Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T16:40:08.779Z Has data issue: false hasContentIssue false

4 - Floquet theory

Published online by Cambridge University Press:  05 January 2012

C. J. Joachain
Affiliation:
Université Libre de Bruxelles
N. J. Kylstra
Affiliation:
Université Libre de Bruxelles
R. M. Potvliege
Affiliation:
University of Durham
Get access

Summary

In this chapter,we shall analyze the particular case of an atom interacting with a laser pulse whose duration is sufficiently long, so that the evolution of the atom in the laser field is adiabatic. When this condition is fulfilled, the atom can be considered to interact with a monochromatic laser field. As a consequence, the Hamiltonian of the system is periodic in time, and the Floquet theory [1] can be used to solve the time-dependent Schrödinger equation (TDSE) non-perturbatively.

We begin in Section 4.1 by considering the Hermitian Floquet theory. We first derive the Floquet theorem for a monochromatic, spatially homogeneous laser field and show that the solutions of the TDSE correspond to dressed states having real quasi-energies, which can be obtained by solving an infinite system of time-independent coupled equations. We then generalize the Floquet theory to multicolor laser fields and to “non-dipole” laser fields which are not spatially homogeneous. In Section 4.2, the Floquet theory is applied to study the dynamics of a model atom having M discrete levels interacting with a monochromatic laser field. In this case, the coupling between the bound and continuum atomic states is neglected.We analyze the relationship between the Floquet theory and the rotating wave approximation, and examine the perturbative limit of the Floquet theory. We also consider the population transfer between Floquet dressed states.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Floquet, G., Ann. Ec. Norm. (2) 13, 47 (1883).
[2] Chu, S. I., Adv. At. Mol. Phys. 21, 197 (1985).CrossRef
[3] Potvliege, R. M. and Shakeshaft, R., Adv. At. Mol. Opt. Phys. Suppl. 1, 373 (1992).
[4] Joachain, C. J., Dörr, M. and Kylstra, N. J., Adv. At. Mol. Opt. Phys. 42, 225 (2000).CrossRef
[5] Bloch, F., Z. Physik 52, 5055 (1928).
[6] Ashcroft, N. W. and Mermin, N. D., Solid State Physics (Orlando, Fl.: Harcourt, 1976).Google Scholar
[7] Kittel, C., Introduction to Solid State Physics (New York:Wiley, 1996).Google Scholar
[8] Bransden, B. H. and Joachain, C. J., Quantum Mechanics 2nd edn, (Harlow, UK: Prentice Hall-Pearson, 2000).Google Scholar
[9] Shirley, J. H., Phys. Rev. B 138, 979 (1965).CrossRef
[10] Mittleman, M. H., Introduction to the Theory of Laser–Atom Interactions, 2nd edn (New York: Plenum Press, 1993).CrossRefGoogle Scholar
[11] Potvliege, R. M., Laser Phys. 10, 143 (2000).
[12] Bergou, J. and Varró, S., J. Phys. A 13, 3553 (1980).CrossRef
[13] Drühl, K. and McIver, J. K., J. Math. Phys. 24, 705 (1983).CrossRef
[14] Bloch, F. and Siegert, A., Phys. Rev. 57, 522 (1940).CrossRef
[15] Allen, L. and Eberly, J. H., Optical Resonance and Two-level Atoms (New York: Dover, 1987).Google Scholar
[16] Gao, B. and Starace, A. F., Phys. Rev. Lett. 61, 404 (1988).CrossRef
[17] Potvliege, R. M. and Shakeshaft, R., Phys. Rev. A 39, 1545 (1989).CrossRef
[18] Potvliege, R. M. and Shakeshaft, R., Z. Phys. D 11, 93 (1989).CrossRef
[19] Pont, M. and Shakeshaft, R., Phys. Rev. A 43, 3764 (1991).CrossRef
[20] Landau, L. D., Phys. Z. Soviet Union 2, 46 (1932).
[21] Zener, C., Proc Roy. Soc. A 137, 696 (1932).CrossRef
[22] Stueckelberg, E. C. G., Helv. Phys. Acta 5, 369 (1932).
