We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The large number of patients with ankle injuries and the high incidence make ankle rehabilitation an urgent health problem. However, there is a certain degree of difference between the motion of most ankle rehabilitation robots and the actual axis of the human ankle. To achieve more precise ankle joint rehabilitation training, this paper proposes a novel 3-PUU/R parallel ankle rehabilitation mechanism that integrates with the human ankle joint axis. Moreover, it provides comprehensive ankle joint motion necessary for effective rehabilitation. The mechanism has four degrees of freedom (DOFs), enabling plantarflexion/dorsiflexion, eversion/inversion, internal rotation/external rotation, and dorsal extension of the ankle joint. First, based on the DOFs of the human ankle joint and the variation pattern of the joint axes, a 3-PUU/R parallel ankle joint rehabilitation mechanism is designed. Based on the screw theory, the inverse kinematics inverse, complete Jacobian matrix, singular characteristics, and workspace analysis of the mechanism are conducted. Subsequently, the motion performance of the mechanism is analyzed based on the motion/force transmission indices and the constraint indices. Then, the performance of the mechanism is optimized according to human physiological characteristics, with the motion/force transmission ratio and workspace range as optimization objectives. Finally, a physical prototype of the proposed robot was developed, and experimental tests were performed to evaluate the above performance of the proposed robot. This study provides a good prospect for improving the comfort and safety of ankle joint rehabilitation from the perspective of human-machine axis matching.
This scoping review aimed to evaluate the effect of exercise combined with vitamin D supplementation on skeletal muscle health in older individuals. We implemented a systematic search of electronic databases, including PubMed, the Cochrane Library, Web of Science, and Embase, was conducted from the time of library construction to January 2024. Eligible studies were randomized controlled trials (RCTs) including men and women aged 65 years or mean age 65 years; exercise training and vitamin D supplementation; outcomes of muscular strength, function, muscular power, body composition, and quality of life; and results compared with those of exercise intervention alone. The results showed 13 studies including 1483 participants were identified. The proportions of male and female sex were 22.05% and 77.95%, respectively. Exercise intervention methods included resistance exercises and multimodal exercise training. All vitamin D interventions involved supplementation with vitamin D3. A significant increase was identified in short physical performance battery (SPPB) and stair climbing but not in skeletal muscle mass, skeletal strength, the timed up and go (TUG) test, and gait speed in older adults after exercise combined with vitamin D supplementation. In conclusion,exercise combined with vitamin D supplementation has additive health effects on SPPB and stair climbing. Furthermore, when vitamin D was deficient at baseline, the combined effect of exercise and vitamin D intervention significantly increased the TUG and gait speed in older adults. In future RCTs on this topic, baseline vitamin D nutritional status, health condition, and sex should be considered.
A high-energy picosecond 355 nm ultraviolet (UV) laser operating at 100 Hz was demonstrated. A 352 mJ, 69 ps, 1064 nm laser at 100 Hz was realized firstly by cascaded regenerative, laser diode end-pumped single-pass and side-pumped main amplifiers. The stimulated Raman scattering-based beam shaping technique, thermally induced birefringence compensation and 4f spatial filter-image relaying systems were used to maintain a relatively homogeneous beam intensity distribution during the amplification process. By using lithium triborate crystals for second- and third-harmonic generation (THG), a 172 mJ, approximately 56 ps, 355 nm UV laser was achieved with a THG conversion efficiency of 49%. To the best of our knowledge, it is the highest pulse energy of a picosecond 355 nm UV laser so far. The beam quality factor ${M}^2$ and pulse energy stability were ${M}_x^2$=3.92, ${M}_y^2$=3.71 and root mean square of 1.48%@3 hours. This laser system could play significant roles in applications including photoconductive switch excitation, laser drilling and laser micro-fabrication.
