Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T14:12:31.629Z Has data issue: false hasContentIssue false

Chapter 5 - Molecular genetics of soft tissue tumors

Published online by Cambridge University Press:  19 October 2016

Markku Miettinen
Affiliation:
National Cancer Institute, Maryland
Get access
Type
Chapter
Information
Modern Soft Tissue Pathology
Tumors and Non-Neoplastic Conditions
, pp. 115 - 180
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Cooper, GM. Oncogenes, 2nd edn. Boston: Jones and Bartlett Publishers International; 1995.Google Scholar
Heim, S, Mitelman, F. Cancer Cytogenetics. Chromosomal and Molecular Genetic Aberrations of Tumor Cells. New York: Wiley-Liss; 1995.Google Scholar
Der, CJ, Krontiris, TG, Cooper, GM. Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci USA 1982;79:36373640.Google Scholar
Parada, LF, Tabin, CJ, Shih, C, Weinberg, RA. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 1982;297:474478.Google Scholar
Reddy, EP, Reynolds, RK, Santos, E, Barbacid, M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 1982;300:149152.Google Scholar
Barbacid, M. ras genes. Annu Rev Biochem 1987;56:779827.Google Scholar
Quilliam, LA, Rebhun, JF, Castro, AF. A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Prog Nucleic Acid Res Mol Biol 2002;71:391444.CrossRefGoogle ScholarPubMed
Bos, JL. Ras oncogenes in human cancer: a review. Cancer Res 1989;49:46824689.Google Scholar
Bohle, RM, Brettreich, S, Repp, R, et al. Single somatic ras gene point mutation in soft tissue malignant fibrous histiocytomas. Am J Pathol 1996;148:731738.Google Scholar
Yoo, J, Robinson, RA, Lee, JY. H-ras and K-ras gene mutations in primary human soft tissue sarcomas: concomitant mutations of the ras genes. Mod Pathol 1999;12:775780.Google Scholar
Hill, MA, Gong, C, Casey, TJ, et al. Detection of K-ras mutations in resected primary leiomyosarcoma. Cancer Epidemiol Biomarkers Prev 1997;6:10951100.Google Scholar
Marion, MJ, Froment, O, Trepo, C. Activation of Ki-ras gene by point mutation in human liver angiosarcoma associated with vinyl chloride exposure. Mol Carcinog 1991;4:450454.Google Scholar
Przygodzki, RM, Finkelstein, SD, Keohavong, P, et al. Sporadic and thorotrast-induced angiosarcomas of the liver manifest frequent and multiple point mutations in K-ras-2. Lab Invest 1997;76:153159.Google ScholarPubMed
Stratton, MR, Fisher, C, Gusterson, BA, Cooper, CS. Detection of point mutations in N-ras and K-ras genes of human embryonal rhabdomyosarcomas using oligonucleotide probes and the polymerase chain reaction. Cancer Res 1989;49:63246327.Google Scholar
Rebollo, A, Martinez-A C. Ras proteins: recent advances and new functions. Blood 1999;94:29712980.Google Scholar
Reuter, CW, Morgan, MA, Bergmann, L. Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood 2000;96:16551669.CrossRefGoogle ScholarPubMed
Adjei, AA. Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 2001;93:10621074.Google Scholar

Secondary Sources

Knudson, AJ. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;68:820823.Google Scholar
Knudson, AJ, Hethcote, HW, Brown, BW. Mutation and childhood cancer: a probabilistic model for the incidence of retinoblastoma. Proc Natl Acad Sci USA 1975;72:51165120.Google Scholar
Friend, SH, Bernards, R, Rogelj, S, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986;323:643646.Google Scholar
Fung, Y-KT, Murphree, AL, T’Ang, A, et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science 1987;236:16571661.Google Scholar
Hong, FD, Huang, H-JS, To, H, et al. Structure of the human retinoblastoma gene. Proc Natl Acad Sci USA 1989;86:55025506.Google Scholar
Dryja, TP, Mukai, S, Petersen, R, et al. Parental origin of mutations of the retinoblastoma gene. Nature 1989;339:556558.CrossRefGoogle ScholarPubMed
Zhu, XP, Dunn, JM, Phillips, RA, et al. Preferential germline mutation of the paternal allele in retinoblastoma. Nature 1989;340:312313.Google Scholar
Horowitz, JM, Yandell, DW, Park, S-H, et al. Point mutational inactivation of the retinoblastoma antioncogene. Science 1989;243:937940.Google Scholar
Lohmann, DR. RB1 mutations in retinoblastoma. Hum Mutat 1999;14:283288.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Stirzaker, C, Millar, DS, Paul, CL, et al. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res 1997;57:22292237.Google Scholar
Polsky, D, Mastorides, S, Kim, D, et al. Altered patterns of RB expression define groups of soft tissue sarcoma patients with distinct biological and clinical behavior. Histol Histopathol 2006;21:743752.Google Scholar
Volinia, S, Calin, GA, Liu, CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006;103:22572261.Google Scholar
Dei Tos, AP, Maestro, R, Doglioni, C, et al. Tumor suppressor genes and related molecules in leiomyosarcoma. Am J Pathol 1996;148:10371045.Google Scholar
Cohen, JA, Geradts, J. Loss of RB and MTS1/CDKN2 (p16) expression in human sarcomas. Hum Pathol 1997;28:893898.Google Scholar
Stratton, MR, Williams, S, Fisher, C, et al. Structural alterations of the RB1 gene in human soft tissue tumours. Br J Cancer 1989;60:202205.Google Scholar
Wunder, JS, Czitrom, AA, Kandel, R, Andrulis, IL. Analysis of alterations in the retinoblastoma gene and tumor grade in bone and soft-tissue sarcomas. J Natl Cancer Inst 1991;83:194200.Google Scholar
Fisher, DE. Tumor Suppressor Genes in Human Cancer. Totowa, NJ: Humana Press; 2001.Google Scholar
Croce, CM. Oncogenes and cancer. N Engl J Med 2008;358:502511.Google Scholar
Roy, DM, Walsh, LA, Chan, TA. Driver mutations of cancer epigenomes. Protein Cell 2014;5:265296.Google Scholar
Holliday, R. The inheritance of epigenetic defects. Science 1987;238:163170.Google Scholar
Oey, H, Whitelaw, E. On the meaning of the word “epimutation.” Trends Genet 2014;30:519520.Google Scholar
Horsthemke, B. Epimutations in human disease. Curr Top Microbiol Immunol 2006;310:4559.Google ScholarPubMed
Frith, MC, Pheasant, M, Mattick, JS. The amazing complexity of the human transcriptome. Eur J Hum Genet 2005;13:894897.Google Scholar
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012;489:5774.Google Scholar
Sana, J, Faltejskova, P, Svoboda, M, Slaby, O. Novel classes of non-coding RNAs and cancer. J Transl Med 2012;10:103.Google Scholar
Taft, RJ, Pang, KC, Mercer, TR, Dinger, M, Mattick, JS. Non-coding RNAs: regulators of disease. J Pathol 2010;220:126139.Google Scholar
Sun, G, Li, H, Rossi, JJ. Sequence context outside the target region influences the effectiveness of miR-223 target sites in the RhoB 3'UTR. Nucleic Acids Res 2010;38:239252.Google Scholar
Gottwein, E, Cai, X, Cullen, BR. A novel assay for viral microRNA function identifies a single nucleotide polymorphism that affects Drosha processing. J Virol 2006;80:53215326.CrossRefGoogle ScholarPubMed
Ebhardt, HA, Fedynak, A, Fahlman, RP. Naturally occurring variations in sequence length creates microRNA isoforms that differ in argonaute effector complex specificity. Silence 2010;1:12.CrossRefGoogle ScholarPubMed
Carleton, M, Cleary, MA, Linsley, PS. MicroRNAs and cell cycle regulation. Cell Cycle 2007;6:21271232.Google Scholar
Harfe, BD. MicroRNAs in vertebrate development. Curr Opin Genet Dev 2005;15:410415.Google Scholar
Boehm, M, Slack, FJ. MicroRNA control of lifespan and metabolism. Cell Cycle 2006;5:837840.Google Scholar
