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Tuberculosis (TB) is the world’s most prevalently infectious disease. Molecular mechanisms behind tuberculosis remain un-
known. microRNA (miRNA) is involved in a wide variety of diseases. To validate the significant genes and miRNAs in the current
sample, two messenger RNA (mRNA) expression profile datasets and three miRNA expression profile datasets were downloaded
from the Gene Expression Omnibus (GEO) database.1e differentially expressed (DE) genes (DEGs) and miRNAs (DEmiRNAs)
between healthy and TB patients were filtered out. Enrichment analysis was executed, and a protein-protein interaction (PPI)
network was developed to understand the enrich pathways and hub genes of TB. Additionally, the target genes of miRNA were
predicted and overlapping target genes were identified. We studied a total of 181 DEGs (135 downregulated and 46 upregulated
genes) and two DE miRNAs (2 downregulated miRNAs) from two gene profile datasets and three miRNA profile datasets,
respectively. 10 hub genes were defined based on high degree of connectivity. A PPI network’s topmodule was constructed.1e 23
DEGs identified have a significant relationship with miRNAs. 25 critically significant Gene ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways were discovered. 1e detailed study revealed that, in tuberculosis, the DE
miRNA and DEGs form an interaction network. 1e identification of novel target genes and main pathways would aid with our
understanding of miRNA’s function in tuberculosis progression.

1. Introduction

Tuberculosis (TB) is one of the most common infectious
diseases, caused by the pathogenMycobacterium tuberculosis
(MTB). It was linked to a high rate of infection and a long-
term disease course [1]. TB is one of the top 10 causes of
death according to theWorld Health Organization (WHO)’s
global TB report for 2020. Each year, about ten million
people were infected with tuberculosis. TB was identified as a
repetitive immune reaction, and a subset of patients with
tuberculosis will grow into active tuberculosis. It has a close
connection with poverty. Around 90% of tuberculosis pa-
tients stayed in underdeveloped countries [2]. 1ere are

many diagnostic tools available today, including the tu-
berculin skin examination (TST), the interferon gamma
release assay (IGRA), and imaging procedures. 1ey all lack
precision and are more expensive and highly technical [3, 4].

microRNAs (miRNAs) are noncoding RNA molecules
that have 22 to 23 nucleotides [5]. 1ey regulate gene ex-
pression at the posttranscriptional stage by facilitating
mRNA degradation and preventing mRNA translation [6].
When a patient is infected with tuberculosis, major miRNAs
are released into the bloodstream. MiRNAs have shown to
play an important role in a variety of pathological and
physiological mechanisms in tuberculosis [7]. Microarray
analysis, miRNA, and gene have been extensively utilized in
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the quest for biomarkers and therapeutic targets in recent
years. 1e discovery of novel DE miRNAs and DEGs pro-
vides useful and accurate perspectives for future study [8].

To validate the significant genes andmiRNAs, twomRNA
expression profile datasets, GSE62147 [9] and GSE34608-
GPL6480 [10], and three miRNA expression profile datasets,
GSE34608-GPL7731 [10], GSE29190 [11], and GSE49951 [12],
were used. 1e 250 DEGs in speech profile datasets were,
respectively, identified. 1e enrichment analysis of DEGs
showed 5 KEGG pathways were related to the development
and progress of TB, including ‘hepatocellular carcinoma,’
‘Kaposi sarcoma-associated herpesvirus infection,’ ‘phos-
phatidylinositol signaling system,’ ‘circadian entrainment,’
and ‘apelin signaling pathway.’ A protein-protein interaction
(PPI) network of DEGs and DEGs-DE miRNAs was cre-
ated.10 hub genes were then chosen.

1e present study established two DEmiRNAs, hsa-mir-
7 and hsa-mir-451. 1e gene-encoding hsa-mir-7 and hsa-
mir-451 were separately located in human chromosomal
region 9q21.32 and 17qll.2. 1e recent documents presented
that Hsa-mir-7 and hsa-mir-451were involved in cancer-
related biological processes and innate immune response
[13, 14]. But, their future roles in TB remain unknown.

