Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T10:33:26.878Z Has data issue: false hasContentIssue false

6 - An observer's views and tools

Published online by Cambridge University Press:  05 December 2013

Donald W. Kurtz
Affiliation:
University of Central Lancashire
Pere L. Pallé
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
César Esteban
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

Introduction

The four lectures that I presented at the XXII Winter School of Astrophysics were an eclectic mix of topics loosely bound under the title of this chapter: an observer's views and tools. The presentations given by all of the lecturers at the Winter School are available at the time of this writing on the IAC Web site (see “about the school” and “lecturers and topics” on that web site). This chapter can be read in conjunction with the lecture presentations on that web site, but that is not required. This chapter does not completely follow the order of the presentations.

Chemically peculiar and pulsating stars of the upper main sequence

On and near the main sequence for Teff > 6, 600 K, there is a plethora of spectrally peculiar stars and photometric variable stars with a bewildering confusion of names. There are Ap, Bp, CP, and Am stars; there are classical Am stars, marginal Am stars, and hot Am stars; there are roAp stars and noAp stars; there are magnetic peculiar stars and nonmagnetic peculiar stars; He-strong stars, He-weak stars; Si stars, SrTi stars, SrEuCr stars, HgMn stars, PGa stars; λ Boo stars; stars with strong metals, stars with weak metals; pulsating peculiar stars, nonpulsating peculiar stars; pulsating normal stars; nonpulsating normal stars; δ Sct stars, δ Del stars, and ρ Pup stars; γ Dor stars, SPB stars, β Cep stars; γ Cas stars, λ Eri stars, α Cyg stars; sharp-lined and broad-lined stars, some of which are peculiar and some of which are not.

Type
Chapter
Information
Asteroseismology , pp. 163 - 193
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aerts, C., Christensen-Dalsgaard, J., and Kurtz, D. W. 2010. Asteroseismology. Springer. Houten, Netherlands.
Asplund, M., Grevesse, N., Sauval, A.J., and Scott, P. 2009. The chemical composition of the Sun. ARA&A, 47(Sept.), 481–522.Google Scholar
Audard, N., Kupka, F., Morel, P., Provost, J., and Weiss, W. W. 1998. The acoustic cut-off frequency of roAp stars. A&A, 335(July), 954–8.Google Scholar
Bailes, M., Lyne, A.G., and Shemar, S. L. 1991. A planet orbiting the neutron star PSR1829-10. Nature, 352(July), 311–13.Google Scholar
Balmforth, N.J., Cunha, M.S., Dolez, N., Gough, D.O., and Vauclair, S. 2001. On the excitation mechanism in roAp stars. MNRAS, 323(May), 362–72.Google Scholar
Baumann, P., Ramirez, I., Melendez, J., Asplund, M., and Lind, K. 2010. Lithium depletion in solar-like stars: no planet connection. A&A, 519(Sept.), A87–A98.Google Scholar
Bigot, L., and Dziembowski, W. A. 2002. The oblique pulsator model revisited. A&A, 391(Aug.), 235–45.Google Scholar
Bigot, L., and Kurtz, D. W. 2011. Theoretical light curves of dipole oscillations in roAp stars. A&A 536(Dec.), A73–A85.Google Scholar
Bigot, L., Provost, J., Berthomieu, G., Dziembowski, W.A., and Goode, P. R. 2000. Non-axisymmetric oscillations of roAp stars. A&A, 356(Apr.), 218–33.Google Scholar
Boesgaard, A.M., and Tripicco, M. J. 1986. Lithium in the Hyades Cluster. ApJ, 302(Mar.), L49–L53.Google Scholar
Chaboyer, B., Demarque, P., Kernan, P.J., and Krauss, L. M. 1996. A lower limit on the age of the Universe. Science, 271 (Feb.), 957–61.Google Scholar
Cowley, C.R., Hubrig, S., Ryabchikova, T.A., Mathys, G., Piskunov, N., and Mittermayer, P. 2001. The core-wing anomaly of cool Ap stars: abnormal Balmer Profiles. A&A, 367(Mar.), 939–42.Google Scholar
Cowley, C.R., Hubrig, S., and Kamp, I. 2006. An atlas of K-line spectra for cool magnetic cp stars: the wing-nib anomaly (WNA). ApJS, 163(Apr.), 393–400.Google Scholar
