Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T08:57:01.642Z Has data issue: false hasContentIssue false

10 - Diatoms as indicators of hydrologic and climatic change in saline lakes

from Part II - Diatoms as indicators of environmental change in flowing waters and lakes

Published online by Cambridge University Press:  05 June 2012

Sheri C. Fritz
Affiliation:
University of Nebraska
Brian F. Cumming
Affiliation:
Queen's University
Françoise Gasse
Affiliation:
Marseille University-CNRS-IRD
Kathleen R. Laird
Affiliation:
Queen's University
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Lakes are intricately tied to the climate system in that their water level and chemistry are a manifestation of the balance between inputs (precipitation, stream inflow, surface runoff, groundwater inflow) and outputs (evaporation, stream outflow, groundwater recharge) (Mason et al., 1994). Hence, changes in a lake's hydrologic budget caused by climatic change have the potential to alter lake level and lake chemistry. These changes, in turn, may affect the physiological responses and species composition of the lake's biota, including diatoms. Here we review the use of diatoms as indicators of hydrologic and climatic change, with an emphasis on environmental reconstruction in arid and semi-arid regions. First we discuss linkages among climate, hydrology, lake hydrochemistry, and diatoms that form the foundation for environmental reconstruction, and then we review selected examples of diatom-based studies.

Lake hydrology and hydrochemistry

Lakes vary in their hydrologic sensitivity to climatic change (Winter, 1990). In basins with a surface outlet, lake-level increase is constrained by topography, and any change in input is usually balanced by outflow. Thus, in open basins, lake level fluctuates relatively little, unless hydrologic change is sufficiently large to drop water level below the outlet level. In contrast, closed-basin lakes without surface outflow often show changes in level associated with changes in the balance between precipitation and evaporation (P – E).

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 186 - 208
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aebly, F. & Fritz, S. C. (2009). The paleohydrology of west Greenland for the past 8000 years. The Holocene, 19, 91–104.CrossRefGoogle Scholar
Alley, R. B., Marotzke, J., Nordhaus, W. D., et al. (2003). Abrupt climate change. Science, 299, 2005–10.CrossRefGoogle ScholarPubMed
Anderson, N. J. & Battarbee, R. W. (1994). Aquatic community persistence and variability: a palaeolimnological perspective. In Aquatic Ecology: Scale, Pattern, and Process, ed. Giller, P. S., Hildrew, A. G., & Raffaelli, D. G.. Oxford: Blackwell Scientific Publications, pp. 233–59.Google Scholar
Badaut, D. & Risacher, F. (1983). Authigenic smectite on diatom frustules in Bolivian saline lakes. Geochimica et Cosmochimica Acta, 47, 363–75.CrossRefGoogle Scholar
Baker, P. A., Fritz, S. C., Garland, J., & Ekdahl, E. (2005). Holocene hydrologic variation at Lake Titicaca, Bolivia/Peru and its relationship to North Atlantic climate variation. Journal of Quaternary Science, 20, 655–62.CrossRefGoogle Scholar
Barker, P. A. (1990). Diatoms as palaeolimnological indicators: a reconstruction of Late Quaternary environments in two East African salt lakes. Unpublished Ph.D. Thesis, Loughborough University.
Barker, P., Fontes, J.-C., Gasse, F. & Druart, J.-C. (1994). Experimental dissolution of diatom silica in concentrated salt solutions and implications for palaeoenvironmental reconstruction. Limnology and Oceanography, 39, 99–110.CrossRefGoogle Scholar
Barker, P. & Gasse, F. (2003). New evidence for a reduced water balance in East Africa during the Last Glacial Maximum: implications for model-data comparisons. Quaternary Science Reviews, 22, 823–37.CrossRefGoogle Scholar
Barker, P., Telford, R., Gasse, F., & Thevenon, F. (2002). Late Pleistocene and Holocene palaeohydrology of Lake Rukwa, Tanzania, inferred from diatom analysis. Palaeogeography Palaeoclimatology, Palaeoecology, 187, 295–305.CrossRefGoogle Scholar
Battarbee, R. W., Keister, C. M., & Bradbury, J. P. (1982). The frustular morphology and taxonomic relationships of Cyclotella quillensis Bailey. In 7th International Diatom Symposium, Proceedings, ed. D. G. Mann, Stuttgart: J. Cramer, pp. 173–184.