2. Materials and Methods

2.1. Microarray Data Screening. 1e bioinformatics analysis
was carried out in accordance with the protocol depicted in
Figure 1. 1e term ’Tuberculosis” or “microRNA and Tu-
berculosis” was searched in the Gene Expression Omnibus
database (GEO). 1ere are some database criteria that are
helpful with more analysis: I) clinical study pairs must have
both healthy and tuberculosis patients, and II) mRNA and
miRNA data from plasma (Affymetrix miRNA 4.0) were
retrieved. As a result, two gene expression profile datasets,
GSE62147 and GSE34608-GPL6480, were used in the primal
mRNA datasets. GSE62147 had 14 TB-positive donors and
14 healthy donors. GSE34608-GPL6480 had eight TB donors
and eighteen healthy donors. Six donors with tuberculosis
and three healthy donors contained GSE29190. GSE49951
had 71 TB-positive donors and 71 healthy donors.

2.2. Selecting DEGs and DE miRNAs and Constructing a
Volcanic Map. To diagnose DEGs and DE miRNAs in TB
patients, the GEO2R online research method (https://www.
ncbi.nlm.nih.gov/geo/geo2r/) was used. Exact cutoff values
(P< 0.05 and |log fold change (FC)|≥1) were established.1e
two gene and three miRNA datasets were submitted to
VENN’s online tool (http://bioinformatics.psb.ugent.be/
webtools/Venn/). 1e DEGs and DE miRNAs that over-
lap were filtered out.1e volcanic chart of overlapping DEGs
was constructed using the online method of bioinformatics
(http://www.bioinformatics.com.cn/).

2.3. GO and KEGG Pathway analysis. Gene Ontology (Go)
was applied to perform the category biological process (BP),
molecular function (MF), and cellular component (CC)
enrichment analysis [15]. 1e KEGG was a set of databases

that provides information regarding biological mechanisms,
cellular processes, chemical substances, and diseases [16].
1e R software package clusterProfiler was used in func-
tional gene annotations and KEGG enrichment analysis [17].
A cutoff criterion (P< 0.05 and FDR<0.05) was set. Also, the
top 10 pathways with the maximum number of genes for the
corresponding term were chosen. Significant items of GO
and KEGG were submitted to R software package ggplot2 to
visualize and merge enriching analysis. 1e enrichment dot
bubble method was used to build the bubble plot.

2.4. Construction of Network and Identification of Top
Modules and Hub Genes. Permanent DEGs were uploaded
to the STRING online tool (https://string-db.org/) [18]. A
cutoff point (interaction score >0.4) was established.1e PPI
network was constructed using the CytoScape program [19].
1e MCODE plug-in was used to determine the PPI net-
work’s top module. Strict cutoff conditions (degree
cutoff� 2, node score cutoff� 0.2, k-core� 2, and
maxdepth� 100) were established. Meanwhile, the top 10
hub genes were identified using the CytoHubba plug-in.

2.5. Identification of the Target Gene and Construction of the
DE miRNA-DEGs Regulatory Network. To predict miRNA
target genes, the online tools TargetScan (http://www.
targetscan.org/vert71) [20], miRDB (http://www.mirdb.
org/) [21], miRWalk (http://mirwalk.uni-hd.de/) [22], and
miRTarBase (http://mirtarbase.cuhk.edu.cn/) [21] were
used. 1e criterion for goal gene selection is cumulative
weighted context++ score online> -0.5. 1e target gene that
met the criteria was chosen from three databases. 1e
overlapping target gene of miRNA was discovered using the
VENN online method. CytoScape was used to upload
miRNA and DEGs. To visualize and merge analysis, a DE
miRNA-DEGs regulatory network was developed.

