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Abstract
The Righi–Leduc heat flux generated by the self-generated magnetic field in the ablative Rayleigh–Taylor insta-
bility driven by a laser irradiating thin targets is studied through two-dimensional extended-magnetohydrodynamic
simulations. The perturbation structure gets into a low magnetization state though the peak strength of the self-generated
magnetic field could reach hundreds of teslas. The Righi–Leduc effect plays an essential impact both in the linear and
nonlinear stages, and it deflects the total heat flux towards the spike base. Compared to the case without the self-generated
magnetic field included, less heat flux is concentrated at the spike tip, finally mitigating the ablative stabilization and
leading to an increase in the velocity of the spike tip. It is shown that the linear growth rate is increased by about 10% and
the amplitude during the nonlinear stage is increased by even more than 10% due to the feedback of the magnetic field,
respectively. Our results reveal the importance of Righi–Leduc heat flux to the growth of the instability and promote
deep understanding of the instability evolution together with the self-generated magnetic field, especially during the
acceleration stage in inertial confinement fusion.
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1. Introduction

The Rayleigh–Taylor instability (RTI) is ubiquitous in high
energy density physics, such as laboratory astrophysics
experiments and inertial confinement fusion (ICF)[1–3]. The
RTI occurs when a light fluid supports a heavy fluid in exter-
nal gravity field, which features the growth of perturbation
amplitude on the interface between two fluids[4,5]. In laser
fusion experiments, the perturbation seeded by target defect
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or drive asymmetry could be significantly amplified by the
RTI[6]. Due to the energy transfer creating a continuous
density profile on the interface, the linear growth is stabilized
compared to the classical case and a cutoff wavelength
appears when the perturbation wavelength is sufficiently
short[7]. Therefore, the ablative RTI (ARTI) is commonly
called to emphasize the importance of the mass ablation[8,9].
The ARTI mainly occurs at the ablation front separating the
compressed target from the blow-off corona plasma and the
inner interface between the fuel shell and the hot spot[10,11].
This instability could destroy the shell integrity and limit
the implosion efficiency during the acceleration stage. What
is worse, it would aggravate the material mixing, reduce
the effective size of the hot spot and even result in ignition
failure[12]. Control of the ARTI at an acceptable level is
crucial to improve fusion performance.
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As an inevitable process in ICF and the general laser–
plasma interaction, the intense magnetic field could be
spontaneously self-generated by a number of mechanisms,
including but not limited to the thermoelectric effect
and anisotropic velocity distribution of hot electrons,
with relative importance depending on the interaction
parameters[13–15]. For the interaction with solid targets of
nanosecond lasers, the Biermann battery effect is regarded as
the primary source, caused by nonparallel gradients between
temperature and density[16,17]. The mechanism behind mag-
netic field generation is the loss of electron energy, resulting
in the breakdown of local neutrality. In recent years, the
self-generated magnetic field has been studied analytically,
experimentally and numerically by many researchers. Li
et al.[18] utilized the monoenergetic proton radiography
method to measure the electromagnetic field generated
during the interaction of a solid target and long-pulse laser
beams. Due to the fact that the target surface cannot be
perfectly smooth, the perturbation-induced magnetic field
attracts great attention. As early as the 1970s, Mima et al.[19]

demonstrated the presence of the magnetic field in a plasma
subject to the RTI from the perspectives of theory and sim-
ulation. The first experimental demonstration was published
in 2012, which reported the generation of a several-tesla
magnetic field during the linear stage and motivated further
investigation of RTI-induced magnetic fields[20,21]. The
magnetic field strength could reach up to the megagauss level
during the nonlinear growth phase in an ablatively driven
plasma[22]. The self-generated magnetic field could play a
stabilizing or destabilizing role depending on the Froude
number during the linear stage[23]. Zhang et al.[24] also
found that the Nernst compressed magnetic field reduced
the bubble width and boosted the bubble velocity during
the nonlinear stage in ARTI relevant to ICF implosion.
During the deceleration stage of ICF implosion, the self-
generated magnetic field is as intense as thousands of teslas
with a large Hall parameter and anisotropic heat flux would
promote spike penetration[25]. During the stagnation phase,
the magnetic field, initially appearing on the inner interface
of the cold shell, could be pushed into the hot spot by the
low-mode perturbation and degrade the fusion energy[26].