Rodriguez, A, Griffiths-Jones, S, Ashurst, JL, Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004;14:19021910.Google Scholar
Calin, GA, Sevignani, C, Dumitru, CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004;101:29993004.Google Scholar
Rossi, S, Sevignani, C, Nnadi, SC, Siracusa, LD, Calin, GA. Cancer-associated genomic regions (CAGRs) and noncoding RNAs: bioinformatics and therapeutic implications. Mamm Genome 2008;19:526540.CrossRefGoogle ScholarPubMed
Baer, C, Claus, R, Plass, C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res 2013;73:473477.Google Scholar
Kulshreshtha, R, Ferracin, M, Wojcik, SE, et al. A microRNA signature of hypoxia. Mol Cell Biol 2007;27:18591867.Google Scholar
Zhang, B, Pan, X, Cobb, GP, Anderson, TA. microRNAs as oncogenes and tumor suppressors. Dev Biol 2007;302:112.Google Scholar
Lu, J, Getz, G, Miska, EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834838.Google Scholar
Calin, GA, Croce, CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006;6:857866.Google Scholar
Subramanian, S, Lui, WO, Lee, CH, et al. MicroRNA expression signature of human sarcomas. Oncogene 2008;27:20152026.Google Scholar
Renner, M, Czwan, E, Hartmann, W, et al. MicroRNA profiling of primary high-grade soft tissue sarcomas. Genes Chromosomes Cancer 2012;51:982996.CrossRefGoogle ScholarPubMed
Dela Cruz, F, Matushansky, I. MicroRNAs in chromosomal translocation-associated solid tumors: learning from sarcomas. Discov Med 2011;12:307317.Google Scholar
Fujiwara, T, Kunisada, T, Takeda, K, et al. MicroRNAs in soft tissue sarcomas: overview of the accumulating evidence and importance as novel biomarkers. Biomed Res Int 2014;2014:592868.Google Scholar
Cortez, MA, Calin, GA. MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin Biol Ther 2009;9:703711.Google Scholar
Sachdeva, M, Mito, JK, Lee, CL, et al. MicroRNA-182 drives metastasis of primary sarcomas by targeting multiple genes. J Clin Invest 2014;124:43054319.Google Scholar
Miyachi, M, Tsuchiya, K, Yoshida, H, et al. Circulating muscle-specific microRNA, miR-206, as a potential diagnostic marker for rhabdomyosarcoma. Biochem Biophys Res Commun 2010;400:8993.Google Scholar
Weng, Y, Chen, Y, Chen, J, Liu, Y, Bao, T. Identification of serum microRNAs in genome-wide serum microRNA expression profiles as novel noninvasive biomarkers for malignant peripheral nerve sheath tumor diagnosis. Med Oncol 2013;30:531.Google Scholar
Sarver, AL, Phalak, R, Thayanithy, V, Subramanian, S. S-MED: sarcoma microRNA expression database. Lab Invest 2010;90:753761.Google Scholar
Taylor, MA, Schiemann, WP. Therapeutic opportunities for targeting microRNAs in cancer. Mol Cell Ther 2014;2:113.Google Scholar
Chugh, P, Dittmer, DP. Potential pitfalls in microRNA profiling. Wiley Interdiscip Rev RNA 2012;3:601616.Google Scholar
Kimonis, VE, Goldstein, AM, Pastakia, B, et al. Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am J Med Genet 1997;69:299308.Google Scholar
Fujii, K, Miyashita, T. Gorlin syndrome (nevoid basal cell carcinoma syndrome): update and literature review. Pediatr Int 2014;56:667674.Google Scholar
Weksberg, R, Shuman, C, Beckwith, JB. Beckwith-Wiedemann syndrome. Eur J Hum Genet 2010;18:814.Google Scholar
Wiedemann, H-R. Tumours and hemihypertrophy associated with Wiedemann-Beckwith syndrome. (Letter) Eur J Pediatr 1983;141:129.Google Scholar
Jin, XL, Wang, ZH, Xiao, XB, Huang, LS, Zhao, XY. Blue rubber bleb nevus syndrome: a case report and literature review. World J Gastroenterol 2014;20:1725417259.Google Scholar
Espiard, S, Bertherat, J. Carney complex. Front Horm Res 2013;41:5062.Google Scholar
Estep, AL, Tidyman, WE, Teitell, MA, Cotter, PD, Rauen, KA. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy. Am J Med Genet A 2006;140:816.Google Scholar
Nishisho, I, Nakamura, Y, Miyoshi, Y, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991;253:665669.Google Scholar
Eccles, DM, Van Der Luijt, R, Breukel, C, et al. Hereditary desmoid disease due to a frameshift mutation at codon 1924 of the APC gene. Am J Hum Genet 1996;59:11931201.Google Scholar
Scott, RJ, Froggatt, NJ, Trembath, RC, et al. Familial infiltrative fibromatosis (desmoid tumours) (MIM135290) caused by a recurrent 3ʹ APC gene mutation. Hum Mol Genet 1996;5:19211924.Google Scholar
Hussussian, CJ, Struewing, JP, Goldstein, AM, et al. Germline p16 mutations in familial melanoma. Nat Genet 1994;8:1521.Google Scholar
Randerson-Moor, JA, Harland, M, Williams, S, et al. A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 2001;10:5562.CrossRefGoogle ScholarPubMed
Vanneste, R, Smith, E, Graham, G. Multiple neurofibromas as the presenting feature of familial atypical multiple malignant melanoma (FAMMM) syndrome. Am J Med Genet A 2013;161A:14251431.Google Scholar
Nishida, T, Hirota, S, Taniguchi, M, et al. Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat Genet 1998;19:323324.Google Scholar
Chompret, A, Kannengiesser, C, Barrois, M, et al. PDGFRA germline mutation in a family with multiple cases of gastrointestinal stromal tumor. Gastroenterology 2004;126:318321.Google Scholar
Ligon, AH, Moore, SD, Parisi, MA, et al. Constitutional rearrangement of the architectural factor HMGA2: a novel human phenotype including overgrowth and lipomas. Am J Hum Genet 2005;76:340348.Google Scholar
Dryja, TP, Mukai, S, Petersen, R, et al. Parental origin of mutations of the retinoblastoma gene. Nature 1989;339:556558.Google Scholar
Zhu, XP, Dunn, JM, Phillips, RA, et al. Preferential germline mutation of the paternal allele in retinoblastoma. Nature 1989;340:312313.Google Scholar
Barbaux, S, Niaudet, P, Gubler, MC, et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 1997;17:467470.CrossRefGoogle ScholarPubMed
Pelletier, J, Bruening, W, Kashtan, CE, et al. Germinal mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 1991; 67:437447.Google Scholar
van Heyningen, V, Bickmore, WA, Seawright, A, et al. Role for the Wilms tumor gene in genital development? Proc Natl Acad Sci USA 1990;87:53835386.Google Scholar
Ruteshouser, EC, Huff, V. Familial Wilms tumor. Am J Med Genet C Semin Med Genet 2004;129C:2934.Google Scholar
Brouillard, P, Boon, LM, Mulliken, JB, et al. Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations ("glomangiomas"). Am J Hum Genet 2002;70:866874.Google Scholar
Kiuru, M, Launonen, V. Hereditary leiomyomatosis and renal cell cancer (HLRCC). Curr Mol Med 2004;4(8):869875.Google Scholar
Gardie, B, Remenieras, A, Kattygnarath, D, et al. Novel FH mutations in families with hereditary leiomyomatosis and renal cell cancer (HLRCC) and patients with isolated type 2 papillary renal cell carcinoma. J Med Genet 2011;48:226234.Google Scholar
Denadai, R, Raposo-Amaral, CE, Bertola, D, et al. Identification of 2 novel ANTXR2 mutations in patients with hyaline fibromatosis syndrome and proposal of a modified grading system. Am J Med Genet A 2012;158A:732742.Google Scholar
Li, FP, Fraumeni, JF. Rhabdomyosarcoma in children: epidemiologic study and identification of a cancer family syndrome. J Natl Cancer Inst 1969;43:13651373.Google Scholar
Li, FP, Fraumeni, JF. Soft tissue sarcomas, breast cancer and other neoplasms: a familial syndrome? Ann Int Med 1969;71:747752.Google Scholar