3. Results

3.1. Screening of DEGs and DE miRNAs. Under the precise
cutoff criteria employed (P< 0.05 and |log fold change
(FC)|≥1), there were 614 and 4211 DEGs extracted from
GSE6214 and GSE34608-GPL6480, respectively. Following
that, DE miRNAs were extracted from GSE34608-GPL7731,
GSE29190, and GSE49951, respectively, yielding 174, 36, and
23 DEmiRNAs. Two gene expression profile datasets yielded
a total of 181 overlapping DGEs (135 downregulated genes
and 46 upregulated genes) (Figure 2(b) and Table 1). Two
overlapping DE miRNAs (two downregulated and zero
upregulated) were derived from three miRNA expression
profile datasets (Figure 2(c) and Table 2).1e volcano plot of
three gene expression profile datasets revealed a substantial
difference between regular and tuberculosis patients
(Figure 2(a)).

3.2. GO Functional and KEGG Pathway Enrichment analysis.
DEGs that were consistent were submitted to R software for
GO functional and KEGG pathway enrichment analysis. GO-
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Figure 1: Flow diagram of bioinformatics analysis.
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CC showed that upregulated DEGs were mainly associated
with ‘sarcoplasm’ and downregulated DEGs were mainly
associated with ‘specific granule,’ ‘tertiary granule,’ ‘secretory
granule lumen,’ ‘cytoplasmic vesicle lumen,’ ‘vesicle lumen,’
‘secretory granule membrane,’ ‘specific granule membrane,’
‘specific granule lumen,’ ‘tertiary granule membrane,’ ‘pri-
mary lysosome,’ and ‘azurophil granule.’ GO-BP showed that
downregulated DEGs were primarily involved in ‘neutrophil-
mediated immunity,’ ‘neutrophil activation,’ ‘neutrophil de-
granulation,’ ‘neutrophil activation involved in immune re-
sponse,’ ‘response to lipopolysaccharide,’ ‘response to a

molecule of bacterial origin,’ ‘defense response to a bacte-
rium,’ ‘regulation of response to biotic stimulus,’ ‘humoral
immune response,’ and ‘positive regulation of anion trans-
port.’ GO-MF showed that downregulated DEGs were mainly
related with ‘cysteine-type endopeptidase inhibitor activity,’
‘virus receptor activity,’ and ‘exogenous protein binding’
(Figure 3(a)–3(d) and Table 3).

1e result represented that upregulated DEGs were
significantly associated with 5 KEGG pathways, including
‘hepatocellular carcinoma,’ ‘Kaposi sarcoma-associated
herpesvirus infection,’ ‘phosphatidylinositol signaling sys-
tem,’ ‘circadian entrainment,’ and ‘apelin signaling pathway’
(Figure 3(e), Table 4).

3.3. Hub Gene Identification Based on the DEG PPI Network
andModule Analysis. 1e STRING online tool was updated
with 181 common DEGs (135 downregulated and 46
upregulated). Significant DEGs were identified in 135 of 181
DEGs. Significant DEGs were visualized in detail using the
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Figure 2: (a) Volcano plot showing downregulated and upregulated differentially expressed genes. (b) Venn diagram displaying the number
of common differentially expressed genes (DEGs) between normal people and patients with TB. (c) Venn diagram for common differentially
expressed miRNA (DE miRNA).

Table 1: Differentially expressed genes between the normal people and patients with TB.

Regulations DEGs

Upregulated

LHFPL2, ANXA3, F2RL1, PPM1A, VWCE, LAMTOR3, SECTM1, GYPA, SNCA, TDRD9, WDR26, ALPK1, CR1,
RMND5A, FAM8A1, OLFM4, ACSL1, GPR84, MBNL3, ARG2, PPP4R2, HIST1H3D, CLEC5A, STAM2, ABCC13,

