Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 High-resolution transmission electron microscopy
- 2 Holography in the transmission electron microscope
- 3 Microanalysis by scanning transmission electron microscopy
- 4 Specimen preparation for transmission electron microscopy
- 5 Low-temperature scanning electron microscopy
- 6 Scanning tunneling microscopy
- 7 Identification of new superconducting compounds by electron microscopy
- 8 Valence band electron energy loss spectroscopy (EELS) of oxide superconductors
- 9 Investigation of charge distribution in Bi2Sr2CaCu2O8 and YBa2Cu3O7
- 10 Grain boundaries in high Tc materials: transport properties and structure
- 11 The atomic structure and carrier concentration at grain boundaries in YBa2Cu3O7–δ
- 12 Microstructures in superconducting YBa2Cu3O7 thin films
- 13 Investigations on the microstructure of YBa2Cu3O7 thin-film edge Josephson junctions by high-resolution electron microscopy
- 14 Controlling the structure and properties of high Tc thin-film devices
8 - Valence band electron energy loss spectroscopy (EELS) of oxide superconductors
Published online by Cambridge University Press: 21 August 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 High-resolution transmission electron microscopy
- 2 Holography in the transmission electron microscope
- 3 Microanalysis by scanning transmission electron microscopy
- 4 Specimen preparation for transmission electron microscopy
- 5 Low-temperature scanning electron microscopy
- 6 Scanning tunneling microscopy
- 7 Identification of new superconducting compounds by electron microscopy
- 8 Valence band electron energy loss spectroscopy (EELS) of oxide superconductors
- 9 Investigation of charge distribution in Bi2Sr2CaCu2O8 and YBa2Cu3O7
- 10 Grain boundaries in high Tc materials: transport properties and structure
- 11 The atomic structure and carrier concentration at grain boundaries in YBa2Cu3O7–δ
- 12 Microstructures in superconducting YBa2Cu3O7 thin films
- 13 Investigations on the microstructure of YBa2Cu3O7 thin-film edge Josephson junctions by high-resolution electron microscopy
- 14 Controlling the structure and properties of high Tc thin-film devices
Summary
Introduction
Transmission electron energy loss spectroscopy (EELS) consists of measuring energy loss dispersion of inelastically scattered high-energy electrons transmitted through a thin film. The high-energy electrons, which interact with the electrons in the solid, lose a certain amount of energy and transfer momentum to the solid. Because of the energy and momentum conservation rules, energy loss and the corresponding momentum-transfer (q) of the probed electron represents the energy and the momentum of the electronic excitations in solids.
Although some optical techniques, such as soft X-ray absorption and optical reflectance measurements, provide comparative information about solids with higher energy resolution, EELS enjoys several unique advantages over optical spectroscopies. First of all, unlike optical reflectance measurements which are sensitive to the surface condition of the sample, the transmitted EELS represents the bulk properties of the material. Secondly, EELS spectra can be measured with q along specific controllable directions and thus, can be used to study the dispersion of plasmons, excitons, and other excitations [8.1–8.5]. Such experiments offer both dynamics as well as symmetry information about the electronic excitations in solids. In addition, the capability to probe the electronic structure at finite momentum-transfer also allows one to investigate the excited monopole or quadrupole transitions, which cannot be directly observed by conventional optical techniques limited by the dipole selection rule.
Because of the significant energy spread of conventional TEM electron sources (e.g. LaB6, W-hairpin filaments with ΔE ∼ 1–2 eV), EELS measurements to investigate the electronic structure of solids have been generally limited to dedicated electron energy loss spectrometers with energy resolutions ∼0.1 eV.
- Type
- Chapter
- Information
- Publisher: Cambridge University PressPrint publication year: 2000