Bennett, D. M., Fritz, S. C., Holz, J., Holz, A., & Zlotnik, V. (2007). Evaluating climatic and non-climatic influences on natural and man-made lakes in Nebraska, USA. Hydrobiologia, 591, 103–15.CrossRefGoogle Scholar
Bergner, A. G. N. & Trauth, M. H. (2004). Comparison of hydrological and hydrochemical evolution of Lake Naivasha (Kenya) during three highstands between 175 and 60 kyr BP. Palaeogeography, Palaeoclimatology, Palaeoecology, 215, 17–36.CrossRefGoogle Scholar
Bhattacharyya, P. & Volcani, B. E. (1980). Sodium-dependent silicate transport in the apochlorotic marine diatom Nitzschia alba. Proceedings, Academy of Natural Sciences of Philadelphia, 77, 6386–90.CrossRefGoogle ScholarPubMed
Birks, H. J. B. (1995). Quantitative palaeoenvironmental reconstructions. In Statistical Modeling of Quaternary Science Data, ed. Maddy, D. & Brew, J. S., Cambridge: Quaternary Research Association, pp. 161–254.Google Scholar
Blinn, D. (1995). Diatom community structure along salinity gradients in Australian saline lakes: biogeographic comparisons with other continents. In A Century of Diatom Research in North America: a Tribute to the Distinguished Careers of C. W. Reimer and R. Patrick, ed. Kociolek, J. P. & Sullivan, M. J., Champaign, Illinois: Koeltz Scientific Books, pp. 156–67.Google Scholar
Blinn, D. W., Hevly, R. H., & Davis, O. K. (1994). Continuous Holocene record of diatom stratigraphy, palaeohydrology, and anthropogenic activity in a spring-mound in southwestern United States. Quaternary Research, 42, 197–205.CrossRefGoogle Scholar
Bloom, A. M., Moser, K. A., Porinchu, D. F., & MacDonald, G. M. (2003). Diatom-inference models for surface-water temperature and salinity developed from a 57-lake calibration set from the Sierra Nevada, California, USA. Journal of Paleolimnology, 29, 235–55.CrossRefGoogle Scholar
Bond, G., Kromer, B., Beer, J., et al. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science, 294, 2130–6.CrossRefGoogle ScholarPubMed
Bracht, B. B., Stone, J. R., & Fritz, S. C. (2008). A diatom record of late Holocene climate variation in the northern range of Yellowstone National Park, USA. Quaternary International, 188, 149–55.CrossRefGoogle Scholar
Braconnot, P., Otto-Bliesner, B., Harrison, S. P., et al. (2007). Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum – Part 2: feedbacks with emphasis on the location of the ITCZ and mid and high latitudes heat budget. Climate of the Past, 3, 279–96.CrossRefGoogle Scholar
Bradbury, J. P. (1989). Late Quaternary lacustrine paleoenvironments in the Cuenca de Mexico. Quaternary Science Reviews, 8, 75–100.CrossRefGoogle Scholar
Bradbury, J. P., Forester, R. M., & Thompson, R. S. (1989). Late Quaternary paleolimnology of Walker Lake, Nevada. Journal of Paleolimnology, 1, 249–67.Google Scholar
Bradbury, P., Cumming, B., & Laird, K. (2002). A 1500-year record of climatic and environmental change in Elk Lake, Minnesota III: measures of past primary productivity. Journal of Paleolimnology, 27, 321–40.CrossRefGoogle Scholar
Bradley, R. S. & Jones, P. D. (eds.) (1992). Climate Since A.D. 1500. New York: Routledge.Google Scholar
Brugam, R. (1983). The relationship between fossil diatom assemblages and limnological conditions. Hydrobiologia, 98, 223–35.CrossRefGoogle Scholar
Chalié, F. & Gasse, F. (2002). A 13,500 year diatom record from the tropical East African Rift Lake Abiyata (Ethiopia). Palaeogeography, Palaeoclimatology, Palaeoecology, 187, 259–84.CrossRefGoogle Scholar
Charles, D. F. & Smol, J. P. (1994). Long-term chemical changes in lakes: quantitative inferences from biotic remains in the sediment record. In Environmental Chemistry of Lakes and Reservoirs, ed. Baker, L.. Washington, DC: American Chemical Society, pp. 3–31.CrossRefGoogle Scholar
Cohen, A. S., Stone, J. R., Beuning, K. R. & Park, L. E. (2007). Ecological consequences of early Late Pleistocene megadroughts in tropical Africa. Proceedings of the National Academy of Science, 104, 16422–7.CrossRefGoogle ScholarPubMed
Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M., & Stahle, D. W. (2004). Long-term aridity changes in the western United States. Science, 306, 1015–18.CrossRefGoogle ScholarPubMed