Amary, MF, Damato, S, Halai, D, et al. Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet 2011;43:12621265.Google Scholar
Rasmussen, SA, Friedman, JM. NF1 gene and neurofibromatosis 1. Am J Epidemiol 2000;151:3340.Google Scholar
Gutmann, DH. Molecular insights into neurofibromatosis 2. Neurobiol Dis 1997;3:247261.Google Scholar
Meyer, S, Kingston, H, Taylor, AM, et al. Rhabdomyosarcoma in Nijmegen breakage syndrome: strong association with perianal primary site. Cancer Genet Cytogenet 2004;154:169174.Google Scholar
Astuti, D, Latif, F, Dallol, A, et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001;69:4954.Google Scholar
Müller, U. Pathological mechanisms and parent-of-origin effects in hereditary paraganglioma/pheochromocytoma (PGL/PCC). Neurogenetics 2011;12:175181.Google Scholar
Pasini, B, McWhinney, SR, Bei, T, et al. Clinical and molecular genetics of patients with the Carney–Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet 2008;16:7988.Google Scholar
Miettinen, M, Lasota, J. Succinate dehydrogenase deficient gastrointestinal stromal tumors (GISTs): a review. Int J Biochem Cell Biol 2014;53:514519.Google Scholar
Blumenthal, GM, Dennis, PA. PTEN hamartoma tumor syndromes. Eur J Hum Genet 2008;16:12891300.Google Scholar
Cohen, MM Jr. Proteus syndrome review: molecular, clinical, and pathologic features. Clin Genet 2014;85:111119.Google Scholar
Taylor, MD, Gokgoz, N, Andrulis, IL, et al. Familial posterior fossa brain tumors of infancy secondary to germline mutation of the hSNF5 gene. Am J Hum Genet 2000;66:14031406.Google Scholar
Foulkes, WD, Clarke, BA, Hasselblatt, M, et al. No small surprise: small cell carcinoma of the ovary, hypercalcaemic type, is a malignant rhabdoid tumour. J Pathol 2014;233:209214.Google Scholar
Jelinic, P, Mueller, JJ, Olvera, N, et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet 2014;46:424426.Google Scholar
Ramos, P, Karnezis, AN, Craig, DW, et al. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat Genet 2014;46:427429.Google Scholar
Miller, RW, Rubinstein, JH. Tumors in Rubinstein–Taybi syndrome. Am J Med Genet 1995;56:112115.Google Scholar
van de Kar, AL, Houge, G, Shaw, AC, et al. Keloids in Rubinstein-Taybi syndrome: a clinical study. Br J Dermatol 2014;171:615621.Google Scholar
Negri, G, Milani, D, Colapietro, P, et al. Clinical and molecular characterization of Rubinstein-Taybi syndrome patients carrying distinct novel mutations of the EP300 gene. Clin Genet 2015;87:148154.Google Scholar
Hadfield, KD, Newman, WG, Bowers, NL, et al. Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis. J Med Genet 2008;45:332339.Google Scholar
Crino, PB, Nathanson, KL, Henske, EP. The tuberous sclerosis complex. N Engl J Med 2006;355:13451356.Google Scholar
Curatolo, P, Bombardieri, R, Jozwiak, S. Tuberous sclerosis. Lancet 2008;372:657668.Google Scholar
O' Brien, FJ, Danapal, M, Jairam, S, et al. Manifestations of Von Hippel Lindau syndrome: a retrospective national review. QJM 2014;107:291296.Google Scholar
Wanebo, JE, Lonser, RR, Glenn, GM, Oldfield, EH. The natural history of hemangioblastomas of the central nervous system in patients with von Hippel-Lindau disease. J Neurosurg 2003;98:8294.Google Scholar
Yamamoto, K, Imakiire, A, Miyagawa, N, Kasahara, T. A report of two cases of Werner's syndrome and review of the literature. J Orthop Surg (Hong Kong) 2003;11:224233.Google Scholar
Kimonis, VE, Goldstein, AM, Pastakia, B, et al. Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am J Med Genet 1997;69:299308.Google Scholar
Fujii, K, Miyashita, T. Gorlin syndrome (nevoid basal cell carcinoma syndrome): update and literature review. Pediatr Int 2014;56:667674.Google Scholar
Weksberg, R, Shuman, C, Beckwith, JB. Beckwith-Wiedemann syndrome. Eur J Hum Genet 2010;18:814.Google Scholar
Wiedemann, H-R. Tumours and hemihypertrophy associated with Wiedemann-Beckwith syndrome. (Letter) Eur J Pediatr 1983;141:129.Google Scholar
Jin, XL, Wang, ZH, Xiao, XB, Huang, LS, Zhao, XY. Blue rubber bleb nevus syndrome: a case report and literature review. World J Gastroenterol 2014;20:1725417259.Google Scholar
Espiard, S, Bertherat, J. Carney complex. Front Horm Res 2013;41:5062.Google Scholar
Estep, AL, Tidyman, WE, Teitell, MA, Cotter, PD, Rauen, KA. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy. Am J Med Genet A 2006;140:816.Google Scholar
Nishisho, I, Nakamura, Y, Miyoshi, Y, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991;253:665669.Google Scholar
Eccles, DM, Van Der Luijt, R, Breukel, C, et al. Hereditary desmoid disease due to a frameshift mutation at codon 1924 of the APC gene. Am J Hum Genet 1996;59:11931201.Google Scholar
Scott, RJ, Froggatt, NJ, Trembath, RC, et al. Familial infiltrative fibromatosis (desmoid tumours) (MIM135290) caused by a recurrent 3ʹ APC gene mutation. Hum Mol Genet 1996;5:19211924.Google Scholar
Hussussian, CJ, Struewing, JP, Goldstein, AM, et al. Germline p16 mutations in familial melanoma. Nat Genet 1994;8:1521.Google Scholar
Randerson-Moor, JA, Harland, M, Williams, S, et al. A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 2001;10:5562.CrossRefGoogle ScholarPubMed
Vanneste, R, Smith, E, Graham, G. Multiple neurofibromas as the presenting feature of familial atypical multiple malignant melanoma (FAMMM) syndrome. Am J Med Genet A 2013;161A:14251431.Google Scholar
Nishida, T, Hirota, S, Taniguchi, M, et al. Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat Genet 1998;19:323324.Google Scholar
Chompret, A, Kannengiesser, C, Barrois, M, et al. PDGFRA germline mutation in a family with multiple cases of gastrointestinal stromal tumor. Gastroenterology 2004;126:318321.Google Scholar
Ligon, AH, Moore, SD, Parisi, MA, et al. Constitutional rearrangement of the architectural factor HMGA2: a novel human phenotype including overgrowth and lipomas. Am J Hum Genet 2005;76:340348.Google Scholar
Dryja, TP, Mukai, S, Petersen, R, et al. Parental origin of mutations of the retinoblastoma gene. Nature 1989;339:556558.Google Scholar
Zhu, XP, Dunn, JM, Phillips, RA, et al. Preferential germline mutation of the paternal allele in retinoblastoma. Nature 1989;340:312313.Google Scholar
Barbaux, S, Niaudet, P, Gubler, MC, et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 1997;17:467470.CrossRefGoogle ScholarPubMed
Pelletier, J, Bruening, W, Kashtan, CE, et al. Germinal mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 1991; 67:437447.Google Scholar
van Heyningen, V, Bickmore, WA, Seawright, A, et al. Role for the Wilms tumor gene in genital development? Proc Natl Acad Sci USA 1990;87:53835386.Google Scholar
Ruteshouser, EC, Huff, V. Familial Wilms tumor. Am J Med Genet C Semin Med Genet 2004;129C:2934.Google Scholar
Brouillard, P, Boon, LM, Mulliken, JB, et al. Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations ("glomangiomas"). Am J Hum Genet 2002;70:866874.Google Scholar
Kiuru, M, Launonen, V. Hereditary leiomyomatosis and renal cell cancer (HLRCC). Curr Mol Med 2004;4(8):869875.Google Scholar
Gardie, B, Remenieras, A, Kattygnarath, D, et al. Novel FH mutations in families with hereditary leiomyomatosis and renal cell cancer (HLRCC) and patients with isolated type 2 papillary renal cell carcinoma. J Med Genet 2011;48:226234.Google Scholar