S100A12, C2orf88, TMLHE, BMP2K, SAMD4B, LY96, TCN1, AEBP1, HIST1H2AH, DDX60L, HEMK1, LCN2, DOK7,
CLCF1, MBOAT2, NDUFAF4, CEACAM6, SERPING1, PBX1, GATSL2, OLIG1, CD79B, TCL1A, PLSCR1, PF4V1,
ZNF438, NMU, SUCNR1, DEFA4, GUSBP3, SWAP70, HCAR3, HBD, CDHR3, MIAT, LGALSL, PCGF5, ERV3-2,
ZC3H12D, ZNF451, CREG1, IFIT1, LTF, TGFA, LNX2, ABLIM3, CLIC2, SULT1B1, IFI44, PIK3IP1, NT5C1A, CD274,
TXN, EFCAB2, PTGR1, DEFA3, NSUN3, PFKFB3, PPP1R3B, ABCA1, GK, ERI1, TSTA3, NBN, IL18R1, CEACAM1,
CARD17, USP12, LINC01232, MS4A3, MCTP2, EPSTI1, NAIP, ANKRD22, CSTA, LOXL1, SORT1, CLEC1B, SLC4A1,
ZAK, WNK1, AIM2, RRAGD, COL17A1, BEX1, FLVCR2, TFDP2, YOD1, NAPG, CEACAM8, FAS, PRRG4, ABCC4,
PAGE2B, MAPK14, HPR, STOM, PLA2G4A, MPO, TLR8, ADAM9, CAMP, QPCT, SIRPD, POLB, PSTPIP2, CCRL2,

CD59, CTSG, and AP5B1

Downregulated

ZNF683, FAM193B, DIS3L2, SPIB, GUSBP4, EVL, CD22, PAXBP1, LIG1, SFI1, AQP3, FAM102A, TNFRSF25,
HNRNPA0, GUSBP1, FCGBP, WNT3, RYR1, GTF3C3, AES, ITPR3, CRIP3, TCF7, MFSD4B, LOC105370792,

MIR600HG, FAM129C, BLK, SMG1P5, PIK3C2B, SMARCA4, GNG7, HIP1R, PLCG1, LOC100132363, POU2AF1,
STMN3, ARL4C, FABP3, USP45, SUN2, DMRTC1, CXCR5, EPPK1, MAGED4B, and SNX29P2

DEGs, differentially expressed genes; TB, tuberculosis

Table 2: Differentially expressed miRNA between the normal
people and patients with TB.

Regulation n name
Upregulated 0

Downregulated 2 miRNA-7
miRNA-451
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CytoScape software. 1e PPI network was constructed with
122 nodes and 241 edges (Figure 4(a)). Additionally, 59 of
181 DEGs were not part of the PPI network. 1e hub genes
contained Cathelicidin Antimicrobial Peptide (CAMP),
CEA Cell Adhesion Molecule 8 (CEACAM8), CD59 mol-
ecule (CD59), C-Type Lectin Domain Containing 5A
(CLEC5A), Stomatin (STOM), Membrane-Spanning 4-
Domains A3 (MS4A3), G Protein-Coupled Receptor 84
(GPR84), Late Endosomal/Lysosomal Adaptor, MAPK and
MTOR Activator 3 (LAMTOR3), Defensin Alpha 4
(DEFA4), and CEA Cell Adhesion Molecule 1 (CEACAM1)
(Figure 4(b)). 1e top significant module was defined from
the PPI network using the MCODE plug-in based on its
degree value. 1e top module featured fifteen nodes and
forty-five corners (Figure 4(c)).

3.4. Construction of the DEGs-DE miRNA Network.
Because of the shortcomings of each dataset, hsa-mir-7 and
hsa-mir-451 were each submitted to four accurate datasets
for target gene prediction. Using the VENN online research
website, miRNA target genes were integrated with DEGs.
1e identified data revealed that hsa-target mir-7 genes
shared 19 common genes with DEGs (Figure 5(a)) and the
hsa-goal mir-451 gene shared four genes with DEGs
(Figure 5(b)). Meanwhile, CytoScape developed the DEGs-
DE miRNA PPI network (Figure 6).

4. Discussion

In recent years, a number of studies have been carried out to
reveal the potential mechanisms of tuberculosis. 1e prev-
alence of tuberculosis has been steadily rising. Traditional
studies have two flaws: a single genetic case and a limited
cohort [23]. Bioinformatics analysis of gene expression
profile datasets of TB patients is now being used to screen
more reliable data. A total of 181 common DEGs (135
downregulated genes and 46 upregulated genes) were
extracted from two gene expression profile datasets in this
study. 1e hsa-mir-7 and hsa-mir-451, two DE miRNAs,
were extracted from four gene expression profile datasets.
Both hsa-mir-7 and hsa-mir-451 were reduced in expression.
1e 181 DEGs underwent GO and KEGG enrichment
analysis, allowing them to be classified into BP, CC, MF, and
KEGG groups. Finally, a DEGs-DEmiRNA PPI network was
built. 1e PPI network was used to screen the top module
and ten hub genes.