Crowe, A. S. (1993). The application of a coupled water-balance-salinity model to evaluate the sensitivity of a lake dominated by groundwater to climate variability. Journal of Hydrology, 141, 33–73.CrossRefGoogle Scholar
Cumming, B. F., Laird, K. R., Bennett, J. R., Smol, J. P., & Salomon, A. K. (2002). Persistent millennial-scale shifts in moisture regimes in western Canada during the past six millennia. Proceedings of the National Academy of Science, 99, 16117–21.CrossRefGoogle ScholarPubMed
Cumming, B. F. & Smol, J. P. (1993). Development of diatom-based salinity models for paleoclimatic research from lakes in British Columbia (Canada). Hydrobiologia, 269/270, 179–96.CrossRefGoogle Scholar
Cumming, B. F., Wilson, S. E., Hall, R. I. & Smol, J. P. (1995). Diatoms from British Columbia (Canada) Lakes and Their Relationship to Salinity, Nutrients, and Other Limnological Variables. Stuttgart, Germany: Koeltz Scientific Books.Google Scholar
Davies, S. J., Metcalfe, S. E., Caballero, M. E., & Juggins, S. (2002). Developing diatom-based transfer functions for Central Mexican lakes. Hydrobiologia, 467, 199–213.CrossRefGoogle Scholar
Menocal, P., Ortiz, J., Guilderson, T., et al. (2000). Abrupt onset and termination of the African humid period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews, 19, 347–61.CrossRefGoogle Scholar
Donovan, J. J. (1994). Measurement of reactive mass fluxes in evaporative groundwater-source lakes. In Sedimentology and Geochemistry of Modern and Ancient Saline Lakes, ed. Renaut, R. & Last, W. M., Tulsa, OK: SEPM Society for Sedimentology Geology, pp. 33–50.CrossRefGoogle Scholar
Ekdahl, E. J., Fritz, S. C., Baker, P. A., Rigsby, C. A., & Coley, K. (2008). Holocene multidecadal- to millennial-scale hydrologic variability on the South American Altiplano. The Holocene, 18, 867–76.CrossRefGoogle Scholar
Eugster, H. P. & Jones, B. F. (1979). Behavior of major solutes during closed-basin brine evolution. American Journal of Science, 279, 609–31.CrossRefGoogle Scholar
Fisher, N. S. (1977). On the differential sensitivity of estuarine and open-ocean diatoms to exotic chemical stress. American Naturalist, 111, 871–95.CrossRefGoogle Scholar
Fritz, S. C. (1990). Twentieth-century salinity and water-level fluctuations in Devils Lake, N. Dakota: a test of a diatom-based transfer function. Limnology and Oceanography, 35, 1771–81.CrossRefGoogle Scholar
Fritz, S. C. (2008). Deciphering climatic history from lake sediments. Journal of Paleolimnology, 39, 5–16.CrossRefGoogle Scholar
Fritz, S. C., Baker, P. A., Lowenstein, T. K., et al. (2004). Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America. Quaternary Research, 61, 95–104.CrossRefGoogle Scholar
Fritz, S. C., Baker, P. A., Seltzer, G. O., et al. (2007). Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project. Quaternary Research, 68, 410–20.CrossRefGoogle Scholar
Fritz, S. C., Ito, E., Yu, Z., Laird, K. R., & Engstrom, D. R. (2000). Hydrologic variation in the northern Great Plains during the last two millennia. Quaternary Research, 53, 175–84.CrossRefGoogle Scholar
Fritz, S. C., Juggins, S., & Battarbee, R. W. (1993). Diatom assemblages and ionic characterization of lakes of the Northern Great Plains, North America: a tool for reconstructing past salinity and climate fluctuations. Canadian Journal of Fisheries and Aquatic Sciences, 50, 1844–56.CrossRefGoogle Scholar
Fritz, S. C., Juggins, S., Battarbee, R. W., & Engstrom, D. R. (1991). Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature, 352, 706–8.CrossRefGoogle Scholar
Gasse, F. (1977). Evolution of Lake Abhe (Ethiopia and T.F.A.I.) from 70,000 B.P. Nature, 265, 42–5.CrossRefGoogle Scholar
Gasse, F. (1986). East African Diatoms: Taxonomy, Ecological Distribution, Stuttgart: Cramer.Google Scholar
Gasse, F. (1987). Diatoms for reconstructing palaeoenvironments and palaeohydrology in tropical semi-arid zones: examples of some lakes in Niger since 12000 BP. Hydrobiologia, 154, 127–63.CrossRefGoogle Scholar