Denadai, R, Raposo-Amaral, CE, Bertola, D, et al. Identification of 2 novel ANTXR2 mutations in patients with hyaline fibromatosis syndrome and proposal of a modified grading system. Am J Med Genet A 2012;158A:732742.Google Scholar
Li, FP, Fraumeni, JF. Rhabdomyosarcoma in children: epidemiologic study and identification of a cancer family syndrome. J Natl Cancer Inst 1969;43:13651373.Google Scholar
Li, FP, Fraumeni, JF. Soft tissue sarcomas, breast cancer and other neoplasms: a familial syndrome? Ann Int Med 1969;71:747752.Google Scholar
Amary, MF, Damato, S, Halai, D, et al. Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet 2011;43:12621265.Google Scholar
Rasmussen, SA, Friedman, JM. NF1 gene and neurofibromatosis 1. Am J Epidemiol 2000;151:3340.Google Scholar
Gutmann, DH. Molecular insights into neurofibromatosis 2. Neurobiol Dis 1997;3:247261.Google Scholar
Meyer, S, Kingston, H, Taylor, AM, et al. Rhabdomyosarcoma in Nijmegen breakage syndrome: strong association with perianal primary site. Cancer Genet Cytogenet 2004;154:169174.Google Scholar
Astuti, D, Latif, F, Dallol, A, et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001;69:4954.Google Scholar
Müller, U. Pathological mechanisms and parent-of-origin effects in hereditary paraganglioma/pheochromocytoma (PGL/PCC). Neurogenetics 2011;12:175181.Google Scholar
Pasini, B, McWhinney, SR, Bei, T, et al. Clinical and molecular genetics of patients with the Carney–Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet 2008;16:7988.Google Scholar
Miettinen, M, Lasota, J. Succinate dehydrogenase deficient gastrointestinal stromal tumors (GISTs): a review. Int J Biochem Cell Biol 2014;53:514519.Google Scholar
Blumenthal, GM, Dennis, PA. PTEN hamartoma tumor syndromes. Eur J Hum Genet 2008;16:12891300.Google Scholar
Cohen, MM Jr. Proteus syndrome review: molecular, clinical, and pathologic features. Clin Genet 2014;85:111119.Google Scholar
Taylor, MD, Gokgoz, N, Andrulis, IL, et al. Familial posterior fossa brain tumors of infancy secondary to germline mutation of the hSNF5 gene. Am J Hum Genet 2000;66:14031406.Google Scholar
Foulkes, WD, Clarke, BA, Hasselblatt, M, et al. No small surprise: small cell carcinoma of the ovary, hypercalcaemic type, is a malignant rhabdoid tumour. J Pathol 2014;233:209214.Google Scholar
Jelinic, P, Mueller, JJ, Olvera, N, et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet 2014;46:424426.Google Scholar
Ramos, P, Karnezis, AN, Craig, DW, et al. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat Genet 2014;46:427429.Google Scholar
Miller, RW, Rubinstein, JH. Tumors in Rubinstein–Taybi syndrome. Am J Med Genet 1995;56:112115.Google Scholar
van de Kar, AL, Houge, G, Shaw, AC, et al. Keloids in Rubinstein-Taybi syndrome: a clinical study. Br J Dermatol 2014;171:615621.Google Scholar
Negri, G, Milani, D, Colapietro, P, et al. Clinical and molecular characterization of Rubinstein-Taybi syndrome patients carrying distinct novel mutations of the EP300 gene. Clin Genet 2015;87:148154.Google Scholar
Hadfield, KD, Newman, WG, Bowers, NL, et al. Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis. J Med Genet 2008;45:332339.Google Scholar
Crino, PB, Nathanson, KL, Henske, EP. The tuberous sclerosis complex. N Engl J Med 2006;355:13451356.Google Scholar
Curatolo, P, Bombardieri, R, Jozwiak, S. Tuberous sclerosis. Lancet 2008;372:657668.Google Scholar
O' Brien, FJ, Danapal, M, Jairam, S, et al. Manifestations of Von Hippel Lindau syndrome: a retrospective national review. QJM 2014;107:291296.Google Scholar
Wanebo, JE, Lonser, RR, Glenn, GM, Oldfield, EH. The natural history of hemangioblastomas of the central nervous system in patients with von Hippel-Lindau disease. J Neurosurg 2003;98:8294.Google Scholar
Yamamoto, K, Imakiire, A, Miyagawa, N, Kasahara, T. A report of two cases of Werner's syndrome and review of the literature. J Orthop Surg (Hong Kong) 2003;11:224233.Google Scholar
Nucci, MR, Weremowicz, S, Neskey, DM, et al. Chromosomal translocation t(8;12) induces aberrant HMGIC expression in aggressive angiomyxoma of the vulva. Genes Chromosomes Cancer 2001;32:172176.Google Scholar
Micci, F, Panagopoulos, I, Bjerkehagen, B, Heim, S. Deregulation of HMGA2 in an aggressive angiomyxoma with t(11;12)(q23;q15). Virchows Arch 2006;448:838842.Google Scholar
Rabban, JT, Dal Cin, P, Oliva, E. HMGA2 rearrangement in a case of vulvar aggressive angiomyxoma. Int J Gynecol Pathol 2006;25:403407.Google Scholar
Rawlinson, NJ, West, WW, Nelson, M, Bridge, JA. Aggressive angiomyxoma with t(12;21) and HMGA2 rearrangement: report of a case and review of the literature. Cancer Genet Cytogenet 2008;181:119124.Google Scholar
Joyama, S, Ueda, T, Shimizu, K, et al. Chromosome rearrangement at 17q25 and Xp11.2 in alveolar soft-part sarcoma: a case report and review of the literature. Cancer 1999;86:12461250.Google Scholar
Ladanyi, M, Lui, MY, Antonescu, CR, et al. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 2001;20:4857.Google Scholar
Jin, Y, Möller, E, Nord, KH, et al. Fusion of the AHRR and NCOA2 genes through a recurrent translocation t(5;8)(p15;q13) in soft tissue angiofibroma results in upregulation of aryl hydrocarbon receptor target genes. Genes Chromosomes Cancer 2012;51:510520.Google Scholar
Arbajian, E, Magnusson, L, Mertens, F, et al. A novel GTF2I/NCOA2 fusion gene emphasizes the role of NCOA2 in soft tissue angiofibroma development. Genes Chromosomes Cancer 2013;52:330331.Google Scholar
Waters, BL, Panagopoulos, I, Allen, EF. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet Cytogenet 2000;121:109116.Google Scholar
Raddaoui, E, Donner, LR, Panagopoulos, I. Fusion of the FUS and ATF1 genes in a large deep-seated angiomatoid fibrous histiocytoma. Diagn Mol Pathol 2002;11:157162.Google Scholar
Antonescu, CR, Dal Cin, P, Nafa, K, et al. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2007;46:10511060.Google Scholar
Hallor, KH, Micci, F, Meis-Kindblom, JM, et al. Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett 2007;251:158163.Google Scholar
Giacomini, CP, Sun, S, Varma, S, et al. Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types. PLoS Genet 2013;9:e1003464.Google Scholar
Huang, D, Sumegi, J, Dal Cin, P, et al. C11orf95-MKL2 is the resulting fusion oncogene of t(11;16)(q13;p13) in chondroid lipoma. Genes Chromosomes Cancer 2010;49:810818.Google Scholar
Tallini, G, Dorfman, H, Brys, P, et al. Correlation between clinicopathological features and karyotype in 100 cartilaginous and chordoid tumours: a report from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. J Pathol 2002;196:194203.CrossRefGoogle ScholarPubMed
Dahlén, A, Mertens, F, Rydholm, A, et al. Fusion, disruption, and expression of HMGA2 in bone and soft tissue chondromas. Mod Pathol 2003;16:11321140.CrossRefGoogle ScholarPubMed
Labelle, Y, Bussières, J, Courjal, F, Goldring, MB. The EWS/TEC fusion protein encoded by the t(9;22) chromosomal translocation in human chondrosarcomas is a highly potent transcriptional activator. Oncogene 1999;18:33033308.Google Scholar
Attwooll, C, Tariq, M, Harris, M, et al. Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2) translocation in an extraskeletal myxoid chondrosarcoma. Oncogene 1999;18:75997601.Google Scholar