Cunha, M. S. 2005. Asteroseismic theory of rapidly oscillating Ap stars. Journal of Astrophysics and Astronomy, 26(June), 213–21.Google Scholar
Cunha, M. S. 2006. Improved pulsating models of magnetic Ap stars - I. Exploring different magnetic field configurations. MNRAS, 365(Jan.), 153–64.Google Scholar
Cunha, M. S. 2007. Theory of rapidly oscillating Ap stars. Communications in Asteroseismology, 150(June), 48–54.Google Scholar
Cunha, M.S., and Gough, D. 2000. Magnetic perturbations to the acoustic modes of roAp stars. MNRAS, 319(Dec.), 1020–38.Google Scholar
Debosscher, J., Blomme, J., Aerts, C., and De Ridder, J. 2011. Global stellar variability study in the field-of-view of the Kepler satellite. ArXiv e-prints, Feb.Google Scholar
Dziembowski, W.A., and Goode, P. R. 1985. Frequency splitting in AP stars. ApJ, 296(Sept.), L27–L30.Google Scholar
Dziembowski, W.A., and Goode, P. R. 1996. Magnetic Efects on Oscillations in roAp Stars. ApJ, 458(Feb.), 338.Google Scholar
Eisenstein, D.J., Liebert, J., Harris, H.C., Kleinman, S.J., Nitta, A., Silvestri, N., Anderson, S.A., Barentine, J.C., Brewington, H.J., Brinkmann, J., Harvanek, M., Krzesinski, J., Neilsen, E. H. Jr., Long, D., Schneider, D.P., and Snedden, S. A. 2006a. A catalog of spectroscopically confirmed white dwarfs from the Sloan Digital Sky Survey data release 4. ApJS, 167(Nov.), 40–58.Google Scholar
Eisenstein, D.J., Liebert, J., Koester, D., Kleinmann, S.J., Nitta, A., Smith, P.S., Barentine, J.C., Brewington, H.J., Brinkmann, J., Harvanek, M., Krzesinski, J., Neilsen, E. H. Jr., Long, D., Schneider, D.P., and Snedden, S. A. 2006b. Hot DB white dwarfs from the Sloan Digital Sky Survey. AJ, 132(Aug.), 676–91.Google Scholar
Elkin, V.G., Kurtz, D.W., and Mathys, G. 2005. The discovery of remarkable 5km/s pulsational radial velocity variations in the roAp star HD99563. MNRAS, 364(Dec.), 864–72.Google Scholar
Fontaine, G., and Wesemael, F. 1987. Recent advances in the theory of white dwarf spectral evolution. Pages 319–326 of: A. G. D., Philip, D. S., Hayes, and J. W., Liebert (ed), IAU Colloq. 95: Second Conference on Faint Blue Stars.
Freyhammer, L.M., Kurtz, D.W., Elkin, V.G., Mathys, G., Savanov, I., Zima, W., Shibahashi, H., and Sekiguchi, K. 2009. A 3D study of the photosphere of HD99563. I. Pulsation analysis. MNRAS, 396(June), 325–42.Google Scholar
Gautschy, A., Saio, H., and Harzenmoser, H. 1998. How to drive roAp stars. MNRAS, 301(Nov.), 31–41.Google Scholar
Grigahcene, A., Antoci, V., Balona, L., Catanzaro, G., Daszynska-Daszkiewicz, J., Guzik, J.A., Handler, G., Houdek, G., Kurtz, D.W., Marconi, M., Monteiro, M. J. P. F. G., Moya, A., Ripepi, V., Suarez, J.-C., Uytterhoeven, K., Borucki, W.J., Brown, T.M., Christensen-Dalsgaard, J., Gilliland, R.L., Jenkins, J.M., Kjeldsen, H., Koch, D., Bernabei, S., Bradley, P., Breger, M., Di Criscienzo, M., Dupret, M.-A., García, R.A., García Hernandez, A., Jackiewicz, J., Kaiser, A., Lehmann, H., Martin-Ruiz, S., Mathias, P., Molenda-Zakowicz, J., Nemec, J.M., Nuspl, J., Paparaó, M., Roth, M., Szabao, R., Suran, M.D., and Ventura, R. 2010. Hybrid γ Doradus-δ Scuti pulsators: new insights into the physics of the oscillations from Kepler observations. ApJ, 713(Apr.), L192–L197.Google Scholar
Gray, R. O. and Garrison, R. F. 1989a. The early F-type stars. Refined classification, confrontation with Stromgren photometry, and the efects of rotation. ApJS, 69(Feb.), 301–21.Google Scholar
Gray, R. O. and Garrison, R. F. 1989b. The late A-type stars. Refined MK classification, confrontation with Stromgren photometry, and the effects of rotation. ApJS, 70(Jul.), 623–636.Google Scholar
Handler, G. 1999. The domain of γ Doradus variables in the Hertzsprung-Russell diagram. MNRAS, 309(Oct.), L19–L23.Google Scholar
Houk, N. and Cowley, A. P. 1975. University of Michigan Catalogue of two-dimensional spectral types for the HD stars. Volume I. University of Michigan, Michigan.