To determinate the underlying molecular mechanisms in
the TB process, the most enriched BP, CC, andMF pathways
were combined with downregulated and upregulated DEGs
for comprehensive analysis, separately. GO analysis pre-
sented that upregulated DEGs were mainly related with
sarcoplasm and downregulated DEGs were mainly related
with neutrophil, antibacterial activities, primary lysosome,
and exogenous protein binding. 1e comprehensive analysis
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Figure 3: 1e gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of differentially
expressed genes. 1e biological process (BP), bellular component (CC), and molecular function (MF) consist of GO enrichment analysis
commonly. (a)1e enrichment dot bubble of GO-BP analysis, (b) the enrichment dot bubble of GO-CC analysis, and (c) the enrichment dot
bubble of GO-MF analysis derived from downregulated DEGs. (d) 1e enrichment dot bubble of GO analysis derived from upregulated
DEGs. (e) 1e enrichment dot bubble of KEGG analysis derived from DEGs.
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of GO and hub genes demonstrated that hub genes mainly
associated with neutrophil and primary lysosome signal
pathways. KEGG analysis presented that upregulated DEGs
were mostly involved in hepatocellular carcinoma, Kaposi
sarcoma-associated herpesvirus infection, the phosphati-
dylinositol signaling system, circadian entrainment, and the
apelin signaling pathway. Most of the abovementioned
KEGG pathways play an important role in the immune
response and apoptosis of Mycobacterium tuberculosis.
Kaposi sarcoma-associated herpesvirus is well known to be
involved in antiapoptosis, enhancement of cytokine pro-
duction, and cell proliferation [24]. 1e previous study
reported that MTB enhances bacterial virulence by avoiding
host cell death [25]. Phosphatidylinositol is a lipid anchor,
which as virulence factor and modulate host immune re-
sponse in MTB [26]. Also, the apelin decreases

mitochondrial apoptosis, mitochondrial ROS-triggered ox-
idative damage, and NF-κB activation to inhibit acute lung
injury (ALI) and acute respiratory distress syndrome
(ARDS) [27]. Circadian entrainment was also involved in
innate immune response and photoperiod significant im-
pairment and enhancing immune function [28].

According to a recent study, hsa-mir-7 impaired NF-κB
and AKT transcriptional activity. 1e NF-κB and AKT
pathways are important inflammatory-associated pathways
and inhibited host cell autophagy in tuberculosis [4, 29, 30].
1e hsa-mir-7 was thought to be involved in innate immune
responses in a previous study [31]. Meanwhile, hsa-mir-451
protects against cell death caused by ischemia/reperfusion
injury, cancer, and myocardial I/R injury [32–34]. CAMP,
CEACAM8, CD59, CLEC5A, STOM, MS4A3, GPR84,
LAMTOR3, CEACAM1, and DEFA4 are among the ten hub

Table 4: KEGG pathway analysis of common upregulated DEGs.

Pathway Id Count Fold
enrichment P value Genes

Upregulated
Hepatocellular carcinoma hsa05225 4 12.846 2.05E− 04 WNT3, TCF7, SMARCA4, and PLCG1
Kaposi sarcoma-associated herpesvirus infection hsa05167 4 11.124 3.55E− 04 ITPR3,TCF7,GNG7, and PLCG1
Phosphatidylinositol signalling system hsa04070 3 16.687 6.84E− 04 ITPR3, PIK3C2B, and PLCG1
Circadian entrainment hsa04713 3 16.687 6.84E− 04 RYR1, ITPR3, and GNG7
Apelin signaling pathway hsa04371 3 11.729 1.90E− 03 RYR1, ITPR3, and GNG7

KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; Count, number of DEGs.