Sediments within accretionary complexes, preserving key information on crust growth history of Central Asian Orogenic Belt, did not get enough attention previously. Here, we conduct comprehensive geochemical study on the turbidites from the North Tianshan Accretionary Complex (NTAC) in the Chinese West Tianshan orogen, which is a good example of sediments derived from juvenile materials. The turbidites, composed of sandstone, siltstone, and argillaceous siliceous rocks, are mainly Carboniferous. All the investigated samples have relatively low Chemical Index of Alteration values (35–63) and Plagioclase Index of Alteration values (34–68), indicating relatively weak weathering before erosion and deposition. The sandstone and siltstone, and slate samples display high Index of Compositional Variability values of 0.89–1.50 and 0.89–0.93, suggesting a relatively immature source. The sandstones and siltstones were mainly derived from intermediate igneous rocks, and the slates from felsic igneous rocks, formed in oceanic/continental arc settings. The investigated samples roughly display high positive εNd(t) values (mainly at +5.5 to +7.9, except one spot at +0.8), with corresponding Nd model ages at 672 Ma–522 Ma (except one at ∼1.1 Ga). Combined with the previous studies, we suggest that the turbidites in the NTAC were mainly derived from intermediate to felsic igneous rocks with juvenile arc signature, and thus the northern Chinese West Tianshan is a typical site with significant Phanerozoic crust growth.
Species of epiphytic microbiota are closely associated with the fermentation performance of natural forage silage. This study aimed to evaluate the dynamic microbial communities, fermentation parameters, and aerobic stability of Napier grass silage from the same variety and growth period but harvested from three different regions (NGP1, NGP2, and NGP3). After 60 days of ensiling, triplicate silos were opened for sampling and testing aerobic stability. The epiphytic microbiota with higher relative abundances in fresh Napier grass (NGP1, NGP2, and NGP3) were Weissella, Enterobacter, and Lactococcus, respectively. After 60 days of ensiling, NGP3 exhibited higher fermentation quality, indicated by higher lactic acid (LA) concentration and lower pH than that of NGP1 and NGP2. The NH3–N content of all treatments was lower than 100 g/kg total nitrogen. Compared with NGP1 and NGP2 silage, NGP3 silage exhibited a sharp rise in pH and LA consumption during air exposure. After 7 days of air exposure, NGP3 had higher ethanol concentrations and pH. Ruminiclostridium_5, Pediococcus, and Lactobacillus predominated in NGP1, NGP2, and NGP3 silages, respectively, whereas Candida and Monascus predominated in air-exposed NGP3 silage. The bacterial co-occurrence networks from fresh samples to ensiling and air exposure became more complex; however, NGP3 had a higher negative correlation with co-occurrence after air exposure. Different regions had significant effects on the fermentation patterns, bacterial communities, and aerobic stability of Napier grass silage. This was mainly due to variable epiphytic microbiota. Higher fermentation quality of Napier grass silage may also result in accelerated spoilage due to air exposure. Candida and Monascus were primarily responsible for the lower dry matter recovery and higher ethanol contents and air exposure spoilage of Napier grass silage.
The Chinese Loess Plateau (CLP), recognized as the world's largest loess plateau, has been a subject of ongoing debate regarding the continuity of its sedimentary loess sequence due to its intricate depositional environment. In this study, we conducted dating on a 9.8-m-long Malan loess core obtained from the Sanmen Gorge in the southern CLP using optically stimulated luminescence (OSL). The OSL dates indicate loess deposition between 52.4 and 11.3 ka, with no apparent hiatus on a millennial scale, and a sedimentation rate (SR) exhibiting six distinct episodes. Additionally, a comprehensive review of 613 OSL ages from 18 sections at 14 sites across the CLP was conducted. The results reveal loess deposition at most sites shows no apparent hiatus on a millennial scale over the past 60 ka, except for two specific locations. High SR episodes during Marine Isotope Stage (MIS) 3 across the CLP were attributed to heightened dust emissions from the source region and an enhanced dust deposition efficiency, while MIS 2 deposits were influenced by an intensified East Asian winter monsoon. Low SR episodes during MIS 1 at most sites were likely associated with reduced atmospheric transportation and pedogenesis. Spatially heterogeneous SR variations across the CLP might be influenced by local depositional environments.