Gasse, F. (2000). Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19, 189–211.CrossRefGoogle Scholar
Gasse, F. (2002). Diatom-inferred salinity and carbonate oxygen isotopes in Holocene waterbodies of the western Sahara and Sahel (Africa). Quaternary Science Reviews, 21, 737–67.CrossRefGoogle Scholar
Gasse, F., Bergonzini, L., Chalié, F., Gibert, E., Massault, M., & Mélières, F. (1998). Paleolakes and paleoclimates around the western Indian Ocean since 25 kyrs BP. In Hydrologie et Géochimie Isotopique, Proceedings of the International Symposium in Memory of Jean-Charles Fontes, Paris, June 1st and 2nd 1995, ed. Causse, C. & Gasse, F., Paris: ORSTOM, pp. 147–76.Google Scholar
Gasse, F., Gell, P., Barker, P., Fritz, S. C., & Chalie, F. (1996). Diatom-inferred salinity of palaeolakes: an indirect tracer of climate change. Quaternary Science Reviews, 16, 547–63.CrossRefGoogle Scholar
Gasse, F., Juggins, S., & Ben Khelifa, L. (1995). Diatom-based transfer functions for inferring hydrochemical characteristics of African palaeolakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 117, 31–54.CrossRefGoogle Scholar
Gasse, F. & Roberts, N. (2004). Late Quaternary hydrologic changes in the arid and semi-arid belt of northern Africa. Implications for past atmospheric circulation. In The Hadley Circulation: Present, Past and Future, ed. Diaz, H. F. & Bradley, R. S., Dordrecht: Kluwer Academic Publishers, pp. 313–45.CrossRefGoogle Scholar
Gasse, F. & Seyve, C. (1987). Sondages du Lac Bogoria: Diatomees. In Le demi-graben de Baringo-Bogoria, Rift Gregory, Kenya. 30.000 ans d'histoire hydrologique et sedimentaire, ed. Tiercelin, J. J. & Vincens, A., Bulletin du Centre de Recherche et d'Exploration-Production Elf-Aquitaine Boussens, pp. 414–37.Google Scholar
Gasse, F. & Street, F. A. (1978). Late Quaternary lake level fluctuations and environments of the northern Rift Valley and Afar region (Ethiopia and Djibouti). Palaeogeography, Palaeoclimatology, Palaeoecology, 25, 145–50.Google Scholar
Gasse, F. & Campo, E. (1994). Abrupt post-glacial climate events in west Asia and north Africa monsoon domains. Earth and Planetary Science Letters, 126, 435–65.CrossRefGoogle Scholar
Gell, P. A. (1995). The development and application of a diatom calibration set for lake salinity, Western Victoria, Australia. Unpublished Ph.D. thesis, Monash University.
Gell, P. A. & Gasse, F. (1990). Relationships between salinity and diatom flora from some Australian saline lakes. In Proceedings of the 11th International Diatom Symposium, ed. Kociolek, J. P.. San Francisco: California Academy of Sciences, pp. 631–47.Google Scholar
Gillespie, R., Street-Perrott, F. A., & Switsur, R. (1983). Post-glacial arid episodes in Ethiopia have implications for climate prediction. Nature, 306, 680–3.CrossRefGoogle Scholar
Hoelzmann, P., Gasse, F., Dupont, L. M., et al. (2004). Palaeoenvironmental changes in the arid and subarid belt (Sahara–Sahel–Arabian Peninsula) from 150 ka to present. In Past Climate through Europe and Africa, ed. Battarbee, R. W., , F.Gasse, & Stickley, C. S., Developments in Paleoenvironmental Research Dordrecht: Springer, pp. 219–56.CrossRefGoogle Scholar
Holdship, S. A. (1976). The palaeolimnology of Lake Manyara, Tanzania: a diatom analysis of a 56 meter sediment core. Unpublished Ph.D. thesis, Duke University.
Holmes, J. A., Fothergill, P. A., Street-Perrott, F. A., & Perrott, R. A. (1998). A high-resolution Holocene ostracod record from the Sahel Zone of northeastern Nigeria. Journal of Paleolimnology, 20, 369–80.CrossRefGoogle Scholar
Holmes, J. A., Street-Perrott, F. A., Allen, M. J., et al. (1997). Holocene paleolimnology of Kajemarum Oasis, northern Nigeria: an isotopic study of ostracods, bulk carbonate and organic carbon. Journal of the Geological Society, London 154, 311–19.CrossRefGoogle Scholar
Hustedt, F. (1953). Die Systematik der Diatomeen in ihren Beziehungen zur Geologie und Ökologie nebst einer Revision des Halobien-systems. Botanisk Tidskkrift, 47, 509–19.Google Scholar
Juggins, S. (2001). The European Diatom Database, User Guide, Version 1.0. (October 2001). See http://craticula.ncl.ac.uk/Eddi/jsp/help.jsp.