Sjögren, H, Meis-Kindblom, J, Kindblom, LG, Åman, P, Stenman, G. Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma. Cancer Res 1999;59:50645067.Google Scholar
Sjögren, H, Wedell, B, Kindblom, JM, Kindblom, LG, Stenman, G. Fusion of the basic helix-loop-helix protein TCF12 to TEC in extraskeletal myxoid chondrosarcoma with translocation t(9;15)(q22;q21). Cancer Res 2000;60:68326835.Google Scholar
Morohoshi, F, Arai, K, Takahashi, EI, Tanigami, A, Ohki, M. Cloning and mapping of a human RBP56 gene encoding a putative RNA binding protein similar to FUS/TLS and EWS proteins. Genomics 1996;38:5157.Google Scholar
Hisaoka, M, Ishida, T, Imamura, T, Hashimoto, H. TFG is a novel fusion partner of NOR1 in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 2004;40:325328.Google Scholar
Broehm, CJ, Wu, J, Gullapalli, RR, Bocklage, T. Extraskeletal myxoid chondrosarcoma with a t(9;16)(q22;p11.2) resulting in a NR4A3-FUS fusion. Cancer Genet 2014;207:276280.Google Scholar
Wang, L, Motoi, T, Khanin, R, et al. Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosomes Cancer 2012;51:127139.CrossRefGoogle ScholarPubMed
Nyquist, KB, Panagopoulos, I, Thorsen, J, et al. Whole-transcriptome sequencing identifies novel IRF2BP2-CDX1 fusion gene brought about by translocation t(1;5)(q42;q32) in mesenchymal chondrosarcoma. PLoS One 2012;7:e49705.Google Scholar
Zucman, J, Delattre, O, Desmaze, C, et al. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet 1993;4:341345.Google Scholar
Panagopoulos, I, Mertens, F, Debiec-Rychter, M, et al. Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses. Int J Cancer 2002;99:560567.CrossRefGoogle ScholarPubMed
Speleman, F, Delattre, O, Peter, M, et al. Malignant melanoma of the soft parts (clear-cell sarcoma): conformation of EWS and ATF-1 gene fusion caused by a t(11;22) translocation. Mod Pathol 1997;10:496499.Google Scholar
Antonescu, CR, Tschernyavsky, SJ, Woodruff, JM, et al. Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J Mol Diagn 2002;4:4452.Google Scholar
Covinsky, M, Gong, S, Rajaram, V, Perry, A, Pfeifer, J. EWS-ATF1 fusion transcripts in gastrointestinal tumors previously diagnosed as malignant melanoma. Hum Pathol 2005;36:7481.Google Scholar
Antonescu, CR, Nafa, K, Segal, NH, Dal Cin, P, Ladanyi, M. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma–association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res 2006;12:53565362.CrossRefGoogle ScholarPubMed
Sciot, R, Samson, I, van den Berghe, H, Van Damme, B, Dal Cin, P. Collagenous fibroma (desmoplastic fibroblastoma): genetic link with fibroma of tendon sheath? Mod Pathol 1999;12:565568.Google Scholar
Macchia, G, Trombetta, D, Möller, E, et al. FOSL1 as a candidate target gene for 11q12 rearrangements in desmoplastic fibroblastoma. Lab Invest 2012;92:735743.Google Scholar
Simon, MP, Pedeutour, F, Sirvent, N, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet 1997;15:9598.Google Scholar
Shimizu, A, O’Brien, KP, Sjöblom, T, et al. The dermatofibrosarcoma protuberans-associated collagen type Iα1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res 1999;59:37193723.Google Scholar
Simon, MP, Navarro, M, Roux, D, Pouysségur, J. Structural and functional analysis of a chimeric protein COL1A1-PDGFB generated by the translocation t(17;22)(q22;q13.1) in dermatofibrosarcoma protuberans (DP). Oncogene 2001;20:29652975.Google Scholar
O’Brien, KP, Seroussi, E, Dal Cin, P, et al. Various regions within the alpha-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcoma protuberans and giant cell fibroblastomas. Genes Chromosomes Cancer 1998;23:187193.Google Scholar
Sirvent, N, Maire, G, Pedeutour, F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer 2003;37:119.Google Scholar
Bianchini, L, Maire, G, Guillot, B, et al. Complex t(5;8) involving the CSPG2 and PTK2B genes in a case of dermatofibrosarcoma protuberans without the COL1A1-PDGFB fusion. Virchows Arch 2008;452:689696.Google Scholar
Ladanyi, M, Gerald, WL. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res 1994;54:28372840.Google Scholar
Gerald, WL, Rosai, J, Ladanyi, M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad Sci USA 1995;14:10281032.Google Scholar
Gerald, WL, Ladanyi, M, de Alava, E, et al. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small-round-cell tumor and its variants. J Clin Oncol 1998;16:30283036.Google Scholar
Gerald, WL, Haber, DA. The EWS-WT1 gene fusion in desmoplastic small round cell tumor. Semin Cancer Biol 2005;15:197205.Google Scholar
Ordi, J, de Alava, E, Torné, A, et al. Intraabdominal desmoplastic small round cell tumor with EWS/ERG fusion transcript. Am J Surg Pathol 1998;22:10261032.Google Scholar
Koontz, JI, Soreng, AL, Nucci, M, et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci 2001;98:63486353.Google Scholar
Micci, F, Panagopoulos, I, Bjerkehagen, B, Heim, S. Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcomas. Cancer Res 2006;66:107112.Google Scholar
Mertens, F, Tayebwa, J. Evolving techniques for gene fusion detection in soft tissue tumours. Histopathology 2014;64:151162.Google Scholar
Micci, F, Gorunova, L, Gatius, S, et al. MEAF6/PHF1 is a recurrent gene fusion in endometrial stromal sarcoma. Cancer Lett 2014;347:7578.Google Scholar
Dewaele, B, Przybyl, J, Quattrone, A, et al. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int J Cancer 2014;134:11121122.CrossRefGoogle ScholarPubMed
Lee, CH, Nucci, MR. Endometrial stromal sarcoma - the new genetic paradigm. Histopathology 2015;67:119.Google Scholar
Panagopoulos, I, Thorsen, J, Gorunova, L, et al. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer 2013;52:610618.Google Scholar
McPherson, A, Hormozdiari, F, Zayed, A, et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol 2011;7:e1001138Google Scholar
Aurias, A, Rimbaut, C, Buffe, D, Zucker, JM, Mazabraud, A. Translocation involving chromosome 22 in Ewing’s sarcoma: a cytogenetic study of four fresh tumors. Cancer Genet Cytogenet 1984;12:2125.Google Scholar
Whang-Peng, J, Triche, TJ, Knutsen, T, et al. Chromosome translocation in peripheral neuroepithelioma. N Engl J Med 1984;311:584585.Google Scholar
Delattre, O, Zucman, J, Plougastel, B, et al. Gene fusion with an ETS DNA binding domain caused by chromosome translocation in human tumors. Nature 1992;359:162165.Google Scholar
Zucman, J, Delattre, O, Desmaze, C, et al. Cloning and characterization of the Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Genes Chromosomes Cancer 1992;5:271277.Google Scholar
Zucman, J, Melot, T, Desmaze, C, et al. Combinatorial generation of variable fusion proteins in Ewing family of tumors. EMBO J 1993;12:44814487.Google Scholar
Sorensen, PH, Lessnick, SL, Lopez-Terrada, D, et al. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 1994;6:146151.CrossRefGoogle ScholarPubMed
Jeon, IS, Davis, JN, Braun, BS, et al. A variant Ewing’s sarcoma translocation t(7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 1995;10:12291234.Google Scholar
Kaneko, Y, Yoshida, K, Handa, M, et al. Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 1996;15:115121.Google Scholar
Peter, M, Couturier, J, Pacquement, H, et al. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 1997;14:11591164.Google Scholar
Mastrangelo, T, Modena, P, Tornielli, S, et al. A novel zinc finger gene is fused to EWS in small round cell tumor. Oncogene 2000;19:37993804.Google Scholar