When a long-pulse laser irradiates targets, the pressure
perturbation is generated by the laser imprint and further
enhanced by the self-generated magnetic field due to a com-
bination of the Nernst advection and the Righi–Leduc (R-L)
heat flux[27]. This mechanism occurs in the early stage and
the enhanced perturbation could be regarded as a seed pertur-
bation for the hydrodynamic instability. The self-generated
magnetic field indirectly feeds back on the hydrodynamic
process through electron magnetization rather than the mag-
netic pressure[28]. Walsh et al.[25,26] demonstrated that the
magnetized heat flux is highly significant both in the deceler-
ation and stagnation stages of ICF. However, the importance
in the acceleration stage still remains unknown. In this paper,

we analyze the importance of the R-L heat flux to the ARTI
in a laser irradiating thin targets based on the fully extended
magnetohydrodynamic simulations. The rest of this paper is
structured as follows. Section 2 briefly outlines the numerical
code and the extended-magnetohydrodynamic model used
for the results presented here. In Section 3, the ARTI
evolution with a self-generated magnetic field included is
studied. The simulations show that an increase in the linear
growth rate and the amplitude is mainly attributed to the
R-L effect deflecting the total heat flux. The less heat flux
concentrated at the spike tip effectively lowers ablative sta-
bilization and promotes instability growth. The importance
of the nonlocal effect is discussed theoretically in Section 4.
Finally, Section 5 gives the conclusion to the whole paper.

2. The simulation model

In this paper, numerical simulations are performed by using
the open-source code FLASH[29]. FLASH is a highly parallel
and multi-dimensional finite-volume Eulerian code, which
solves the single-fluid governing equations and advances
hydrodynamic evolution based on a directionally unsplit
staggered mesh solver[30,31]. The code has been extended to
three temperature treatments and is coupled with a variety
of physical processes to improve the capability of simulating
high energy density physics. Without considering external
gravity, viscous force and radiation transport, the governing
equations are described by the following equations:

∂ρ

∂t
+∇ · (ρ−→v )= 0,

∂
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= QL +Qres −∇ ·−→q , (1)

where ρ, −→v and
−→
B are the density, velocity and magnetic

field, respectively; Ptot = Pele + Pion + Pmag is the total
pressure defined as the sum over the electron pressure, ion
pressure and magnetic pressure; Etot = Eint + Ekin + Emag is
the specific total energy defined as the sum over the internal
energy, kinetic energy and magnetic energy. As for the heat
flux −→q , only the electron component is considered. Here, QL

represents the laser energy deposition. The laser is treated
as individual rays and the energy deposition is computed by
using ray-tracing in the geometric optics approximation and
inverse Bremsstrahlung. Further, Qres is additional resistive
heating caused by the magnetic fields and would be equiva-
lent to the Ohmic heating Qohm = ηj2 if there is no resistivity
gradient, where j is the magnitude of the current density. In
electrically conducting plasma, the magnetic field evolution
can be described by the Faraday equation combined with the
generalized Ohm’s law:
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where ne is the electron number density, c is the speed
of light in vacuum, e is the elementary charge and Pe is
the electron thermal pressure[28,32]. The units are cgs, apart
from the electron temperature Te in eV. The third and fourth
terms on the right-hand side of Equation (2) result from
the friction force and the thermal force, respectively. The
α and β are the transport coefficient tensors according to
Braginskii transport theory and are numerically corrected
by Davies et al.[32,33]. Without any initial magnetic field,
the seed magnetic field is generated due to the misaligned
gradients of electron number density and thermal pressure,
called the Biermann battery effect[20,22]. FLASH handles the
Biermann battery term as an external magnetic field source
via passive production of hydrodynamic variables. After
solving the hydrodynamic equations, the thermal conduction
is treated additionally and solved implicitly to relax the strict
time step.