[23] Bransden, B. H. and McDowell, M. R. C., Charge Exchange and the Theory of Ion-Atom Collisions (Oxford: Oxford University Press, 1992).Google Scholar
[24] Day, H. C., Piraux, B. and Potvliege, R. M., Phys. Rev. A 61, 031402(R) (2000).CrossRef
[25] Kylstra, N. J. and Joachain, C. J., Phys. Rev. A 60, 2255 (1999).CrossRef
[26] Siegert, A. J. F., Phys. Rev. A 56, 750 (1939).CrossRef
[27] Bransden, B. H. and Joachain, C. J., Physics of Atoms and Molecules, 2nd edn (Harlow, UK: Prentice Hall-Pearson, 2003).Google Scholar
[28] Aguilar, J. and Combes, J. M., Commun. Math. Phys. 22, 269 (1971).CrossRef
[29] Balslev, E. and Combes, J. M., Commun. Math. Phys. 22, 280 (1971).CrossRef
[30] Howland, J. S., in DeSanto, J. A., Sáenz, A. W. and Zachary, W. W., eds. Mathematical Methods and Applications of Scattering Theory, Lecture Notes in Physics (Berlin: Springer-Verlag, 1980).Google Scholar
[31] Yajima, K., Commun. Math. Phys. 87, 331 (1982).CrossRef
[32] Graffi, S., Grecchi, V. and Silverstone, H., Ann. Inst. Henri Poincaré – Phys. Théor. 42, 215 (1985).
[33] Wilkinson, J. H., The Algebraic Eigenvalue Problem (Oxford: Clarendon Press, 1965).Google Scholar
[34] Dörr, M., Potvliege, R. M. and Shakeshaft, R., Phys. Rev. A 41, 558 (1990).CrossRef
[35] Potvliege, R. M. and Shakeshaft, R., Phys. Rev. A 40, 3061 (1989).CrossRef
[36] Gontier, Y. and Trahin, M., Phys. Rev. A 19, 264 (1979).CrossRef
[37] Holt, C. R., Raymer, M. G. and Reinhardt, W. P., Phys. Rev. A 27, 2971 (1983).CrossRef
[38] Eden, R. J. and Taylor, J. R., Phys. Rev. B 133, 1575 (1964).CrossRef
[39] Joachain, C. J., Quantum Collision Theory, 3rd edn (Amsterdam: North Holland, 1983).Google Scholar
[40] Berson, I. J., J. Phys. B 8, 3078 (1975).CrossRef
[41] Potvliege, R. M., Phys. Scripta 68, C18 (2003).CrossRef
[42] Potvliege, R. M. and Shakeshaft, R., Phys. Rev. A 38, 6190 (1988).CrossRef
[43] Schlagheck, P., Hornberger, K. and Buchleitner, A., Phys. Rev. Lett. 82, 664 (1999).CrossRef
[44] Bhatt, R., Piraux, B. and Burnett, K., Phys. Rev. A 37, 98 (1988).CrossRef
[45] Bardsley, J. N., Szöke, A. and Comella, M., J. Phys. B 21, 3899 (1988).CrossRef
[46] Dörr, M. and Potvliege, R. M., Phys. Rev. A 41, 1472 (1990).CrossRef
[47] Dörr, M., Potvliege, R. M., Proulx, D. and Shakeshaft, R., Phys. Rev. A 43, 3729 (1991).CrossRef
[48] Fearnside, A. S., Potvliege, R. M. and Shakeshaft, R., Phys. Rev. A 51, 1471 (1995).CrossRef
[49] Rotenberg, M., Adv. At. Mol. Phys. 6, 233 (1970).CrossRef
[50] Maquet, A., Chu, S. I. and Reinhardt, W. P., Phys. Rev. A 27, 2946 (1983).CrossRef
[51] Shakeshaft, R., Phys. Rev. A 34, 244, 5119 (1986).CrossRef
[52] Potvliege, R. M. and Shakeshaft, R., Phys. Rev. A 38, 1098 (1988).CrossRef
[53] Freeman, R. R., Bucksbaum, P. H., Milchberg, H., Darack, S., Schumacher, D. and Geusic, M. E., Phys. Rev. Lett. 59, 1092 (1987).CrossRef
[54] Burke, P. G., Francken, P. and Joachain, C. J., Europhys. Lett. 13, 617 (1990).CrossRef
[55] Burke, P. G., Francken, P. and Joachain, C. J., J. Phys. B 24, 761 (1991).CrossRef
[56] Joachain, C. J., In Lambropoulos, P. and Walther, H., eds., Multiphoton Processes 1996 (Bristol: Institute of Physics, 1997), p. 46.Google Scholar
[57] Joachain, C. J., Dörr, M. and Kylstra, N. J., Comments At. Mol. Phys. 33, 247 (1997).