Juggins, S., Battarbee, R. W., Fritz, S. C., & Gasse, F. (1994). The CASPIA project: diatoms, salt lakes, and environmental change. Journal of Paleolimnology, 2, 191–6.CrossRefGoogle Scholar
Kashima, K. (1994). Sedimentary diatom assemblages in freshwater and saline lakes of the Anatolia Plateau, central part of Turkey: an application of reconstruction of palaeosalinity change during the Late Quaternary. In Proceedings of the 13th International Diatom Symposium, ed. Marino, D. & Montresor, M., Bristol: Biopress Ltd., pp. 93–100.Google Scholar
Kashima, K. (2003). The quantitative reconstruction of salinity changes using diatom assemblages in inland saline lakes in the central part of Turkey during the Late Quaternary. Quaternary International, 105, 13–19.CrossRefGoogle Scholar
Kennedy, K. A. (1994). Early-Holocene geochemical evolution of saline Medicine Lake, South Dakota. Journal of Paleolimnology, 10, 69–84.CrossRefGoogle Scholar
Khelifa, L. B. (1989). Diatomees continentales et paleomillieux du Sud-Tunisien aux Quaternaire superieur. Unpublished Ph.D. thesis, Universite de Paris-Sud.
Kolbe, R. W. (1927). Zur Ökologie, Morphologie und Systematik der Brackwasser-Diatomeen. Pflanzenforschung, 7, 1–146.Google Scholar
Kröpelin, S., Verschuren, D., Lézine, A.-M, et al. (2008). Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science, 320, 765–8.CrossRefGoogle ScholarPubMed
Laird, K., Fritz, S. C., Grimm, E. C., & Mueller, P. G. (1996a). The paleoclimatic record of a closed-basin lake in the northern Great Plains: Moon Lake, Barnes Co., N.D. Limnology and Oceanography, 40, 890–902.CrossRefGoogle Scholar
Laird, K. R., Fritz, S. C., Maasch, K. A., & Cumming, B. F. (1996b). Greater drought intensity and frequency before AD 1200 in the Northern Great Plains, USA. Nature, 384, 552–5.CrossRefGoogle Scholar
Laird, K. R., Fritz, S. C., & Cumming, B. F. (1998a). A diatom-based reconstruction of drought intensity, duration, and frequency from Moon Lake, North Dakota: a sub-decadal record of the last 2300 years. Journal of Paleolimnology, 19, 161–79.CrossRefGoogle Scholar
Laird, K. R., Fritz, S. C., Grimm, E. C., & Cumming, B. F. (1998b). Early Holocene limnologic and climatic variability in the northern Great Plains. The Holocene, 8, 275–85.CrossRefGoogle Scholar
Laird, K. R., Cumming, B. F., Wunsam, S., et al. (2003). Lake sediments record large-scale shifts in moisture regimes across the northern prairies of North America during the past two millennia. Proceedings of the National Academy of Science, 100, 2483–8.CrossRefGoogle ScholarPubMed
Laird, K. R., Michels, A., Stuart, C., et al. (2007). Examination of diatom-based changes from a climatically sensitive prairie lake (Saskatchewan, Canada) at different temporal perspectives. Quaternary Science Reviews, 26, 3328–43.CrossRefGoogle Scholar
Lamb, H. H. (1982). Climate, History, and the Modern World. London: Methuen.CrossRefGoogle Scholar
Laskar, J., Robutel, P., Joutel, F., et al. (2004). A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics, 428, 261–85.CrossRefGoogle Scholar
Legesse, D., Gasse, F., Radakovitch, O., et al. (2002). Environmental changes in a tropical lake (Lake Abiyata, Ethiopia) during recent centuries. Palaeogeography, Palaeoclimatology, Palaeoecology, 187, 233–58.CrossRefGoogle Scholar
Liu, Z., Wang, Y., Gallimore, R., et al. (2007). Simulating the transient evolution and abrupt change of Northern Africa atmosphere–ocean–terrestrial ecosystem in the Holocene. Quaternary Science Reviews, 26, 1818–37.CrossRefGoogle Scholar
Lotter, A.F., Birks, H.J.B., Hofmann, W., & Marchetto, A. (1998). Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. Journal of Paleolimnology, 19, 443–63.CrossRefGoogle Scholar
Mason, I. M., Guzkowska, M. A. J., & Rapley, C. G. (1994). The response of lake levels and areas to climatic change. Climatic Change, 27, 161–97.CrossRefGoogle Scholar
Mayewski, P. A., Rohling, E. E., Stager, J. C., et al. (2004). Holocene climate variability. Quaternary Research, 62, 243–55.CrossRefGoogle Scholar