3. Two-dimensional simulations of the ablative Rayleigh–
Taylor instability with the magnetic field included

As the RTI occurs on the ablation front in the acceleration
stage, we firstly carry out two-dimensional (2D) simulations
of a laser irradiating a thin target without perturbation to
obtain the hydrodynamic behavior of the ablation front. The
simulation domain is based on the x–y Cartesian coordinate.
Periodic and outflow boundary conditions are imposed on
the x- and y-directions, respectively. A schematic diagram
is depicted in Figure 1. The target material is CH with an
initial density of ρ = 1.1 g/cm3 and a finite thickness of
d = 60 μm. The upper surface is located at y = 0 and
extended to y = −60 μm down the y-axis. A laser beam,
operated at a wavelength of 0.35 μm, is incident from the
upper boundary to the target surface. The laser has a square
temporal profile with an intensity of I = 6 × 1014 W/cm2

and a 0.1 ns linear rising ramp. The adaptive refinement
grid method is applied with the minimum grid size of �x ×
�y = 0.25 μm × 0.25 μm. Convergence tests are carried
out and there is no significant difference in the magnitude
of the self-generated magnetic field and the perturbation
amplitude between the gird size of � = 0.25 μm and that of
� = 0.2 μm. It is reasonably believed that � = 0.25 μm
can satisfy the stability condition for the current simulations
here. The equation of state (EOS) in tabular form is calcu-
lated by the FEOS code[34].

When a laser beam is switched on, the energy deposition
leads to the ablated material coming off the outer surface

Figure 1. Schematic diagram of a laser driven RTI with the self-generated
magnetic field included.

of the target and generates blow-off corona plasma. The
shock driven by the ablation pressure propagates towards
the target inside, and the material behind the shock front
is compressed into higher density. Figure 2(a) shows the
density distributions along the y-axis at different times. At
t = 0.2 ns, the shock front locates at y = −13.5 μm and
the peak density increases up to ρ = 3.3 g/cm3. The shock
front arrives at the rear of the target at t = 0.8 ns and the
thickness is compressed to d ∼ 11 μm with a peak density
of ρ = 4.4 g/cm3. Then the rarefaction wave is reflected
towards the right and unloads the compressed target. At
t = 1.0 ns, the peak density has decreased to ρ = 2.7 g/cm3.
Figure 2(b) shows that the velocity and the position of the
ablation front evolve over time in the laboratory coordinate
system. The velocity of the ablation front is equal to the
sum over the ablation velocity penetrating into the target
and the velocity of the shocked material. It can be seen that
the ablation front moves at a constant velocity of 68 μm/ns
before t = 0.8 ns. If there is initial perturbation modulation
on the target surface, the ablation front would be firstly
unstable to the Richtmyer–Meshkov instability (RMI) rather
than the RTI due to the absence of acceleration[35]. When the
reflected rarefaction wave arrives at the ablation front, the
ablation front begins to be accelerated at t = 0.85 ns.

In the configuration of a laser irradiating a planar target,
it was experimentally found that the magnetic field was
concentrated on a hemispherical shell surrounding the abla-
tive plasma bubble with the maximum amplitude appearing
near the edge and falling to zero at the center[18]. The
magnetic field has a toroidal configuration with scale length
comparable to the spot size. If a perturbation occurs in the
laser-irradiation region, the Biermann battery effect would
be significantly enhanced and the RTI-induced magnetic
field could reach higher strength. This mechanism can be
seen in Figure 1.

In the follow-up paper, the 2D simulations upon
introducing perturbation are further carried out and the
self-generated magnetic field is simultaneously taken
into account. Velocity perturbation taking the form of
∼
vy = v0 cos(kx)exp (k |y− y0|) is introduced as the initial
instability seed at a moderate time, where v0 = 1 μm/ns is
the velocity perturbation amplitude, y0 is the position of the
ablation front, k = 2π/λ and λ = 20 μm is the perturbation
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Figure 2. (a) The density distribution along the y-axis at different times. (b) The position (red-solid line) and velocity (blue-dashed line) of the ablation
front evolve over time.

Figure 3. The spatial distributions of the density (a)–(d) and the magnetic field (e)–(h) at different times during the evolution of the RTI.

wavelength. The perturbation time of t = 0.85 ns is chosen
as the moment when the deflected rarefaction wave arrives at
the ablation front and the ablation front begins to accelerate.