Wang, L, Bhargava, R, Zheng, T, et al. Undifferentiated small round cell sarcomas with rare EWS gene fusions: identification of the novel EWS-SP3 fusion and of additional cases with the EWS-ETV1 and EWS-FEV fusions. J Mol Diagn 2007;9:498509.Google Scholar
Ng, TL, O’Sullivan, MJ, Pallen, CJ, et al. Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn 2007;9:459463.Google Scholar
Shing, DC, McMullan, DJ, Roberts, P, et al. FUS/ERG gene fusions in Ewing’s tumors. Cancer Res 2003;63:45684576.Google Scholar
Szuhai, K, Ijszenga, M, de Jong, D, et al. The NFATc2 gene is involved in a novel cloned translocation in a Ewing sarcoma variant that couples its function in immunology to oncology. Clin Cancer Res 2009;15:22592268.Google Scholar
Sumegi, J, Nishio, J, Nelson, M, et al. A novel t(4;22)(q31;q12) produces an EWSR1-SMARCA5 fusion in extraskeletal Ewing sarcoma/primitive neuroectodermal tumor. Mod Pathol 2011;24:333342.Google Scholar
Choi, EY, Thomas, DG, McHugh, JB, et al. Undifferentiated small round cell sarcoma with t(4;19)(q35;q13.1) CIC-DUX4 fusion: a novel highly aggressive soft tissue tumor with distinctive histopathology. Am J Surg Pathol 2013;37:13791386.Google Scholar
Italiano, A, Sung, YS, Zhang, L, et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer 2012;51:207218.Google Scholar
Pierron, G, Tirode, F, Lucchesi, C, et al. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet 2012;44:461466.Google Scholar
Sugita, S, Arai, Y, Tonooka, A, et al. A novel CIC-FOXO4 gene fusion in undifferentiated small round cell sarcoma: a genetically distinct variant of Ewing-like sarcoma. Am J Surg Pathol 2014;38:15711576.Google Scholar
Knezevich, SR, McFadden, DE, Tao, W, Lim, JF, Sorensen, PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 1998;18:184187.Google Scholar
Rubin, BP, Chen, CJ, Morgan, TW, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 1998;153:14511458.Google Scholar
Errani, C, Zhang, L, Sung, YS, et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer 2011;50:644653.Google Scholar
Tanas, MR, Sboner, A, Oliveira, AM, et al. Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Sci Transl Med 2011;3:98ra82.Google Scholar
Antonescu, CR, Le Loarer, F, Mosquera, JM, et al. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosomes Cancer 2013;52:775784.Google Scholar
Trombetta, D, Magnusson, L, von Steyern, FV, et al. Translocation t(7;19)(q22;q13) - a recurrent chromosome aberration in pseudomyogenic hemangioendothelioma? Cancer Genet 2011;204:211215.Google Scholar
Walther, C, Tayebwa, J, Lilljebjörn, H, et al. A novel SERPINE1-FOSB fusion gene results in transcriptional up-regulation of FOSB in pseudomyogenic haemangioendothelioma. J Pathol 2014;232:534540.Google Scholar
Antonescu, CR, Zhang, L, Nielsen, GP, et al. Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromosomes Cancer 2011;50:757764.CrossRefGoogle ScholarPubMed
Cools, J, Wlodarska, I, Somers, R, et al. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2002;34:354362.Google Scholar
Bridge, JA, Kanamori, M, Ma, Z, et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol 2001;159:411415.Google Scholar
Debiec-Rychter, M, Marynen, P, Hagemeijer, A, Pauwels, P. ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;38:187190.Google Scholar
Ma, Z, Hill, DA, Collins, MH, et al. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;37:98105.CrossRefGoogle Scholar
Panagopoulos, I, Nilsson, T, Domanski, HA, et al. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer 2006;118:11811186.Google Scholar
Lawrence, B, Perez-Atayde, A, Hibbard, MK, et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 2000;157:377384.Google Scholar
Takeuchi, K, Soda, M, Togashi, Y, et al. Pulmonary inflammatory myofibroblastic tumor expressing a novel fusion, PPFIBP1-ALK: reappraisal of anti-ALK immunohistochemistry as a tool for novel ALK fusion identification. Clin Cancer Res 2011;17:33413348.Google Scholar
Lovly, CM, Gupta, A, Lipson, D, et al. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov 2014;4:889895.Google Scholar
Antonescu, CR, Suurmeijer, AJ, Zhang, L, et al. Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am J Surg Pathol 2015;39:957967.Google Scholar
Kazmierczak, B, Pohnke, Y, Bullerdiek, J. Fusion transcripts between HMGIC gene and RTVL-H-related sequences in mesenchymal tumors without cytogenetic aberrations. Genomics 1996;38:223226.Google Scholar
Schoenmakers, EF, Huysmans, C, van de Ven, WJ. Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas. Cancer Res 1999;59:1923.Google Scholar
Kurose, K, Mine, N, Doi, D, et al. Novel gene fusion COX6C at 8q22–23 to HMGIC at 12q15 in a uterine leiomyoma. Genes Chromosomes Cancer 2000;27:303307.Google Scholar
Mine, N, Kurose, K, Konishi, H, et al. Fusion of a sequence from HEI10 (14q11) to the HMGIC gene at 12q15 in a uterine leiomyoma. Jpn J Cancer Res 2001;92:135139.Google Scholar
Moore, SD, Herrick, SR, Ince, TA, et al. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res 2004;64:55705577.Google Scholar
Velagaleti, GV, Tonk, VS, Hakim, NM, et al. Fusion of HMGA2 to COG5 in uterine leiomyoma. Cancer Genet Cytogenet 2010;202:1116.Google Scholar
Panagopoulos, I, Gorunova, L, Bjerkehagen, B, Heim, S. Novel KAT6B-KANSL1 fusion gene identified by RNA sequencing in retroperitoneal leiomyoma with t(10;17)(q22;q21). PLoS One 2015;10:e0117010.Google Scholar
Astrom, A, D’Amore, ES, Sainati, L, et al. Evidence of involvement of the PLAG1 gene in lipoblastomas. Int J Oncol 2000;16:11071110.Google Scholar
Gisselsson, D, Hibbard, MK, Dal Cin, P, et al. PLAG1 fusion oncogenes in lipoblastoma. Cancer Res 2000;60:48694872.Google Scholar
Sciot, R, De Wever, I, Debiec-Rychter, M. Lipoblastoma in a 23-year-old male: distinction from atypical lipomatous tumor using cytogenetic and fluorescence in-situ hybridization analysis. Virchows Arch 2003;442:468471.Google Scholar
Deen, M, Ebrahim, S, Schloff, D, Mohamed, AN. A novel PLAG1-RAD51L1 gene fusion resulting from a t(8;14)(q12;q24) in a case of lipoblastoma. Cancer Genet 2013;206:233237.Google Scholar
Petit, MM, Mols, R, Schoenmakers, EF, Mandahl, N, Van de Ven, WJ. LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family. Genomics 1996;36:118129.Google Scholar
Petit, MM, Schoenmakers, EF, Huysmans, C, et al. LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new family of LHFP-like genes. Genomics 1999;57:438441.Google Scholar
Kazmierczak, B, Dal Cin, P, Wanschura, S, , et al. Cloning and molecular characterization of part of a new gene fused to HMGIC in mesenchymal tumors. Am J Pathol 1998;152:431435.Google Scholar
Broberg, K, Zhang, M, Strömbeck, B, et al. Fusion of RDC1 with HMGA2 in lipomas as the result of chromosome aberrations involving 2q35–37 and 12q13–15. Int J Oncol 2002;21:321326.Google Scholar
Nilsson, M, Panagopoulos, I, Mertens, F, Mandahl, N. Fusion of the HMGA2 and NFIB genes in lipoma. Virchows Arch 2005;447:855858.Google Scholar
Bianchini, L, Birtwisle, L, Saâda, E, et al. Identification of PPAP2B as a novel recurrent translocation partner gene of HMGA2 in lipomas. Genes Chromosomes Cancer 2013;52:580590.Google Scholar
Panagopoulos, I, Höglund, M, Mertens, F, et al. Fusion of EWS and CHOP genes in myxoid liposarcoma. Oncogene 1996;12:489494.Google Scholar