McGowan, S., Ryves, D. B., & Anderson, N. J. (2003). Holocene records of effective precipitation in West Greenland. The Holocene, 13, 239–50.Google Scholar
Metcalfe, S. E. (1988). Modern diatom assemblages in Central Mexico: the role of water chemistry and other environmental factors as indicated by TWINSPAN and DECORANA. Freshwater Biology, 19, 217–33.CrossRefGoogle Scholar
Meybeck, M. (1995). Global distribution of lakes. In Physics and Chemistry of Lakes, ed. Lerman, A., Imboden, D., & Gat, J., Berlin: Springer-Verlag, pp. 1–35.Google Scholar
Michels, A., Laird, K. R., Wilson, S. E., et al. (2007). Multi-decadal to millennial-scale shifts in drought conditions on the Canadian prairies over the past six millennia: implications for future drought assessment. Global Change Biology, 13, 1295–307.CrossRefGoogle Scholar
Oswald, W. W., Anderson, P. M., Brown, T. A., et al. (2005). Effects of sample mass and macrofossil type on radiocarbon dating of arctic and boreal lake sediments. The Holocene, 15, 758–67.CrossRefGoogle Scholar
Porter, S. C. (1986). Pattern and forcing of northern hemisphere glacier variations during the last millennium. Quaternary Research, 26, 27–48.CrossRefGoogle Scholar
Potapova, M. & Charles, D.F. (2003). Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology, 48, 1311–28.CrossRefGoogle Scholar
Radle, N. J., Keister, C. M., & Battarbee, R. W. (1989). Diatom, pollen, and geochemical evidence for the paleosalinity of Medicine Lake, S. Dakota, during the Late Wisconsin and early Holocene. Journal of Paleolimnology, 2, 159–72.CrossRefGoogle Scholar
Reed, J. M. (1998). A diatom–conductivity transfer function for Spanish salt lakes. Journal of Paleolimnology, 19, 399–416.CrossRefGoogle Scholar
Reed, J. M., Roberts, N., & Leng, M. J. (1999). An evaluation of the diatom response to Late Quaternary environmental change in two lakes in the Konya Basin, Turkey by comparison with stable isotope data. Quaternary Science Reviews, 18, 631–47.CrossRefGoogle Scholar
Reed, J. M., Stevenson, A. C., & Juggins, S. (2001). A multi-proxy record of Holocene climate change in southwest Spain: the Laguna de Medina, Cádiz. The Holocene, 11, 705–17.CrossRefGoogle Scholar
Rind, D. & Overpeck, J. (1993). Hypothesized causes of decade to century scale climate variability: climate model results. Quaternary Science Reviews, 12, 357–74.CrossRefGoogle Scholar
Roberts, D. & McMinn, A. (1996). Relationships between surface sediment diatom assemblages and water chemistry gradients of the Vestfold Hills, Antarctic. Antarctic Science, 8, 331–41.CrossRefGoogle Scholar
Roberts, D., McMinn, A., Cremer, H., Gore, D. B., & Melles, M. (2004). The Holocene evolution and palaeosalinity history of Beall Lake, Windmill Islands (East Antarctica) using an expanded diatom-based weighted average model. Palaeogeography, Palaeoclimatology, Palaeoecology, 108, 121–40.CrossRefGoogle Scholar
Roberts, N., Reed, J., Leng, M. J., et al. (2001). The tempo of Holocene climatic change in the eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. The Holocene, 11, 721–36.CrossRefGoogle Scholar
Roux, M., Servant-Vildary, S., & Servant, M. (1991). Inferred ionic composition and salinity of a Bolivian Quaternary lake, as estimated from fossil diatoms in the sediments. Hydrobiologia, 210, 3–18.CrossRefGoogle Scholar
Ryner, M., Gasse, F., Rumes, B., & Verschuren, D. (2007). Climatic and hydrological instability in semi-arid equatorial East Africa during the late glacial to Holocene transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 248, 440–58.CrossRefGoogle Scholar
Ryves, D. B., Battarbee, R. W., & Fritz, S. C. (2009). The dilemma of disappearing diatoms: incorporating dissolution into paleoenvironmental modeling and reconstructions. Quaternary Science Reviews, 28, 120–36.CrossRefGoogle Scholar