The perturbation amplitude firstly grows exponentially
in time. After a short linear stage, the RTI grows into the
nonlinear regime and a bubble-spike structure is formed[36].
When the bubble-spike amplitude is comparable to its
perturbation wavelength, the RTI evolves into the highly
nonlinear regime. Figure 3 shows the spatial distributions of
the density and magnetic field at different times. Since the
interface between the cold-dense target and corona plasma is
not sharp, we define the position with the minimum density
scale length as the ablation front, which is shown by the
black-solid line in Figure 3 and the follow-up figures, so that
the instability amplitude could be easily tracked in numerical
simulations. At the early time, the peak-to-valley (P-V)

amplitude η continues to increase until linear saturation.
In the following paper, ‘P-V’ is omitted for brevity. The
magnetic field is generated near the ablation front. At
t = 1.20 ns, the amplitude is ηB = 0.70 μm with peak
field strength of 46 T. Then the magnetic field accumulates
steadily and increases up to 179 T at t = 1.50 ns. The RTI
grows into the nonlinear regime from t = 1.63 ns and the
spike-bubble structure is formed. A jet-like spike rises up
into the conduction region and the bubble penetrates into the
target. It can be seen that the spike is wrapped around the
magnetic field. The region with the maximum field strength
is near the spike tip. The field strength continues to increase
as the amplitude increases, reaching 825 T at t = 2.0 ns and
981 T at t = 2.2 ns.

The amplitude evolution is considered as an important
measurement of the growth of the RTI, as shown in Figure 4.
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Figure 4. The peak-to-valley amplitude evolves over time without a mag-
netic field (red-solid line). The blue-dashed line is the amplitude difference
between the amplitude with and without the magnetic field included.

It is usually thought that linear saturation occurs when
the classical amplitude reaches ηc ∼ 0.1λ, corresponding
to the P-V amplitude (twice the classical amplitude) of
η = 4 μm for the perturbation wavelength of λ = 20 μm.
Linear saturation occurs at t = 1.68 ns without a magnetic
field and t = 1.63 ns with a magnetic field considered,
indicating that the magnetic field advances the moment of
reaching linear saturation. The linear growth rate can be
approximately derived as γ = ln

(
η2
η1

)
/(t2 − t1), where t1

is chosen as the moment of η ∼ 0.02λ and t2 is chosen as
the moment of η ∼ 0.18λ, spanning the range from 10% to
90% of the linear saturation. Here, η1 and η2 are the ampli-
tudes at the moments of t1 and t2, respectively. The linear
growth rates are exponentially fitted to be γnoB = 3.70 ns−1

without a magnetic field and γB = 4.11 ns−1 with a magnetic
field considered. The self-generated magnetic field leads to
an increase in the linear growth by a factor of 11%. In
the nonlinear stage, the amplitude is ηnoB = 10.66 μm at
t = 2.0 ns. The magnetic field also results in an increase
by 21% and the amplitude reaches ηB = 12.86 μm at the
same moment. In our simulations, the magnetic pressure is
typically smaller than the thermal pressure, since β � 1,
where β is the ratio of the thermal pressure to the magnetic
pressure. The hydrodynamic evolution of the plasma is not
directly affected by the presence of the magnetic field. The
magnetic field can modify the plasma evolution indirectly
by altering the thermal transport. We also carry out simu-
lations with isotropic electron thermal conduction, that is,
not considering the electron magnetization. The simulations
show that the amplitude evolution is almost identical to the
case without the self-generated magnetic field (not shown
for brevity), indicating that an increase in growth rate and
amplitude mainly contributes to the feedback of the magnetic
field to the heat flux.

The Hall parameter χe is an important index of quanti-
fying the plasma magnetization, which is a dimensionless
parameter defined as the product of electron cyclotron fre-
quency ωce and electron–ion collision time τei. The Hall
parameter depends on the magnetic field strength, electron

temperature and electron number density. In a magnetized
plasma, the presence of the magnetic field modifies the
thermal conduction coefficients and the heat flux is regarded
as anisotropic[32]. The magnetized electron thermal conduc-
tion can be expressed as follows:

−→q e = −κ‖∇‖Te −κ⊥∇⊥Te −κ∧
(−→

b ×∇Te

)
, (3)

where
−→
b is the unit vector along the magnetic field lines. κ‖

is the thermal coefficient along the magnetic field line and is
numerically equal to the coefficient in the absence of a mag-
netic field and κ⊥ is the thermal coefficient perpendicular to
the magnetic field. Due to the magnetic field inhibiting the
heat carrying electrons, κ⊥ decreases as the Hall parameter
increases, leading to a flux limiter of heat flux that is
perpendicular to magnetic field. The κ∧ term is additionally
generated due to the electron deflection and is perpendicular
to both the temperature gradient and magnetic field lines, and
is known as the R-L effect. As the Hall parameter increases,
κ∧ firstly increases until reaching a peak value and then
decreases monotonically. The κ⊥ and κ∧ coefficients, called
perpendicular and cross-thermal coefficients in the following
paper, depend on the Hall parameter and effective ionization.
If a plasma is unmagnetized, only the first two terms on
the right-hand side of Equation (3) are retained. Here, κ⊥ is
equal to κ‖, resulting in anisotropic heat flux degenerating
into the isotropic description. In this paper, the thermal
coefficients improved by Ji and Held[37] are employed.