Houk, N. 1978. University of Michigan Catalogue of two-dimensional spectral types for the HD stars. Volume II. University of Michigan, Michigan.
Houk, N. 1982. University of Michigan Catalogue of two-dimensional spectral types for the HD stars. Volume III. University of Michigan, Michigan.
Houk, N. and Smith-Moore, M. 1988. University of Michigan Catalogue of two-dimensional spectral types for the HD stars. Volume IV. University of Michigan, Michigan.
Hubrig, S., Nesvacil, N., Schöller, M., North, P., Mathys, G., Kurtz, D.W., Wolff, B., Szeifert, T., Cunha, M.S., and Elkin, V. G. 2005. Detection of an extraordinarily large magnetic field in the unique ultra-cool Ap star HD 154708. A&A, 440(Sept.), L37–L40.Google Scholar
Hubrig, S., Oskinova, L.M., and Schoeller, M. 2011a. First detection of a magnetic field in the fast rotating runaway Oe star zeta Ophiuchi. Astronomische Nachrichten, 332(Jan.), 147–52.Google Scholar
Hubrig, S., Ilyin, I., Schöller, M., Briquet, M., Morel, T., and De Cat, P. 2011b. First magnetic field models for recently discovered magnetic /3Cephei and slowly pulsating B stars. ApJ, 726(Jan.), L5–L9.Google Scholar
Kepler, S.O., Kleinman, S.J., Nitta, A., Koester, D., Castanheira, B.G., Giovannini, O., Costa, A. F. M., and Althaus, L. 2007. White dwarf mass distribution in the SDSS. MNRAS, 375(Mar.), 1315–24.Google Scholar
Kleinman, S.J., Harris, H.C., Eisenstein, D.J., Liebert, J., Nitta, A., Krzesinski, J., Munn, J.A., Dahn, C.C., Hawley, S.L., Pier, J.R., Schmidt, G., Silvestri, N.M., Smith, J.A., Szkody, P., Strauss, M.A., Knapp, G.R., Collinge, M.J., Mukadam, A.S., Koester, D., Uomoto, A., Schlegel, D.J., Anderson, S.F., Brinkmann, J., Lamb, D.Q., Schneider, D.P., and York, D. G. 2004. A catalog of spectroscopically identified white dwarf stars in the first data release of the Sloan Digital Sky Survey. ApJ, 607(May), 426–44.Google Scholar
Kochukhov, O. 2006. Pulsational line profile variation of the roAp star HR 3831. A&A, 446(Feb.), 1051–70.Google Scholar
Kochukhov, O., Bagnulo, S., and Barklem, P. S. 2002. Interpretation of the core-wing anomaly of Balmer line profiles of cool Ap stars. ApJ, 578(Oct.), L75–L78.Google Scholar
Kochukhov, O., Drake, N.A., Piskunov, N., and de la Reza, R. 2004. Multi-element abundance Doppler imaging of the rapidly oscillating Ap star HR 3831. A&A, 424(Sept.), 935–50.Google Scholar
Kolenberg, K., Bryson, S., Szabo, R., Kurtz, D.W., Smolec, R., Nemec, J.M., Guggenberger, E., Moskalik, P., Benko, J.M., Chadid, M., Jeon, Y.-B., Kiss, L.L., Kopacki, G., Nuspl, J., Still, M., Christensen-Dalsgaard, J., Kjeldsen, H., Borucki, W.J., Caldwell, D.A., Jenkins, J.M., and Koch, D. 2011. Kepler photometry of the prototypical Blazhko star RR Lyr: an old friend seen in a new light. MNRAS, 411 (Feb.), 878–90.Google Scholar
Kurtz, D. W. 1976. Metallicism and pulsation: an analysis of the Delta Delphini stars. ApJS, 32(Oct.), 651–80.Google Scholar
Kurtz, D. W. 1982. Rapidly oscillating Ap stars. MNRAS, 200(Sept.), 807–859.Google Scholar