Ryves, D. B., Battarbee, R. W., Juggins, S. J., Fritz, S. C., & Anderson, N. J. (2006). Physical and chemical predictors of diatom dissolution in freshwater and saline lake sediments in North America and West Greenland. Limnology and Oceanography 51, 1342–54.CrossRefGoogle Scholar
Ryves, D. B., Juggins, S., Fritz, S. C., & Battarbee, R. W. (2001). Experimental diatom dissolution and the quantification of microfossil preservation in sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 172, 99–113.CrossRefGoogle Scholar
Ryves, D. B., McGowan, S., & Anderson, N. J. (2002). Development and evaluation of a diatom–conductivity model from lakes in west Greenland. Freshwater Biology, 47, 995–1014.CrossRefGoogle Scholar
Saros, J. E. & Fritz, S. C. (2000a). Nutrients as a link between ionic concentration/composition and diatom distributions in saline lakes. Journal of Paleolimnology, 23, 449–53.CrossRefGoogle Scholar
Saros, J. E. & Fritz, S. C. (2000b). Changes in the growth rate of saline-lake diatoms in response to variation in salinity, brine type, and nitrogen form. Journal of Plankton Research, 22, 1071–83.CrossRefGoogle Scholar
Saros, J. E. & Fritz, S. C. (2002). Resource competition among saline-lake diatoms: shifts in taxon abundance in response to variations in salinity, brine type, and N:P ratios. Freshwater Biology, 46, 1–9.Google Scholar
Saros, J. E., Fritz, S. C., & Smith, A. (2000). Shifts in mid- to late-Holocene anion composition in Elk Lake (Grant Co., MN): comparison of diatom and ostracode inferences. Quaternary International 67, 37–46.CrossRefGoogle Scholar
Schweger, C. E. & Hickman, M. (1989). Holocene paleohydrology of central Alberta: testing the general-circulation-model climate simulations. Canadian Journal of Earth Sciences, 26, 1826–33.CrossRefGoogle Scholar
Servant-Vildary, S. & Roux, M. (1990). Multivariate analysis of diatoms and water chemistry in Bolivian saline lakes. Hydrobiologia, 197, 267–90.CrossRefGoogle Scholar
Shobert, B. (1974). The influence of water stress on the metabolism of diatoms. I. Osmotic resistance and proline accumulation in Cyclotella meneghiniana. Zeitschrift fur Pflanzenphysiologie, 74, 106–20.CrossRefGoogle Scholar
Smith, A. J., Donovan, J. J., Ito, E., & Engstrom, D. R. (1997). Ground-water processes controlling a prairie lake's response to middle Holocene drought. Geology 25, 391–4.2.3.CO;2>CrossRefGoogle Scholar
Stager, J. C. & Mayewski, P. A. (1997). Abrupt early to mid-Holocene climatic transition registered at the equator and the poles. Science, 276, 1834–6.CrossRefGoogle Scholar
Stager, J. C., Cumming, B. F., & Meeker, L. D. (1997). A high-resolution 11,400-yr diatom record from Lake Victoria, East Africa. Quaternary Research, 47, 81–9.CrossRefGoogle Scholar
Stager, J. C., Cumming, B. F., & Meeker, L. D. (2003). A 10,000-year high-resolution diatom record from Pilkington Bay, Lake Victoria, East Africa. Quaternary Research, 59, 172–81.CrossRefGoogle Scholar
Stevens, L. R., Stone, J. R., Campbell, J., & Fritz, S. C. (2006). A 2200-yr record of hydrologic variability from Foy Lake, Montana, USA, inferred from diatom and geochemical data. Quaternary Research, 65, 264–74.CrossRefGoogle Scholar
St. Jacques, J., Cumming, B. F., & Smol, J. P. (2009). A 900-year diatom and chrysophyte record of spring mixing and summer stratification from varved Lake Mina, west-central Minnesota, USA. The Holocene, 19, 537–47.CrossRefGoogle Scholar
Stone, J. R. & Fritz, S. C. (2004). Three-dimensional modeling of lacustrine diatom habitat areas: improving paleolimnological interpretation of planktonic:benthic ratios. Limnology and Oceanography, 49, 1540–8.CrossRefGoogle Scholar
Stone, J. R. & Fritz, S. C. (2006). Multidecadal drought and Holocene climate instability in the Rocky Mountains. Geology, 34, 409–412.CrossRefGoogle Scholar
Sylvestre, F., Servant, M., Servant-Vildary, S., et al. (1999). Lake-level chronology on the southern Bolivian Altiplano (18–23° S) during late-glacial time and the early Holocene. Quaternary Research, 51, 54–66.CrossRefGoogle Scholar