Figure 5(a) shows the spatial distribution of Hall
parameters at t = 2.0 ns, and the RTI evolution is in
the nonlinear regime. The plasma near the spike tip is
magnetized and the peak value of the Hall parameter is
χe ∼ 0.15. Although the plasma is still in a low magnetization
state, the anisotropic thermal condition caused by the
magnetic field is of high importance. As for the cross-
component, κ∧/κ‖ reaches approximately 0.1 at χe ∼ 0.02,
meaning that the R-L heat flux cannot be negligible. Figures
5(b) and 5(c) show the ratio of the perpendicular and cross-
components to the parallel thermal coefficients κ⊥/κ‖ and
κ∧/κ‖ at the same moment. The κ⊥ coefficient decreases to
84% and the κ∧ coefficient generated additionally reaches
41% of the parallel thermal coefficient κ‖. The spatial
distribution of the self-generated magnetic field is like a
cover that wraps around the spike tip and suppresses the
ablation from the hot conduction region.

Figure 6(a) displays the total heat flux with a magnetic
field (pink-dashed-dot line), which is superimposed on the
density distribution at t = 2.0 ns. The streamline without
a magnetic field (yellow-solid line) is meanwhile shown
as a comparison. The critical density surface is chosen as
the starting points of the heat flux streamlines, since laser
energy deposition occurs near the critical density surface
and the conduction region is dominated by electron thermal
conduction. As the magnetic field is generated azimuthally
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Figure 5. Spatial distributions of (a) the Hall parameter χe, (b) the ratio of perpendicular to parallel thermal transport coefficients κ⊥/κ‖ and (c) the ratio
of cross to parallel thermal transport coefficients κ∧/κ‖ at t = 2.0 ns. Only the right-hand side of the spike is shown.

Figure 6. At t = 2.0 ns, a comparison of heat flux streamlines with
(without) a magnetic field (a), and with (without) the Nernst effect (b)
overlaid on the density spatial distribution. Only the right-hand side of the
spike is shown. The pink-dashed-dot lines in (a) and (b) are identical.

along the z-axis and without x- and y-components in 2D
simulations, there is no component of the heat flow along
the magnetic field lines. In the region above y = −250 μm,
the Hall parameter is only χe ∼ 0.02 with a several-tesla
magnetic field. The two streamlines of the heat flux almost
overlap, as the magnetic field has almost no effect on heat
flux. Compared to the case without a magnetic field, the
magnetized heat flux is deflected to the right when flowing
into the region below y = −255 μm. The R-L effect deflects
the heat flow along the spike and towards the base, and
diverts the heat flux near the spike tip. Without a magnetic
field included, the heat flow is concentrated at the spike tip,
enhancing the spike ablation. The R-L term cools the spike
tip, lowers the ablative stabilization, allows the perturbation
to penetrate further into the conduction region and naturally
increases the amplitude.

Although the magnetization is still at a low level with
χe ≤ 0.15, as the spike-bubble structure is cold in tem-
perature and high in density, the simulations show that
the R-L effect has a non-ignorable influence. In order to
further analyze the importance of the R-L heat flux, we
artificially multiply the original κ∧ by a factor f∧ and fix the
other thermal conduction coefficients. Figure 7(a) shows the
velocity of the spike tip and the bubble vertex at t = 2.0 ns
for different f∧. The velocity is diagnosed in the reference
frame of the ablation front. As f∧ increases, the R-L effect
deflects more and more heat flux away from the spike tip and
inhibits the spike ablation. The spike velocity increases from
26.46 μm/ns with f∧ = 0.2 to 31.08 μm/ns with f∧ = 1.2,
meaning that the spike penetrates into the conduction region
deeply. There is no significant change in the bubble velocity,
as the transport of the magnetic field into the bubble is
suppressed by the Nernst effect. The thermal transport inside
the bubble is prone to be isotropic. The faster spike velocity
results in an increase in the linear growth rate and the nonlin-
ear amplitude, which are shown in Figure 7(b). When the R-
L effect is switched off, corresponding to the case of f∧ = 0,
the linear growth rate and the amplitude are γ = 3.73 ns−1

and η = 10.80 μm, respectively, only a little higher than the
case without magnetic field