Crozat, A, Aman, P, Mandahl, N, Ron, D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 1993;363:640644.Google Scholar
Rabbitts, TH, Forster, A, Larson, R, Nathan, P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 1993;4:175180.Google Scholar
Dal Cin, P, Sciot, R, Panagopoulos, I, et al. Additional evidence of a variant translocation t(12;22) with EWS/CHOP fusion in myxoid liposarcoma: clinicopathological features. J Pathol 1997;182:437441.Google Scholar
Taylor, BS, DeCarolis, PL, Angeles, CV, et al. Frequent alterations and epigenetic silencing of differentiation pathway genes in structurally rearranged liposarcomas. Cancer Discov 2011;1:587597.Google Scholar
Storlazzi, CT, Mertens, F, Nascimento, A, et al. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet 2003;12:23492358.Google Scholar
Reid, R, de Silva, MV, Paterson, L, Ryan, E, Fisher, C. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11). Am J Surg Pathol 2003;27:12291236.Google Scholar
Panagopoulos, I, Storlazzi, CT, Fletcher, CD, et al. The chimeric FUS/CREB3L2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer 2004;40:218228.Google Scholar
Mertens, F, Fletcher, CD, Antonescu, CR, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest 2005;85:408415.Google Scholar
Guillou, L, Benhattar, J, Gengler, C, et al. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol 2007;31:13871402.Google Scholar
Brandal, P, Panagopoulos, I, Bjerkehagen, B, et al. Detection of a t(1;22)(q23;q12) translocation leading to an EWSR1-PBX1 fusion gene in a myoepithelioma. Genes Chromosomes Cancer 2008;47:558564.Google Scholar
Antonescu, CR, Zhang, L, Chang, NE, et al. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer 2010;49:11141124.Google Scholar
Brandal, P, Panagopoulos, I, Bjerkehagen, B, Heim, S. t(19;22)(q13;q12) Translocation leading to the novel fusion gene EWSR1-ZNF444 in soft tissue myoepithelial carcinoma. Genes Chromosomes Cancer 2009;48:10511056.Google Scholar
Antonescu, CR, Zhang, L, Shao, SY, et al. Frequent PLAG1 gene rearrangements in skin and soft tissue myoepithelioma with ductal differentiation. Genes Chromosomes Cancer 2013;52:675682.Google Scholar
Huang, SC, Chen, HW, Zhang, L, et al. Novel FUS-KLF17 and EWSR1-KLF17 fusions in myoepithelial tumors. Genes Chromosomes Cancer 2015;54:267275.Google Scholar
Erickson-Johnson, MR, Chou, MM, Evers, BR, et al. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Invest 2011;91:14271433.Google Scholar
Gebre-Medhin, S, Nord, KH, Möller, E, et al. Recurrent rearrangement of the PHF1 gene in ossifying fibromyxoid tumors. Am J Pathol 2012;181:10691077.Google Scholar
Endo, M, Kohashi, K, Yamamoto, H, et al. Ossifying fibromyxoid tumor presenting EP400-PHF1 fusion gene. Hum Pathol 2013;44:26032608.Google Scholar
Antonescu, CR, Sung, YS, Chen, CL, et al. Novel ZC3H7B-BCOR, MEAF6-PHF1, and EPC1-PHF1 fusions in ossifying fibromyxoid tumors: molecular characterization shows genetic overlap with endometrial stromal sarcoma. Genes Chromosomes Cancer 2014;53:183193.Google Scholar
Tanaka, M, Kato, K, Gomi, K, et al. Perivascular epithelioid cell tumor with SFPQ/PSF-TFE3 gene fusion in a patient with advanced neuroblastoma. Am J Surg Pathol 2009;33:14161420.Google Scholar
Dahlén, A, Mertens, F, Mandahl, N, Panagopoulos, I. Molecular genetic characterization of the genomic ACTB-GLI fusion in pericytoma with t(7;12). Biochem Biophys Res Commun 2004;325:13181323.Google Scholar
Carter, JM, Sukov, WR, Montgomery, E, et al. TGFBR3 and MGEA5 rearrangements in pleomorphic hyalinizing angiectatic tumors and the spectrum of related neoplasms. Am J Surg Pathol 2014;38:11821992.Google Scholar
Thway, K, Nicholson, AG, Lawson, K, et al. Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion: a new tumor entity. Am J Surg Pathol 2011;35:17221732.Google Scholar
Barr, FG, Galili, N, Holick, J, et al. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet 1993;3:113117.Google Scholar
Davis, RJ, D’Cruz, CM, Lovell, MA, Biegel, JA, Barr, FG. Fusion of PAX7 to FKHR by the variant t(1;3)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 1994;54:28692872.Google Scholar
Barr, FG, Qualman, SJ, Macris, MH, et al. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res 2002;62:47044710.Google Scholar
Wachtel, M, Dettling, M, Koscielniak, E, et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004;64:55395545.Google Scholar
Mosquera, JM, Sboner, A, Zhang, L, et al. Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer 2013;52:538550.Google Scholar
Robinson, DR, Wu, YM, Kalyana-Sundaram, S, et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet 2013;45:180185.Google Scholar
Mohajeri, A, Tayebwa, J, Collin, A, et al. Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene, nonrandom secondary genomic imbalances, and a characteristic gene expression profile in solitary fibrous tumor. Genes Chromosomes Cancer 2013;52:873886.Google Scholar
Crew, AJ, Clark, J, Fisher, C, et al. Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J 1995;14:23332340.Google Scholar
Skytting, B, Nilsson, G, Brodin, B, et al. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst 1999;91:974975.Google Scholar
Storlazzi, CT, Mertens, F, Mandahl, N, et al. A novel fusion gene, SS18L1/SSX1, in synovial sarcoma. Genes Chromosomes Cancer 2003;37:195200.Google Scholar
West, RB, Rubin, BP, Miller, MA, et al. A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. Proc Natl Acad Sci USA 2006;103:690695.Google Scholar
Möller, E, Mandahl, N, Mertens, F, Panagopoulos, I. Molecular identification of COL6A3-CSF1 fusion transcripts in tenosynovial giant cell tumors. Genes Chromosomes Cancer 2008;47:2125.Google Scholar
Panagopoulos, I, Brandal, P, Gorunova, L, Bjerkehagen, B, Heim, S. Novel CSF1-S100A10 fusion gene and CSF1 transcript identified by RNA sequencing in tenosynovial giant cell tumors. Int J Oncol 2014;44:14251432.Google Scholar
Pfeifer, JD. Molecular Genetic Testing In Surgical Pathology. Philadelphia: Lippincott Williams & Wilkins; 2006.Google Scholar
Yeku, O, Frohman, MA. Rapid amplification of cDNA ends (RACE). Methods Mol Biol 2011;703:107122.Google Scholar
Ladanyi, M. The emerging molecular genetics of sarcoma translocation. Diagn Mol Pathol 1995;4:162173.Google Scholar
Rabbitts, TH. Chromosomal translocation master genes, mouse models and experimental therapeutics. Oncogene 2001;20:57635777.Google Scholar
Xia, SJ, Barr, FG. Chromosome translocations in sarcomas and the emergence of oncogenic transcription factors. Eur J Cancer 2005;41:25132527.Google Scholar
Slater, O, Shipley, J. Clinical relevance of molecular genetics to paediatric sarcomas. J Clin Pathol 2007;60:11871194.Google Scholar
Oda, Y, Tsuneyoshi, M. Recent advances in the molecular pathology of soft tissue sarcoma: implications for diagnosis, patient prognosis, and molecular target therapy in the future. Cancer Sci 2009;100:200208.Google Scholar
Peter, M, Gilbert, E, Delattre, O. A multiplex real-time pcr assay for the detection of gene fusions observed in solid tumors. Lab Invest 2001;81:905912.Google Scholar
Geurts van Kessel, A, de Bruijn, D, Hermsen, L, et al. Masked t(X;18)(p11;q11) in a biphasic synovial sarcoma revealed by FISH and RT-PCR. Genes Chromosomes Cancer 1998;23:198201.Google Scholar