Teaching is a highly complex act, and learning to teach in an educational era that combines both teacher-centred and student-centred approaches presents additional challenges. Conducting demonstration lessons (DL) is one of the methods aimed at enhancing teachers’ instructional skills. This study examines the features and functions of this unique type of lesson from the perspective of music demonstration teachers in Guangdong, China. Through observation and interviews, the findings not only reveal the prevalence of DLs as performance-based lessons in Chinese teachers’ professional lives but also explore their distinctions from regular school teaching and their potential for improving teachers’ pedagogical abilities. Concerns and issues related to this type of lesson, along with possible solutions, are also discussed to provide recommendations for incorporating DLs into teacher training programmes in higher education institutions.
MicroRNAs (miRNAs) are endogenous, non-coding RNAs, which are functional in a variety of biological processes through post-transcriptional regulation of gene expression. However, the role of miRNAs in the interaction between Bacillus thuringiensis and insects remains unclear. In this study, small RNA libraries were constructed for B. thuringiensis-infected (Bt) and uninfected (CK) Spodoptera exigua larvae (treated with double-distilled water) using Illumina sequencing. Utilising the miRDeep2 and Randfold, a total of 233 known and 726 novel miRNAs were identified, among which 16 up-regulated and 34 down-regulated differentially expressed (DE) miRNAs were identified compared to the CK. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that potential target genes of DE miRNAs were associated with ABC transporters, fatty acid metabolism and MAPK signalling pathway which are related to the development, reproduction and immunity. Moreover, two miRNA core genes, SeDicer1 and SeAgo1 were identified. The phylogenetic tree showed that lepidopteran Dicer1 clustered into one branch, with SeDicer1 in the position closest to Spodoptera litura Dicer1. A similar phylogenetic relationship was observed in the Ago1 protein. Expression of SeDicer1 increased at 72 h post infection (hpi) with B. thuringiensis; however, expression of SeDicer1 and SeAgo1 decreased at 96 hpi. The RNAi results showed that the knockdown of SeDicer1 directly caused the down-regulation of miRNAs and promoted the mortality of S. exigua infected by B. thuringiensis GS57. In conclusion, our study is crucial to understand the relationship between miRNAs and various biological processes caused by B. thuringiensis infection, and develop an integrated pest management strategy for S. exigua via miRNAs.
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
Mythimna separata (Lepidoptera: Noctuidae) is an omnivorous pest that poses a great threat to food security. Insect antimicrobial peptides (AMPs) are small peptides that are important effector molecules of innate immunity. Here, we investigated the role of the AMP cecropin B in the growth, development, and immunity of M. separata. The gene encoding M. separata cecropin B (MscecropinB) was cloned. The expression of MscecropinB was determined in different developmental stages and tissues of M. separata. It was highest in the prepupal stage, followed by the pupal stage. Among larval stages, the highest expression was observed in the fourth instar. Tissue expression analysis of fourth instar larvae showed that MscecropinB was highly expressed in the fat body and haemolymph. An increase in population density led to upregulation of MscecropinB expression. MscecropinB expression was also upregulated by the infection of third and fourth instar M. separata with Beauveria bassiana or Bacillus thuringiensis (Bt). RNA interference (RNAi) targeting MscecropinB inhibited the emergence rate and fecundity of M. separata, and resulted in an increased sensitivity to B. bassiana and Bt. The mortality of M. separata larvae was significantly higher in pathogen plus RNAi-treated M. separata than in controls treated with pathogens only. Our findings indicate that MscecropinB functions in the eclosion and fecundity of M. separata and plays an important role in resistance to infection by B. bassiana and Bt.
To investigate the effects of co-infection with Clonorchis sinensis (C. sinensis) on T cell exhaustion levels in patients with chronic hepatitis B, we enrolled clinical cases in this study, including the patients with concomitant C. sinensis and HBV infection. In this study, we detected inhibitory receptors and cytokine expression in circulating CD4+ and CD8+ T cells by flow cytometry. PD-1 and TIM-3 expression levels were significantly higher on CD4+ T and CD8+ T cells from co-infected patients than on those from the HBV patients. In addition, CD4+ T cells and CD8+ T cells function were significantly inhibited by C. sinensis and HBV co-infection compared with HBV single infection, secreting lower levels of Interferon gamma (IFN-γ), Interleukin-2 (IL-2), and TNF-α. Our current results suggested that C. sinensis co-infection could exacerbate T cell exhaustion in patients with chronic hepatitis B. PD-1 and TIM-3 could be novel biomarkers for T cell exhaustion in patients with Clonorchis sinensis and chronic hepatitis B co-infection. Furthermore, it may be one possible reason for the weaker response to antiviral therapies and the chronicity of HBV infection in co-infected patients. We must realize the importance of C. sinensis treatment for HBV-infected patients. It might provide useful information for clinical doctors to choose the right treatment plans.
