Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-01T21:30:01.316Z Has data issue: false hasContentIssue false

8 - Lexical semantics and terminological knowledge representation

Published online by Cambridge University Press:  29 September 2009

Patrick Saint-Dizier
Affiliation:
Institut de Recherche en Informatique, Toulouse
Evelyn Viegas
Affiliation:
Brandeis University, Massachusetts
Get access

Summary

Introduction

Knowledge representation and reasoning are central to all fields of Artificial Intelligence research. It includes the development of formalisms for the representation of given subject matters as well as the development of inference procedures to reason about the represented knowledge. Before developing a knowledge representation formalism, one must determine what type of knowledge has to be modeled with the formalism. Since a lot of our knowledge of the world can easily be described using natural language, it is an interesting task to examine to what extent the contents of natural language utterances can be formalized and represented with a given representation formalism. Every approach to represent natural language utterances must include a method to formalize aspects of the meaning of single lexical units.

An early attempt in this direction was Quillian's Semantic Memory (Quillian, 1968), an associational model of human memory. A semantic memory consists of nodes corresponding to English words and different associative links connecting the nodes. Based on that approach, various knowledge representation systems have been developed which can be subsumed under the term semantic network. Common to all these systems is that knowledge is represented by a network of nodes and links. The nodes usually represent concepts or meanings whereas the links represent relations between concepts. In most semantic network formalisms, a special kind of link between more specific and more general concepts exists. This link, often called IS-A or AKO (a kind of), organizes the concepts into a hierarchy in which information can be inherited from more general to more specific concepts.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×