[58] Joachain, C. J., J. Mod. Opt. Suppl. 1 54, 15 (2007).
[59] Wigner, E. P., Phys. Rev. 70, 15 (1946).CrossRef
[60] Wigner, E. P. and Eisenbud, L., Phys. Rev. 72, 29 (1947).CrossRef
[61] Burke, P. G., R-Matrix Theory of Atomic Collisions (Heideberg: Springer, 2011).CrossRef
[62] Bloch, C., Nucl. Phys. 4, 503 (1957).CrossRef
[63] Burke, P. G. and Berrington, K. A., eds., Atomic and Molecular Processes: An R-matrix Approach (Bristol: Institute of Physics, 1993).Google Scholar
[64] Buttle, P. J. A., Phys. Rev. 160, 719 (1967).CrossRef
[65] Burke, P. G. and Joachain, C. J., Theory of Electron–Atom Collisions. Part.1: Potential Scattering (New York: Plenum Press, 1995).CrossRefGoogle Scholar
[66] Dörr, M., Terao-Dunseath, M., Purvis, J., Noble, C. J., Burke, P. G. and Joachain, C. J., J. Phys. B 25, 2809 (1992).CrossRef
[67] Light, J. C. and Walker, R. B., J. Chem. Phys. 65, 4272 (1976).CrossRef
[68] Baluja, K. L., Burke, P. G. and Morgan, L. A., Comput. Phys. Commun. 27, 299 (1982).CrossRef
[69] Burke, P. G., Hibbert, A. and Robb, W. D., J. Phys. B: At. Mol. Phys. 4, 153 (1971).CrossRef
[70] Hart, H. W., J. Phys. B 29, 2217 (1996).CrossRef
[71] Feng, L. and Hart, H. W., Phys. Rev. A 66, 031402 (2002).
[72] Dörr, M., Burke, P. G., Joachain, C. J., Noble, C. J., Purvis, J. and Terao-Dunseath, M., J. Phys. B 26, L275 (1993).CrossRef
[73] Dörr, M., Purvis, J., Terao-Dunseath, M., Burke, P. G., Joachain, C. J. and Noble, C. J., J. Phys. B 28, 4481 (1995).CrossRef
[74] Purvis, J., Dörr, M., Terao-Dunseath, M., Joachain, C. J., Burke, P. G. and Noble, C. J., Phys. Rev. Lett. 71, 3943 (1993).CrossRef
[75] Glass, D. H. and Burke, P. G., J. Phys. B 33, 407 (2000).CrossRef
[76] Parker, J. S., Glass, D. H., Moore, L. R., Smyth, E. S., Taylor, K. T. and Burke, P. G., J. Phys. B 33, L239 (2000).CrossRef
[77] Hart, H. W., Doherty, B. J. S., Parker, J. S. and Taylor, K. T., J. Phys. B 38, L207 (2005).CrossRef
[78] Kylstra, N. J., Dörr, M., Joachain, C. J. and Burke, P. G., J. Phys. B 28, L685 (1995).CrossRef
[79] Latinne, O., Kylstra, N. J., Dörr, M., Purvis, J., Terao-Dunseath, M., Joachain, C. J., Burke, P. G. and Noble, C. J., Phys. Rev. Lett. 74, 46 (1995).CrossRef
[80] Cyr, A., Latinne, O. and Burke, P. G., J. Phys. B 30, 659 (1997).CrossRef
[81] Glass, D. H., Burke, P. G., Hart, H. W. and Noble, C. J., J. Phys. B: At. Mol. Opt. Phys. 30, 3801 (1997).CrossRef
[82] Plummer, M. and Noble, C. J., J. Phys. B 33, L807 (2000).CrossRef
[83] McKenna, C. and Hart, H. W., J. Phys. B 37, 457 (2004).CrossRef
[84] Hart, H. W. and Bingham, P., J. Phys. B 38, 207 (2005).CrossRef
[85] Hart, H. W., Phys. Rev. A 73, 023417 (2006).