(
γ = 3.70 ns−1,η = 10.66 μm

)
,

because the perpendicular thermal coefficient κ⊥ also has
the potential to suppress the spike ablation. The slight
increase reveals that the contribution of the R-L heat flux
is more important than that of the perpendicular heat flux,
especially for the case with a small Hall parameter. The
linear growth rate increases up to γ = 4.16 ns−1 for the
f∧ = 1.2 case. This method demonstrates the importance of
the R-L effect to the evolution of the RTI, although it is a
little physically unreasonable.

In order to understand comprehensively the influence of
the magnetic field on RTI growth, the thermal driven terms
in Equation (2) are re-arranged into a form that is similar to
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Figure 7. At t = 2.0 ns, (a) the velocity of the spike tip (red-circle line) and the bubble vertex (blue-delta line), and (b) the linear growth rate (red-circle
line) and the amplitude (blue-delta line) for different f∧ factors.

Figure 8. (a) Distributions of the y-component of the fluid velocity (green-solid line), the Nernst advection velocity (blue-dashed line) and the cross-
gradient Nernst velocity (yellow-dot line) and the total velocity (black-dashed-dot line), which are diagnosed at the right-hand side of the spike x = 5.0 μm
at t = 2.0 ns. (b) The peak magnitudes of the magnetic field evolve over time without (red-solid line) and with (blue-dashed line) the Nernst effect.

the advection velocity. The transport of the magnetic field
can be written in a physically motivated form as follows:

∂
−→
B

∂t
= ∇ ×

(−→v eff ×−→
B
)

−∇ × c2η

4π
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∇ ×−→
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)

+ c
e
∇ ×
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ne

)
,
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ene | −→

B |
∇Te − c

(
β‖ −β⊥

)
ene | −→

B |
(−→

b ×∇Te

)
. (5)

The terms on the right-hand side of Equation (4) are the
effective advection, diffusion with the resistivity of η and
the Biermann battery effect, respectively[38]. As expressed in
Equation (5), the effective advection velocity −→v eff is defined
as the sum of the fluid velocity, Nernst velocity and cross-
gradient Nernst velocity. The magnetic Reynolds number
Rem is used to evaluate the relative importance between
the frozen-in-flow and resistive diffusion. In the conduc-
tion region, Rem = lv

Dm
is calculated to be approximately

10 or even greater, where the wavelength of λ = 20 μm
is chosen as the characteristic scale length, the average
blow-out velocity v = 200 μm/ns is regarded as the fluid
characteristic velocity and Dm = c2η

4π
∼ 4.1 × 103 cm2/s

is the magnetic diffusion coefficient, indicating that the

magnetic diffusion is negligible reasonably. The transport of
the magnetic field is mainly dominated by the frozen-in-flow
and thermally driven terms, with the latter resulting in
the Nernst and cross-gradient Nernst advection, and the
convection of the magnetic field is further retreated as ∂

−→
B

∂t =
∇ ×

(−→v eff ×−→
B
)

+ c
e∇ ×

(
∇Pe
ne

)
.

Magnetic field advection is a balance between the frozen-
in-flow with ions and the thermally driven effects, and the
latter provides an additionally convective velocity along the
heat flux[39,40]. The Nernst effect convects the magnetic field
down the temperature gradient and the cross-gradient Nernst
tends to advect the magnetic field towards the spike base.
The Nernst flux limiter is equal to the thermal flux limiter
and is chosen to be f = 0.1 here. The Nernst flux limiter is
used to limit the Nernst velocity. Figure 8(a) displays the
y-component of the plasma velocity as well as thermally
driven velocity at t = 2.0 ns. The former is obtained in the
reference frame of the ablation front, just like the velocity
of the spike tip and the bubble vertex in Figure 7(a). The
total velocity is also plotted in Figure 8(a). It is observable
that the Nernst velocity assumes the opposite direction but
maintains the same magnitude as the fluid velocity with a
few hundreds of μm/ns. The cross-gradient Nernst velocity
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Figure 9. (a) Comparison of the linear growth rate. The black-solid line is the theoretical prediction. The red circles are from the simulations without a
magnetic field, while the blue squares correspond to cases with a magnetic field included. The generation rate of the self-generated magnetic field (b), the
percentage increase (c) and the derivative of the amplitude difference (d) evolve over time for different wavelengths.