Kurtz, D.W., and Martinez, P. 2000. Observing roAp Stars with WET: a primer. Baltic Astronomy, 9, 253–53.Google Scholar
Kurtz, D.W., van Wyk, F., Roberts, G., Marang, F., Handler, G., Medupe, R., and Kilkenny, D. 1997. Frequency variability in the rapidly oscillating Ap star HR 3831: three more years of monitoring. MNRAS, 287(May), 69–78.Google Scholar
Kurtz, D.W., Elkin, V.G., and Mathys, G. 2005. Probing the magnetoacoustic boundary layer in the peculiar magnetic star 33 Lib (HD 137949). MNRAS, 358(Mar.), L6–L10.Google Scholar
Kurtz, D.W., Elkin, V.G., Cunha, M.S., Mathys, G., Hubrig, S., Wolff, B., and Savanov, I. 2006a. The discovery of 8.0-min radial velocity variations in the strongly magnetic cool Ap star HD154708, a new roAp star. MNRAS, 372(Oct.), 286–92.Google Scholar
Kurtz, D.W., Elkin, V.G., and Mathys, G. 2006b. The discovery of a new type of upper atmospheric variability in the rapidly oscillating Ap stars with VLT high-resolution spectroscopy. MNRAS, 370(Aug.), 1274–94.Google Scholar
Kurtz, D.W., Elkin, V.G., and Mathys, G. 2006c. Observations of magneto-acoustic modes in strongly magnetic pulsating roAp stars. In: Proceedings of SOHO 18/GONG 2006/HELAS I, Beyond the spherical Sun. ESA Special Publication, vol. 624.
Kurtz, D.W., Elkin, V.G., Mathys, G., and van Wyk, F. 2007. On the nature of the upper atmospheric variability in the rapidly oscillating Ap star HD134214. MNRAS, 381(Nov.), 1301–12.Google Scholar
Kurtz, D.W., Shibahashi, H., Dhillon, V.S., Marsh, T.R., and Littlefair, S. P. 2008. A search for a new class of pulsating DA white dwarf stars in the DB gap. MNRAS, 389(Oct.), 1771–9.Google Scholar
Kurtz, D.W., Cunha, M.S., Saio, H., Bigot, L., Balona, L.A., Elkin, V.G., Shibahashi, H., Brandão, I.M., Uytterhoeven, K., Frandsen, S., Frimann, S., Hatzes, A., Lueftinger, T., Gruberbauer, M., Kjeldsen, H., Christensen-Dalsgaard, J., and Kawaler, S. D. 2011. The first evidence for multiple pulsation axes: a new roAp star in the Kepler field, KIC 10195926. ArXiv e-prints, Feb.Google Scholar
Ledoux, P. 1951. The nonradial oscillations of gaseous stars and the problem of Beta Canis Majoris. ApJ, 114(Nov.), 373–84.Google Scholar
Liebert, J. 1986. The origin and evolution of helium-rich white dwarfs. Pages 367–381 of: K., Hunger, D., Schoenberner, and N. Kameswara, Rao (ed), IAU Colloq. 87: Hydrogen Deficient Stars and Related Objects. Astrophysics and Space Science Library, vol. 128.
Lyne, A.G., and Bailes, M. 1992. No planet orbiting PS R1829-10. Nature, 355(Jan.), 213.Google Scholar
Mashonkina, L., Ryabchikova, T., and Ryabtsev, A. 2005. NLTE ionization equilibrium of Nd II and Nd III in cool A and Ap stars. A&A, 441(Oct.), 309–18.Google Scholar
Mathys, G., and Lanz, T. 1990. The magnetic field of the AM star Omicron Pegasi. A&A, 230(Apr.), L21–L24.Google Scholar
Mathys, G. and Kharchenko, N. and Hubrig, S. 1996. A kinematical study of rapidly oscillating AP stars. A&A, 311(July), 901–10.Google Scholar
McCarthy, D. D. 2005. Precision time and the rotation of the Earth. Pages 180–197 of: D. W., Kurtz (ed), IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy.