[86] McKenna, C. and Hart, H. W., J. Phys. B 36, 1627 (2003).CrossRef
[87] Madine, M. and Hart, H. W., J. Phys. B 38, 1895 (2005).CrossRef
[88] Hart, H. W., J. Phys. B 29, 3059 (1996).CrossRef
[89] Hart, H. W. and Fearnside, A. S., J. Phys. B 30, 5657 (1997).CrossRef
[90] Glass, D. H., Burke, P. G., Noble, C. J. and Wöste, G. B., J. Phys. B 31, L667 (1998).CrossRef
[91] Hart, H. W., J. Phys. B 33, 1789 (2000).CrossRef
[92] Vinci, N., Glass, D. H., Taylor, K. T. and Burke, P. G., J. Phys. B 33, 4799 (2000).CrossRef
[93] Vinci, N., Glass, D. H., Hart, H. W., Taylor, K. T. and Burke, P., J. Phys. B 36, 1795 (2003).CrossRef
[94] Hart, H. W. and Feng, L., J. Phys. B 35, 1185 (2002).
[95] Hart, H. W., Phys. Rev. Lett. 95, 153001 (2005).
[96] Madine, M. and Hart, H. W., J. Phys. B 38, 3963 (2005).CrossRef
[97] Madine, M. and Hart, H. W., J. Phys. B 39, 4040 (2006).CrossRef
[98] Knight, P. L., Commun. At. Mol. Phys. 15, 193 (1984).
[99] Knight, P. L., Lauder, M. A. and Dalton, B. J., Phys. Rep. 190, 1 (1990).CrossRef
[100] Potvliege, R. M. and Smith, P. H. G., J. Phys. B 24, L641 (1991).CrossRef
[101] Pont, M., Potvliege, R. M., Shakeshaft, R. and Smith, P. H. G., Phys. Rev. A 46, 555 (1992).CrossRef
[102] Kylstra, N. J., Hart, H. W., Burke, P. G. and Joachain, C. J., J. Phys. B 31, 3089 (1998).CrossRef
[103] Berry, M. V., Proc. Roy. Soc. London A 392, 45 (1984).CrossRef
[104] Kylstra, N. J., Paspalakis, E. and Knight, P. L., J. Phys. B 31, L719 (1998).CrossRef
[105] Bricha, E. Costa i, Lewis, C. L. S. and Hart, H. W., J. Phys. B 37, 2755 (2004).CrossRef
[106] Halfmann, T., Yatsenko, L. P., Shapiro, M., Shore, B. W. and Bergmann, K., Phys. Rev. A 58, R46 (1998).CrossRef
[107] Karapanagioti, N. E., Faucher, O., Shao, Y. L., Charalambidis, D., Bachau, H. and Cormier, E., Phys. Rev. Lett. 74, 2431 (1995).CrossRef
[108] Karapanagioti, N. E., Charalambidis, D., Uiterwaal, C. J. G., Fotakis, C., Bachau, H., Sanchez, I. and Cormier, E., Phys. Rev. A 53, 2587 (1996).CrossRef
[109] Karapanagioti, N. E., Faucher, O., Uiterwaal, C. J. G., Charalambidis, D., Bachau, H., Sanchez, I. and Cormier, E., J. Mod. Opt. 43, 953 (1996).CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×