology of NectariesElias, T. S.Bentley, B.New York, NYColumbia University PressGoogle Scholar
Pellissier, L.Bråthen, K. A.Pottier, J.Randin, C. F.Vittoz, P.Dubuis, A.Yoccoz, N.Alm, T.Zimmerman, N.Guisan, A. 2010 Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plantsEcography 33 1004CrossRefGoogle Scholar
Pellissier, L.Fournier, B.Guisan, A.Vittoz, P. 2010 Plant traits covary with altitude in grasslands and forests in the European AlpsPlant Ecology 211 351CrossRefGoogle Scholar
Pellissier, L.Pottier, J.Vittoz, P.Dubuis, A.Guisan, A. 2010 Spatial pattern of floral morphology: a possible insight into the effects of pollinators on plant distributionOikos 119 1805CrossRefGoogle Scholar
Pellissier, L.Vittoz, P.Internicola, N. I.Gigord, L. D. B 2010 Generalized food-deceptive orchid species flower earlier and occur at lower altitudes than rewarding onesJournal of Plant Ecology 3 243CrossRefGoogle Scholar
Phillips, J. 1931 The biotic communityJournal of Ecology 19 1CrossRefGoogle Scholar
Pulliam, H. R. 2000 On the relationship between niche and distributionEcology Letters 3 349CrossRefGoogle Scholar
Ramírez, N. 2003 Floral specialization and pollination: a quantitative analysis and comparison of the Leppik and the Faegri and van der Pijl classification systemsTaxon 52 687CrossRefGoogle Scholar
Ramos-Jiliberto, R.Domínguez, D.Espinoza, C.Lópeza, G.Valdovinosa, F. S.Bustamantea, R. O.Medela, R. 2010 Topological change of Andean plant-pollinator networks along an altitudinal gradientEcological Complexity 7 86CrossRefGoogle Scholar
Regal, P. J. 1982 Pollination by wind and animals: ecology of geographic patternsAnnual Review of Ecology, Evolution and Systematics 13 497CrossRefGoogle Scholar
Reynolds, R. J.Fenster, C. B 2008 Point and interval estimation of pollinator importance: a study using pollination data of Oecologia 156 325CrossRefGoogle ScholarPubMed
Sargent, R. D.Ackerly, D. D. 2008 Plant–pollinator interactions and the assembly of plant communitiesTrends in Ecology and Evolution 23 123CrossRefGoogle ScholarPubMed
Sargent, R. D.Vamosi, J. C. 2008 The influence of canopy position, pollinator syndrome, and region on evolutionary transitions in pollinator guild sizeInternational Journal of Plant Sciences 169 39CrossRefGoogle Scholar
Shuel, R. W. 1967 The influence of external factors on nectar productionAmerican Bee Journal 107 54Google Scholar
Stebbins, G. L. 1957 Self-fertilization and population variability in the higher plantsThe American Naturalist 91 337CrossRefGoogle Scholar
Stebbins, G. L. 1970 Adaptive radiation of reproductive characteristics in angiosperms. I: pollination mechanismsAnnual Review of Ecology and Systematics 1 307CrossRefGoogle Scholar
Stiles, F. G. 1977 Coadapted competitors: flowering seasons of hummingbird-pollinated plants in a tropical forestScience 198 11778CrossRefGoogle Scholar
Thompson, J. N. 1988 Coevolution and alternative hypotheses on insect/plant interactionsEcology 69 893CrossRefGoogle Scholar
Vázquez, D. P.Aizen, M. A. 2004 Asymmetric specialization: a pervasive feature of plant–pollinator interactionsEcology 85 12517CrossRefGoogle Scholar
Wallace, A. R. 1876 The Geographical Distribution of AnimalsNew York, NYHarper and BrothersGoogle Scholar
Warren, S. D.Harper, K. T.Booth, G. M. 1988 Elevational distribution of insect pollinatorsAmerican Midland Naturalist 120 325CrossRefGoogle Scholar
Waser, N. M.Real, L. A. 1979 Effective mutualism between sequentially flowering plant speciesNature 281 6702CrossRefGoogle Scholar
Waser, N. M.Chittka, L.Price, M. V.Williams, N. M.Ollerton, J. 1996 Generalization in pollination systems, and why it mattersEcology 77 104360CrossRefGoogle Scholar
Westerkamp, C. 2007 Bilabiate flowers: the ultimate response to bees?Annals of Botany 100 361CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×