McCook, G.P., and Sion, E. M. 1999. A catalog of spectroscopically identified white dwarfs. ApJS, 121(Mar.), 1–130.Google Scholar
Mkrtichian, D.E., Hatzes, A.P., and Kanaan, A. 2003. Radial velocity variations in pulsating Ap stars. II. 33 Librae. MNRAS, 345(Nov.), 781–94.Google Scholar
Montgomery, M.H., Provencal, J.L., Kanaan, A., Mukadam, A.S., Thompson, S.E., Dalessio, J., Shipman, H.L., Winget, D.E., Kepler, S.O., and Koester, D. 2010. Evidence for temperature change and oblique pulsation from light curve fits of the pulsating white dwarf GD 358. ApJ, 716(June), 84–96.Google Scholar
Moya, A., Amado, P.J., Barrado, D., Hernaandez, A.G., Aberasturi, M., Montesinos, B., and Aceituno, F. 2010. The planetary system host HR8799: on its λ Bootis nature. MNRAS, 406(July), 566–75.Google Scholar
Newcomb, S. 1895. Tables of the motion of the earth on its axis and around the sun. Astronomical papers prepared for the use of the American ephemeris and nautical almanac. Washington, Bureau of Equipment, Navy Dept., 6, 2.
Preston, G. W. 1974. The chemically peculiar stars of the upper main sequence. ARA&A, 12, 257–77.Google Scholar
Rosen, R., Clemens, C., Demorest, P., and Wyman, K. 2010. Non-radial Oscillations in Radio Pulsars. Page 453.16 of: American Astronomical Society Meeting Abstracts number 215. Bulletin of the American Astronomical Society, vol. 42.
Saio, H. 2005. A non-adiabatic analysis for axisymmetric pulsations of magnetic stars. MNRAS, 360(July), 1022–32.Google Scholar
Saio, H., and Gautschy, A. 2004. Axisymmetric p-mode pulsations of stars with dipole magnetic fields. MNRAS, 350(May), 485–505.Google Scholar
Shibahashi, H. 2000. The oblique pulsator model for the Blazhko effect in RR Lyrae stars. Theory of amplitude modulation I. Pages 299–306 of: L., Szabados and D., Kurtz (ed), IAU Colloq. 176: The Impact of Large-Scale Surveys on Pulsating Star Research. Astronomical Society of the Pacific Conference Series, vol. 203.
Shibahashi, H. 2005. The DB gap and pulsations of white dwarfs. Pages 143–148 of: G., Alecian, O., Richard, and S., Vauclair (ed), EAS Publications Series. EAS Publications Series, vol. 17.
Shibahashi, H. 2007. The DB gap and pulsations of white dwarfs. Pages 35–42 of: R. J., Stancliffe, G., Houdek, R. G., Martin, and C. A., Tout (ed), Unsolved Problems in Stellar Physics: A Conference in Honor of Douglas Gough. American Institute of Physics Conference Series, vol. 948.
Shibahashi, H., and Aerts, C. 2000. Asteroseismology and oblique pulsator model of β Cephei. ApJ, 531 (Mar.), L143–L146.Google Scholar
Shibahashi, H., and Takata, M. 1993. Theory for the distorted dipole modes of the rapidly oscillating Ap stars: a refinement of the oblique pulsator model. PAS J, 45(Aug.), 617–41.Google Scholar
Silvotti, R., Schuh, S., Janulis, R., Solheim, J.-E., Bernabei, S., Østensen, R., Oswalt, T.D., Bruni, I., Gualandi, R., Bonanno, A., Vauclair, G., Reed, M., Chen, C.-W., Leibowitz, E., Paparo, M., Baran, A., Charpinet, S., Dolez, N., Kawaler, S., Kurtz, D., Moskalik, P., Riddle, R., and Zola, S. 2007. A giant planet orbiting the “extreme horizontal branch” star V391 Pegasi. Nature, 449(Sept.), 189–91.Google Scholar
Sousa, J.C., and Cunha, M. 2011. On the understanding of pulsations in the atmosphere of roAp stars: phase diversity and false nodes. ArXiv e-prints, Mar.
Sterken, C., and Jaschek, C. 2005. Light Curves of Variable Stars. C., Sterken and C., Jaschek (ed), Light Curves of Variable Stars. Cambridge University Press. Cambridge, United Kingdom.