The Righi–Leduc heat flux generated by the self-generated magnetic field in the ablative Rayleigh–Taylor instability driven by a laser irradiating thin targets is studied through two-dimensional extended-magnetohydrodynamic simulations. The perturbation structure gets into a low magnetization state though the peak strength of the self-generated magnetic field could reach hundreds of teslas. The Righi–Leduc effect plays an essential impact both in the linear and nonlinear stages, and it deflects the total heat flux towards the spike base. Compared to the case without the self-generated magnetic field included, less heat flux is concentrated at the spike tip, finally mitigating the ablative stabilization and leading to an increase in the velocity of the spike tip. It is shown that the linear growth rate is increased by about 10% and the amplitude during the nonlinear stage is increased by even more than 10% due to the feedback of the magnetic field, respectively. Our results reveal the importance of Righi–Leduc heat flux to the growth of the instability and promote deep understanding of the instability evolution together with the self-generated magnetic field, especially during the acceleration stage in inertial confinement fusion.
The laboratory generation and diagnosis of uniform near-critical-density (NCD) plasmas play critical roles in various studies and applications, such as fusion science, high energy density physics, astrophysics as well as relativistic electron beam generation. Here we successfully generated the quasistatic NCD plasma sample by heating a low-density tri-cellulose acetate (TCA) foam with the high-power-laser-driven hohlraum radiation. The temperature of the hohlraum is determined to be 20 eV by analyzing the spectra obtained with the transmission grating spectrometer. The single-order diffraction grating was employed to eliminate the high-order disturbance. The temperature of the heated foam is determined to be T = 16.8 ± 1.1 eV by analyzing the high-resolution spectra obtained with a flat-field grating spectrometer. The electron density of the heated foam is about under the reasonable assumption of constant mass density.
The preparation and characterization of intercalated kaolinite is important for industries such as those using nanocomposites, but the number of compounds that can be intercalated into these clay minerals is rather limited. The purpose of this study was to expand the range of possible intercalants by developing intercalation precursors using both single and multiple (co-intercalation) precursor agents. Characterization of the resulting precursors was by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). The results show that the most successful single intercalation agent was DMSO and, among the co-intercalation agents, the DMSO/CH3OH system was the best. The preparation and characterization of kao-DMSO-KAc showed that the displacement reaction is the most efficient way to expand the interlayer spacing of kaolinite. At the same time, the lateral-bilayer arrangement of the Ac− in the interlayers was proven by study of de-intercalation of kao-KAc under high temperature.
Fast neutron absorption spectroscopy is widely used in the study of nuclear structure and element analysis. However, due to the traditional neutron source pulse duration being of the order of nanoseconds, it is difficult to obtain a high-resolution absorption spectrum. Thus, we present a method of ultrahigh energy-resolution absorption spectroscopy via a high repetition rate, picosecond duration pulsed neutron source driven by a terawatt laser. The technology of single neutron count is used, which results in easily distinguishing the width of approximately 20 keV at 2 MeV and an asymmetric shape of the neutron absorption peak. The absorption spectroscopy based on a laser neutron source has one order of magnitude higher energy-resolution power than the state-of-the-art traditional neutron sources, which could be of benefit for precisely measuring nuclear structure data.