is much smaller than the Nernst velocity due to low magneti-
zation and small temperature gradient along the x-axis. The
total advection velocity is closer to zero, meaning that the
self-generated magnetic field rapidly accumulates locally.
This phenomenon is beneficial for an increase in the field
strength. Figure 8(b) shows a comparison of the evolution of
the peak magnitude of the magnetic field over time. When
the Nernst effect is included, the magnetic field is com-
pressed and amplified near the ablation front. At t = 2.0 ns,
the peak strength almost reaches 800 T, nearly three times
higher than the case without the Nernst effect. In addition,
the magnetic field exhibits wider spatial distribution in the
absence of the Nernst advection. Compared to the case with
the Nernst effect, the R-L term deflects the heat flux in the
region farther away from the ablation front, which is shown
in Figure 6(b). The simulation shows that the linear growth
rate without the Nernst effect is about γ = 4.18 ns−1 and
the amplitude at t = 2.0 ns is η = 13.72 μm, both higher
than the case with the Nernst effect included, indicating that
the Nernst effect is beneficial to smoothing the instability
growth.

Figure 9(a) shows a comparison between the linear growth
rates without and with the self-generated magnetic field for
different wavelengths. In order to theoretically predict the
linear growth rate, the laser irradiating the planar target
without perturbation is simulated to get the distribution
of density and pressure near the ablation front. Then the

Table 1. The averaged values used to theoretically
predict the linear growth rate for different wavelengths.

L0 (μm) Fr g
(
μm/ns2) va (μm/ns)

0.25 0.31 162.60 3.54

fitting method in Ref. [41] is employed to obtain variables
including the density scale length L0, Froude number Fr,
acceleration g and ablation velocity va, averaged between
t1 = 1.09 and t2 = 1.59 ns, which are shown in Table 1. The
selected time window corresponds to the linear stage for λ =
20 μm. Then these averaged variables are substituted into
Equation (8) in Ref. [41] to get the theoretical growth rates
for different wavelengths, which are shown by the black-
solid line. Without the self-generated magnetic field, the
growth rate agrees well with the theoretical prediction. The
magnetic field increases the growth rate by approximately
10%. As for high perturbation with the shorter wavelength,
the perturbation could be increased by even more than 10%.
It is shown that the self-generated magnetic field plays a
destabilizing role for the cases with a small Froude number
and our simulation agrees qualitatively with Ref. [23].

Figure 9(c) shows the percentage increase in perturbation
amplitude during the whole process for three wavelengths.
The percentage increase is defined as the amplitude
difference divided by the amplitude without a magnetic field
included. The percentage gradually increases from t = 1.0 ns
as the R-L effect is enhanced due to the increasing field
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strength and the ablation stabilization is weakened. The
percentage reaches a peak value of about 20% and the
corresponding moment for the short wavelength (i.e.,
λ = 10 μm) is earlier than that of the long wavelength
cases (λ = 20 and 30 μm), since the generation rate of the
self-generated magnetic field increases as the wavelength
decreases due to the larger gradients of density and
temperature, which is shown in Figure 9(b), where the rate
of magnetic flux generation is defined as d

(∫ |B|dS
)
/dt.

The generation rates are in agreement with Ref. [42].
As the magnetic field continues to accumulate near the
ablation front, the κ∧ coefficient decreases and the R-L
effect is inhibited. The heat flux is less deflected and
re-concentrates at the spike tip, resulting in a decrease in the
percentage, and the derivative of the amplitude difference
d(�η)/dt also demonstrates this viewpoint. The trend of
the averaged κ∧/κ‖ is similar to that of Figures 9(c) and
9(d), peaking at a maximum value and then decreasing (not
shown here for brevity).