Table 3: Gene ontology analysis of common upregulated and downregulated DEGs.

Category Term Count Gene ratio P value
Upregulated
CC GO:0016528∼sarcoplasm 3 8.33E− 02 4.14E− 04

Downregulated
BP GO:0002446∼neutrophil-mediated immunity 24 2.07E− 01 3.68E− 15
BP GO:0042119∼neutrophil activation 24 2.07E− 01 3.85E− 15
BP GO:0043312∼neutrophil degranulation 23 1.98E− 01 2.01E− 14
BP GO:0002283∼neutrophil activation involved in immune response 23 1.98E-01 2.29E− 14
BP GO:0032496∼response to lipopolysaccharide 13 1.12E− 01 1.08E− 07
BP GO:0002237∼response to a molecule of bacterial origin 13 1.12E− 01 2.14E− 07
BP GO:0042742∼defense response to a bacterium 12 1.03E− 01 1.41E− 06
BP GO:0002831∼regulation of response to a biotic stimulus 12 1.03E− 01 1.08E− 05
BP GO:0006959∼humoral immune response 11 9.48E− 02 2.28E− 05
BP GO:1903793∼positive regulation of anion transport 11 9.48E− 02 1.77E− 04
MF GO:0004869∼cysteine-type endopeptidase inhibitor activity 5 4.10E− 02 3.50E− 05
MF GO:0001618∼virus receptor activity 5 4.10E− 02 1.52E− 04
MF GO:0140272∼exogenous protein binding 5 4.10E− 02 1.62E− 04
CC GO:0042581∼specific granule 16 1.32E− 01 3.31E− 15
CC GO:0070820∼tertiary granule 13 1.07E− 01 2.88E− 11
CC GO:0034774∼secretory granule lumen 14 1.16E− 01 1.29E− 08
CC GO:0060205∼cytoplasmic vesicle lumen 14 1.16E− 01 1.51E− 08
CC GO:0031983∼vesicle lumen 14 1.16E− 01 1.63E− 08
CC GO:0030667∼secretory granule membrane 13 1.07E− 01 5.56E− 08
CC GO:0035579∼specific granule membrane 8 6.61E− 02 9.55E− 08
CC GO:0035580∼specific granule lumen 7 5.79E− 02 1.09E− 07
CC GO:0070821∼tertiary granule membrane 7 5.79E− 02 3.43E− 07
CC GO:0005766∼primary lysosome 8 6.61E− 02 5.56E− 06
CC GO:0042582∼azurophil granule 8 6.61E− 02 5.56E− 06

GO, Gene Ontology; DEGs, differentially expressed genes; BP, biological process; CC, cellular component; MF, molecular function; Count, number of DEGs.
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genes discovered. 1ey act as TB immune mediators and,
additionally, as an active participant in the control of the
inflammatory response [35–40]. Meanwhile, macrophages
are innate immune cells that serve as a guardian in the
immune system’s protection and response to microbial
infection [41]. GPR84 is a member of the family of metabolic
G protein-coupled receptors [42]. GPR84 activation en-
hances bacterial adhesion and phagocytosis in macrophages.
According to a recent study, elevated glucose levels promote

GPR84 expression [43]. STOM is a member of the family of
integral membrane proteins [44]. As previously mentioned,
STOM’s primary role is to regulate glucose transporter type
1 operation. Furthermore, elevated glucose levels augment
macrophage anti-inflammatory function [45]. GPR84 and
STOM are closely associated with the adaptive immune
response, as determined by experimentation. CAMP is an
antimicrobial peptide that is synthesized at the C-terminus
of proteins [46]. It eradicated MTB and slowed the

(a)

CEACAM1

LAMTOR3

GPR84 MS4A3

STOM

CLEC5A

CD59

CEACAM8CAMP

DEFA4

(b) (c)