Szaba, R., Kollath, Z., Molnar, L., Kolenberg, K., Kurtz, D.W., Bryson, S.T., Benko, J.M., Christensen-Dalsgaard, J., Kjeldsen, H., Borucki, W.J., Koch, D., Twicken, J.D., Chadid, M., di Criscienzo, M., Jeon, Y.-B., Moskalik, P., Nemec, J.M., and Nuspl, J. 2010. Does Kepler unveil the mystery of the Blazhko effect? First detection of period doubling in Kepler Blazhko RR Lyrae stars. MNRAS, 409(Dec.), 1244–52.Google Scholar
Takata, M., and Shibahashi, H. 1995. Effects of the quadrupole component of magnetic fields on the rapid oscillations of Ap stars. PASJ, 47(Apr.), 219–31.Google Scholar
Welsh, W.F., Orosz, J.A., Aerts, C., Brown, T., Brugamyer, E., Cochran, W., Gilliland, R.L., Guzik, J.A., Kurtz, D.W., Latham, D., Marcy, G.W., Quinn, S.N., Zima, W., Allen, C., Batalha, N., Bryson, S., Buchhave, L., Caldwell, D.A., Gautier, T.N., Howell, S., Kinemuchi, K., Ibrahim, K.A., Isaacson, H., Jenkins, J., Prsa, A., Still, M., Street, R., Wohler, B., Koch, D.G., and Borucki, W. J. 2011. KOI-54: The Kepler discovery of tidally-excited pulsations and brightenings in a highly eccentric binary. ApJS, 197(Feb.), 4–18.Google Scholar
Willems, B., and Aerts, C. 2002. Tidally induced radial-velocity variations in close binaries. A&A, 384(Mar.), 441–51.Google Scholar
York, D.G., Adelman, J., Anderson, J. E. Jr., Anderson, S.F., Annis, J., Bahcall, N.A., Bakken, J.A., Barkhouser, R., Bastian, S., Berman, E., Boroski, W.N., Bracker, S., Briegel, C., Briggs, J.W., Brinkmann, J., Brunner, R., Burles, S., Carey, L., Carr, M.A., Castander, F.J., Chen, B., Colestock, P.L., Connolly, A.J., Crocker, J.H., Csabai, I., Czarapata, P.C., Davis, J.E., Doi, M., Dombeck, T., Eisenstein, D., Ellman, N., Elms, B.R., Evans, M.L., Fan, X., Federwitz, G.R., Fiscelli, L., Friedman, S., Frieman, J.A., Fukugita, M., Gillespie, B., Gunn, J.E., Gurbani, V.K., de Haas, E., Haldeman, M., Harris, F.H., Hayes, J., Heckman, T.M., Hennessy, G.S., Hindsley, R.B., Holm, S., Holmgren, D.J., Huang, C.-h., Hull, C., Husby, D., Ichikawa, S.-I., Ichikawa, T., Ivezic, Z.,Kent, S., Kim, R.S.J., Kinney, E., Klaene, M., Kleinman, A.N., Kleinman, S., Knapp, G.R., Korienek, J., Kron, R.G., Kunszt, P.Z., Lamb, D.Q., Lee, B., Leger, R.F., Limmongkol, S., Lindenmeyer, C., Long, D.C., Loomis, C., Loveday, J., Lucinio, R., Lupton, R.H., MacKinnon, B., Mannery, E.J., Mantsch, P.M., Margon, B., McGehee, P., McKay, T.A., Meiksin, A., Merelli, A., Monet, D.G., Munn, J.A., Narayanan, V.K., Nash, T., Neilsen, E., Neswold, R., Newberg, H.J., Nichol, R.C., Nicinski, T., Nonino, M., Okada, N., Okamura, S., Ostriker, J.P., Owen, R., Pauls, A.G., Peoples, J., Peterson, R.L., Petravick, D., Pier, J.R., Pope, A., Pordes, R., Prosapio, A., Rechenmacher, R., Quinn, T.R., Richards, G.T., Richmond, M.W., Rivetta, C.H., Rockosi, C.M., Ruthmansdorfer, K., Sandford, D., Schlegel, D.J., Schneider, D.P., Sekiguchi, M., Sergey, G., Shimasaku, K., Siegmund, W.A., Smee, S., Smith, J.A., Snedden, S., Stone, R., Stoughton, C., Strauss, M.A., Stubbs, C., SubbaRao, M., Szalay, A.S., Szapudi, I., Szokoly, G.P., Thakar, A.R., Tremonti, C., Tucker, D.L., Uomoto, A., Vanden Berk, D., Vogeley, M.S., Waddell, P., Wang, S.-i., Watanabe, M., Weinberg, D.H., Yanny, B., and Yasuda, N. 2000. The Sloan Digital Sky Survey: technical summary. AJ, 120(Sept.), 1579–87.Google Scholar
Zverko, J., Ziznovsky, J., Adelman, S.J., and Weiss, W. W. 2004 (Dec.). IAU S224. Pages 829–834 of: J., Zverko, J., Ziznovsky, S. J., Adelman, and W. W., Weiss (ed), The A-Star Puzzle. IAU Symposium, vol. 224.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×