In order to simplify the simulation model, the radiation
is neglected in the simulations. As for the perturbation
wavelength of λ = 20 μm, simulations with considering the
radiation are carried out, where the self-generated magnetic
field is neglected. The linear growth rate is reduced to
γ = 3.04 ns−1, which can be attributed to the smooth density
gradient on the ablation front due to the preheating of X-rays
and the reduced acceleration due to the radiation energy loss.

4. The importance of the nonlocal effect

The nonlocal thermal transport has the potential to reduce
the nonlinear growth of high-mode perturbation with a short
wavelength[43]. Currently, the FLASH code does not support
a self-consistent coupling between the nonlocal effect and
the magnetic field. However, it is still necessary to evaluate
the importance of the nonlocal effect. The Knudsen number
is an indicator used to quantify the nonlocal effect. It is
defined as the ratio of the electron mean free path and the
temperature scale length, Kn = λei/LT. Figure 10(a) shows

the distribution of the temperature gradient scale length
LT = Te/ |∇Te| and the electron mean free path λei along the
y-axis at t = 2.0 ns. It can be seen that LT is much greater
than λei by two orders of magnitude. The distribution of
Kn along the y-axis is plotted in Figure 10(b), along with
the mass density. The Knudsen number around the critical
density surface is about Kn = 2.66×10−3 and the peak value
is Kn = 2.76×10−3.

In addition to the thermal transport, the Biermann battery
effect and the Nernst effect are both dependent on the
temperature gradient and would be influenced by the non-
local effect, called nonlocal suppression. The suppression
factor for the Biermann battery effect is fB = 1+a1d

1+a2d+(a3d)2

according to Equation (21) in Ref. [44], where d denotes the
nonlocality parameter, similar to the Knudsen number. The
Nernst suppression factor is fitted to be fN = 0.0566Kn−0.593

according to Equation (7) in Ref. [45]. It is mentioned that
the fit for fN is valid in the interval of Kn = [0.009,0.22]. The
Knudsen number near the ablation front in our manuscript
has already fallen below the lower limit. As Kn decreases,
the fB and fN factors both increase until reaching units and the
nonlocal suppression is weakening. The suppression factor
of fB is larger than 0.998 near the ablation front, indicating
that the nonlocal suppression for the Biermann battery effect
and the Nernst effect is reasonably insignificant.

Our previous work points out that the nonlocal effect is
dependent on both the laser intensity and the laser frequency,
and Kn = 7 × 10−3 is artificially used as the dividing point
between the local and nonlocal effects[46]. The laser intensity
threshold for considering the nonlocal effect is I ∼ 1 ×
1015 W/cm2 for the 3ω frequency. In our paper, a laser
intensity of I = 6×1014 W/cm2 is employed with the wave-
length of λ = 0.35 μm (correspond to 3ω frequency). As the
laser intensity is below the threshold, it can be inferred that
the nonlocal effect is of little significance, which is further
verified by the simulation results. In the future, we would
like to enhance the capabilities of the FLASH code and
explore the comprehensive impact of radiation and nonlocal
treatment.

Figure 10. At t = 2.0 ns, (a) the distributions of the temperature gradient scale length LT (red-solid line) and the electron mean free path λei (blue-dashed
line), (b) the density (red-solid line) and the Knudsen number (blue-dashed line) along the y-axis, which are diagnosed at x = 0. The pink-solid line in (b)
represents the critical density surface.
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5. Conclusion

To conclude, the self-generated magnetic field and R-L
heat flux in the ARTI in a laser irradiating thin target are
studied through 2D extended-magnetohydrodynamic simu-
lations. Although the strength of the self-generated magnetic
field could reach up to hundreds of teslas during the evolu-
tion of the RTI, the plasma is still in a low magnetization
state due to cold temperature and high density near the
ablation front. The simulations show that the R-L heat flux,
additionally generated by the self-generated magnetic field,
has a non-ignorable impact during the whole RTI evolution
in the acceleration stage. The R-L effect deflects the total
heat flux along the spike and towards the spike base. This
deflection reduces the heat deposition near the spike tip,
lowers the ablative stabilization, allows the spike to penetrate
further into the conduction region and results in an increase
in the spike-bubble amplitude. The simulations show that the
magnetic field increases the linear growth rate by a factor
of about 10% compared to the case without a self-generated
magnetic field considered. Our results reveal the importance
of R-L heat flux and promote deep understanding of the
feedback of the self-generated magnetic field on instability
evolution, especially during the acceleration stage in ICF.
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