Sylvestre, F., Servant-Vildary, S., & Roux, M. (2001). Diatom-based ionic concentration and salinity models from the south Bolivian Altiplano (15–23°S). Journal of Paleolimnology, 25, 279–95.CrossRefGoogle Scholar
Taieb, M., Barker, P., Bonnefille, R., et al. (1991). Histoire paleohydrologique du lac Magadi (Kenya) au Pleistocene superieur. Comptes Rendus de l'Academie des Sciences, Paris series II, 313, 339–46.Google Scholar
Tapia, P. M., Fritz, S. C., Baker, P. A., Seltzer, G. O., & Dunbar, R. B. (2003). A late Quaternary diatom record of tropical climate history from Lake Titicaca (Peru and Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology, 194, 139–64.CrossRefGoogle Scholar
Telford, R. J., Heegaard, E., & Birks, H. J. B. (2004a). All age-depth models are wrong: but how badly? Quaternary Science Reviews, 23, 1–5.CrossRefGoogle Scholar
Telford, R. J., Heegaard, E., & Birks, H. J. B. (2004b). The intercept is a poor estimate of a calibrated radiocarbon age. The Holocene, 14, 296–8.CrossRefGoogle Scholar
Telford, R. J., Lamb, H. F., & Mohammed, M. U. (1999). Diatom-derived palaeoconductivity estimates for Lake Awassa, Ethiopia: evidence for pulsed inflows of saline groundwater? Journal of Paleolimnology 21, 409–21.CrossRefGoogle Scholar
Tibby, J., Gell, P. A., Fluin, J., & Sluiter, I. R. K. (2007). Diatom-salinity relationships in wetlands: assessing the influence of salinity variability on the development of inference models. Hydrobiologia, 591, 207–18.CrossRefGoogle Scholar
Tuchman, M. L., Theriot, E., & Stoermer, E. F. (1984). Effects of low level salinity concentrations on the growth of Cyclotella meneghiniana Kütz. (Bacillariophyta). Archiv für Protistenkunde, 128, 319–26.CrossRefGoogle Scholar
Vallet-Coulomb, C., Gasse, F., Robison, L., et al. (2006). Hydrological modeling of tropical closed Lake Ihotry; sensitivity analysis and implications for paleohydrological reconstructions over the past 4000 years. Journal of Hydrology, 331, 257−71.CrossRefGoogle Scholar
Campo, F. & Gasse, F. (1993). Pollen and diatom-inferred climatic and hydrological changes in Sumxi Co. Basin (western Tibet) since 13,000 yr B.P. Quaternary Research, 39, 300–13.CrossRefGoogle Scholar
Verschuren, D., Laird, K. R., & Cumming, B. F. (2000). Rainfall and drought in equatorial East Africa during the past 1,100 years. Nature, 403, 410–14.CrossRefGoogle ScholarPubMed
Williams, W. D. (1981). Inland salt lakes: an introduction. Hydrobiologia, 81, 1–14.CrossRefGoogle Scholar
Wilson, S. E., Cumming, B. F., & Smol, J. P. (1994). Diatom-based salinity relationships in 111 lakes from the Interior Plateau of British Columbia, Canada: the development of diatom-based models for paleosalinity and paleoclimatic reconstructions. Journal of Paleolimnology, 12, 197–221.CrossRefGoogle Scholar
Wilson, S. E., Cumming, B. F., & Smol, J. P. (1996). Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219 lake data set from Western North America. Canadian Journal of Fisheries and Aquatic Sciences, 53, 1580–94.Google Scholar
Winter, T. C. (1990). Hydrology of lakes and wetlands. In Surface Water Hydrology, ed. Wolman, M. G. & Riggs, H. C., Boulder, CO: Geological Society of America, pp. 159–88.Google Scholar
Xiangdong, Y., Kamenik, C., Schmidt, R., & Wang, S. (2003). Diatom-based conductivity and water-level inference models from eastern Tibetan (Qinghai-Xizang) Plateau lakes. Journal of Paleolimnology, 30, 1–19.Google Scholar
Yu, Z., Ito, E., & Engstrom, D. R. (2002). Water isotopic and hydrochemical evolution of a lake chain in the northern Great Plains and its paleoclimatic implications. Journal of Paleolimnology, 28, 207–17.CrossRefGoogle Scholar
Zlotnik, V. A., Burbach, M., Swinehart, J., et al. (2007). A case study of direct push methods for aquifer characterization in dune-lake environments of the Nebraska Sand Hills. Environmental and Engineering Geology, 13, 205–16.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×