Reward processing dysfunctions are considered a candidate mechanism underlying anhedonia and apathy in depression. Neuroimaging studies have documented that neurofunctional alterations in mesocorticolimbic circuits may neurally mediate these dysfunctions. However, common and distinct neurofunctional alterations during motivational and hedonic evaluation of monetary and natural rewards in depression have not been systematically examined. Here, we capitalized on pre-registered neuroimaging meta-analyses to (1) establish general reward-related neural alterations in depression, (2) determine common and distinct alterations during the receipt and anticipation of monetary v. natural rewards, and, (3) characterize the differences on the behavioral, network, and molecular level. The pre-registered meta-analysis (https://osf.io/ay3r9) included 633 depressed patients and 644 healthy controls and revealed generally decreased subgenual anterior cingulate cortex and striatal reactivity toward rewards in depression. Subsequent comparative analyses indicated that monetary rewards led to decreased hedonic reactivity in the right ventral caudate while natural rewards led to decreased reactivity in the bilateral putamen in depressed individuals. These regions exhibited distinguishable profiles on the behavioral, network, and molecular level. Further analyses demonstrated that the right thalamus and left putamen showed decreased activation during the anticipation of monetary reward. The present results indicate that distinguishable neurofunctional alterations may neurally mediate reward-processing alterations in depression, in particular, with respect to monetary and natural rewards. Given that natural rewards prevail in everyday life, our findings suggest that reward-type specific interventions are warranted and challenge the generalizability of experimental tasks employing monetary incentives to capture reward dysregulations in everyday life.
Constraining the timing and extent of Quaternary glaciations in the Tibetan Plateau (TP) is significant for the reconstruction of paleoclimatic environment and understanding the interrelationships among climate, tectonics, and glacial systems. We investigated the late Quaternary glacial history of the Qinggulong and Juequ valleys in the Taniantaweng Mountains, southeastern TP, using cosmogenic 10Be surface exposure dating. Four major glacial events were identified based on 26 10Be ages. The exposure ages of the oldest late Quaternary glaciation correspond to Marine Oxygen Isotope Stage (MIS) 6. The maximum glacial extent was dated to 48.5–41.1 ka (MIS 3), during the last glaciation, and was more advanced than that of the last glacial maximum (LGM). Geochronology and geomorphological evidence indicate that multiple glacial fluctuations occurred in the study area during the Early–Middle Holocene. These glacial fluctuations likely were driven by the North Atlantic climate oscillations, summer solar insolation variability, Asian summer monsoon intensity, and CO2 concentration.
This paper proposes a linear quadratic approximation approach to dynamic nonlinear rationally inattentive control problems with multiple states and multiple controls. An efficient toolbox to implement this approach is provided. Applying this toolbox to five economic examples demonstrates that rational inattention can help explain the comovement puzzle in the macroeconomics literature.
The collection of facial action data is essential for the accurate evaluation of a patient’s condition in the intensive care unit, such as pain evaluation. An automatic face-tracking system is demanded to reduce the burden of data collection on the medical staff. However, many previous studies assume that the optimal trajectory of a robotic tracking system is reachable which is inapplicable for large-amplitude head motions. To tackle this problem, we propose a region-based face-tracking algorithm for large-amplitude head motion with a 7-DOF manipulator. A configuration-based optimization algorithm is proposed to trade-off between theoretical optimal pose and workspace constraints through the assignment of importance weights. To increase the probability of recapturing the face exceeding the reachable workspace of the manipulator, the camera is directed toward the center of the head, named the facial orientation center (FOC) constraint. Furthermore, a region-based tracking approach is designed to stabilize the manipulator for small amplitude head motions and smooth the tracking trajectory by adjusting the joint angle in the null space of the 7-DOF manipulator. Experimental results demonstrate the effectiveness of the proposed algorithm in tracking performance and finding an appropriate configuration for the unreachable theoretical optimal configuration. Moreover, the proposed algorithm with FOC constraint can successfully follow the head motion as losing 33.2% of the face during the tracking.
An intra-band pattern-corrected decoupling vertical conducting wall is realized by dielectric substrate with conductor cladding on both side wall between two tightly spaced H-plane microstrip patches with λ0/20 edge-to-edge spacing. The wall is grounded and two symmetrical slots are etched on the vertical substrate. The measured results agree with the simulations, showing that the slotted vertical wall reduces the mutual coupling within the bandwidth to −30 dB and corrects the radiation beam tilt to be within −4.5° to 3° from the broadside direction. A gain reduction of 0.6 dB is observed compared to the gain without the slotted decoupling wall.