Figure 4: (a) Circular nodes show the DEGs.1e blue nodes stand for downregulated DEGs, and red nodes stand for upregulated DEGs. (b)
1e 10 hub genes identified from the PPI network. (c) 1e top module extracted from the PPI network. 1e blue nodes stand for
downregulated DEGs, and red nodes stand for upregulated DEGs.
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progression of tuberculosis. CAMP is a vitamin D-related
gene that would be triggered in response to vitamin D. It is
essential for macrophages infected withMTB to benefit from
the antimicrobial reaction induced by vitamin D. CAMP
activation enhances the effectiveness of immune responses
in tuberculosis [47]. CEACAM1 and CEACAM8 are
members of the class of heavily glycosylated carcinoem-
bryonic antigens [48, 49]. 1e primary role of CEACM1 is
antiapoptotic. It is involved in granulocyte survival [50]. It is
classified as an immunoregulatory checkpoint regulator.
Previous research demonstrated that inadequate CEACAM1
resulted in inflammatory exacerbation [51]. CEACM8 is a
responsive granulocyte biomarker. It performs two func-
tions: it recognizes neutrophils and degrades extracellular
matrix, thus stimulating the immune response [52]. MTB

has been shown to control the immune system by con-
trolling the macrophage cell cycle. It prevents macrophages
from entering the interphase and gap phase 1 phases [53].
MS4A3 is a member of the family of membrane-spanning
4A genes [54]. MS4A3 is intimately linked to the cell cycle.
As a consequence, the activation of the kinase-associated
phosphatase (KAP) leads to cell cycle arrest. CLEC5A is a
member of the superfamily C-type lectin/C-type lectin-like
domain (CTL/CTLD) [54]. CLEC5A controls cell devel-
opment by inducing apoptosis and arresting the cell cycle.
Additionally, it plays a critical function in the production of
inflammation and serves as a critical gene for the clinical
management of pulmonary inflammation [55]. DEFA4 is a
part of the lipocalin family, which is involved in the
transportation of vitamins, lipids, and steroid hormones

Figure 6: 1e PPI network of DEGs and DE miRNA. 1e blue nodes indicate the downregulated genes. 1e red nodes indicated the
upregulated genes. 1e blue V-shape nodes stand for downregulated miRNA.

DEGs

162 19 1972

miR-7

(a)

DEGs

177 4 444

miR-451

(b)

Figure 5: (a) VENN diagram identified the consistent genes between the DEGs and the target genes of miRNA-7. (b) VENN diagram
identified the consistent genes between the DEGs and the target genes of miRNA-451.
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[56]. It inhibits bacterial growth by attaching to pathogenic
bacterial siderophores. It plays a significant role in immune
response and protection. In recent years, LAMTOR3 and
CD59 have been extensively used to inhibit the development
of a variety of cancers [57, 58]. CD59’s primary role is to
regulate immune cell activation throughout the tumor
microenvironment [59]. Additionally, the top module was
defined through the PPI network of DEGs. 1e top module
included a large number of genes associated with macro-
phages and the innate immune response. Previously pub-
lished studies established that macrophages act as a host cell
forMTB and are active in the innate immune response. MTB
destroyed the macrophage’s main immune systems, antigen
introduction and intracellular killing [41].

1e important DEGs were established using integrated
bioinformation analysis. GPR84, STOM, CAMP,
CEACM8A, MS4A3, LAMTOR3, DEFA4, CLEC5A, and
CD59 were the ten hub genes that were filtered out. Two DE
miRNAs, hsa-mir-7 and hsa-mir-451, were discovered.
Some important pathways, including neutrophil, antibac-
terial activities, primary lysosome, exogenous protein
binding, the apelin signaling pathway, Kaposi sarcoma-as-
sociated herpesvirus infection, and the phosphatidylinositol
signaling system, are involved in TB. DEGs and DEmiRNAs
may be used as sensitive biomarkers in the clinical diagnosis
of tuberculosis. 1e network of DE miRNA-DEGs revealed
the molecular mechanism causing tuberculosis. More ac-
curate clinical samples and experiments are needed to
validate the cause of tuberculosis. In the future, bio-
informatics research could be able to identify novel genes
and pathways for use in genomic therapy for tuberculosis.
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