Kaneko, Y, Kobayashi, H, Hanada, M, Satake, N, Maseki, N. EWS-ERG fusion transcript produced by chromosomal insertion in a Ewing sarcoma. Genes Chromosomes Cancer 1997;18:228231.Google Scholar
Lestou, VS, O’Connell, JX, Robichaud, M, et al. Cryptic t(X;18), ins(6;18), and SYT-SSX2 gene fusion in a case of intraneural monophasic synovial sarcoma. Cancer Genet Cytogenet 2002;138:153156.Google Scholar
O’Sullivan, MJ, Kyriakos, M, Zhu, X, et al. Malignant peripheral nerve sheath tumors with t(X;18): a pathologic and molecular genetic study. Mod Pathol 2000;13:12531263.Google Scholar
Ladanyi, M, Woodruff, JM, Scheithauer, BW, et al. Re: O’Sullivan MJ, Kyriakos M, Zhu X, Wick MR, Swanson PE, Dehner LP, Humphrey PA, Pfeifer JD: Malignant peripheral nerve sheath tumors with t(X;18): a pathologic and molecular genetic study. Mod Pathol 2000;13:13361346.Google Scholar
Tamborini, E, Agus, V, Perrone, F, et al. Lack of SYT-SSX fusion transcripts in malignant peripheral nerve sheath tumors on RT-PCR analysis of 34 archival cases. Lab Invest 2002;82:609618.Google Scholar
Fritsch, MK, Bridge, JA, Schuster, AE, Perlman, EJ, Argani, P. Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue. Pediatr Dev Pathol 2003;6:4353.Google Scholar
Stewénius, Y, Jin, Y, Ora, I, et al. High-resolution molecular cytogenetic analysis of Wilms tumors highlights diagnostic difficulties among small round cell kidney tumors. Genes Chromosomes Cancer 2008;47:845852.Google Scholar
Sainati, L, Scapinello, A, Montaldi, A, et al. A mesenchymal chondrosarcoma of a child with the reciprocal translocation (11;22)(q24;q12). Cancer Genet Cytogenet 1993;71:144147.Google Scholar
Li, H, Wang, J, Mor, G, Sklar, J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 2008;321:13571361.Google Scholar
Beck, AH, West, RB, van de Rijn, M. Gene expression profiling for the investigation of soft tissue sarcoma pathogenesis and the identification of diagnostic, prognostic, and predictive biomarkers.Virchows Arch 2010;456:141151.Google Scholar
Løvf, M, Thomassen, GO, Mertens, F, et al. Assessment of fusion gene status in sarcomas using a custom made fusion gene microarray. PLoS One 2013;8:e70649.Google Scholar
Skotheim, RI, Thomassen, GO, Eken, M, et al. A universal assay for detection of oncogenic fusion transcripts by oligo microarray analysis. Mol Cancer 2009;8:5.Google Scholar
Xiong, FF, Li, BS, Zhang, CX, et al. A pipeline with multiplex reverse transcription polymerase chain reaction and microarray for screening of chromosomal translocations in leukemia. Biomed Res Int 2013;2013:135086.Google Scholar
Wada, Y, Matsuura, M, Sugawara, M, et al. Development of detection method for novel fusion gene using GeneChip exon array. J Clin Bioinforma 2014;4:3.Google Scholar
Agerstam, H, Lilljebjörn, H, Lassen, C, et al. Fusion gene-mediated truncation of RUNX1 as a potential mechanism underlying disease progression in the 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 2007;46:635643.Google Scholar
Frith, AE, Hirbe, AC, Van Tine, BA. Novel pathways and molecular targets for the treatment of sarcoma. Curr Oncol Rep 2013;15:378385.Google Scholar
Aragon-Ching, JB, Maki, RG. Treatment of adult soft tissue sarcoma: old concepts, new insights, and potential for drug discovery. Cancer Invest 2012;30:300308.Google Scholar
Martín Liberal, J, Lagares-Tena, L, Sáinz-Jaspeado, M, et al. Targeted therapies in sarcomas: challenging the challenge. Sarcoma 2012;2012:626094.Google Scholar
Wlodarska, I, De Wolf-Peeters, C, Falini, B, et al. The cryptic inv(2)(p23q35) defines a new molecular genetic subtype of ALK-positive anaplastic large-cell lymphoma. Blood 1998;92:26882695.Google Scholar
Touriol, C, Greenland, C, Lamant, L, et al. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 2000;95:32043207.Google Scholar
Tort, F, Pinyol, M, Pulford, K, et al. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest 2001;81:419426.Google Scholar
Lamant, L, Gascoyne, RD, Duplantier, MM, et al. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer 2003;37:427432.Google Scholar
Morris, SW, Kirstein, MN, Valentine, MB, et al. Fusion of a kinase gene, ALK to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1994;263:12811284.Google Scholar
Hernández, L, Pinyol, M, Hernández, S, et al. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 1999;94:32653268.Google Scholar
Lamant, L, Dastugue, N, Pulford, K, Delsol, G, Mariamé, B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 1999;93:30883095.Google Scholar
Liang, X, Meech, SJ, Odom, LF, et al. Assessment of t(2;5)(p23;q35) translocation and variants in pediatric ALK+ anaplastic large cell lymphoma. Am J Clin Pathol 2004;121:496506.Google Scholar
Lin, E, Li, L, Guan, Y, et al. Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Mol Cancer Res 2009;7:14661476.Google Scholar
Lipson, D, Capelletti, M, Yelensky, R, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012;18:382384.Google Scholar
Chikatsu, N, Kojima, H, Suzukawa, K, et al. ALK+, CD30-, CD20- large B-cell lymphoma containing anaplastic lymphoma kinase (ALK) fused to clathrin heavy chain gene (CLTC). Mod Pathol 2003;16:828832.Google Scholar
Adam, P, Katzenberger, T, Seeberger, H, et al. A case of a diffuse large B-cell lymphoma of plasmablastic type associated with the t(2;5)(p23;q35) chromosome translocation. Am J Surg Pathol 2003;27:14731476.Google Scholar
Van Roosbroeck, K, Cools, J, Dierickx, D, et al. ALK-positive large B-cell lymphomas with cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica 2010;95:509513.Google Scholar
Takeuchi, K, Soda, M, Togashi, Y, et al. Identification of a novel fusion, SQSTM1-ALK, in ALK-positive large B-cell lymphoma. Haematologica 2011;96:464467.Google Scholar
Jazii, FR, Najafi, Z, Malekzadeh, R, et al. Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J Gastroenterol 2006;12:71047112.Google Scholar
Debelenko, LV, Raimondi, SC, Daw, N, et al. Renal cell carcinoma with novel VCL-ALK fusion: new representative of ALK-associated tumor spectrum. Mod Pathol 2011;24:430442.Google Scholar
Röttgers, S, Gombert, M, Teigler-Schlegel, A, et al. ALK fusion genes in children with atypical myeloproliferative leukemia. Leukemia 2010;24:11971200.Google Scholar
Takeuchi, K, Choi, YL, Togashi, Y, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 2009;15:31433149.Google Scholar
Togashi, Y, Soda, M, Sakata, S, et al. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One 2012;7:e31323.Google Scholar
Rikova, K, Guo, A, Zeng, Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007;131:11901203.Google Scholar
Ren, H, Tan, ZP, Zhu, X, et al. Identification of anaplastic lymphoma kinase as a potential therapeutic target in ovarian cancer. Cancer Res 2012;72:33123323.Google Scholar
Chan, JK, Lamant, L, Algar, E, et al. ALK+ histiocytosis: a novel type of systemic histiocytic proliferative disorder of early infancy. Blood 2008;112:29652968.Google Scholar
Yamamoto, Y, Tsuzuki, S, Tsuzuki, M, et al. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood 2010;116:42744283.Google Scholar
Bohlander, SK. ETV6: a versatile player in leukemogenesis. Semin Cancer Biol 2005;15:162174.Google Scholar
Eguchi, M, Eguchi-Ishimae, M, Tojo, A, et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 1999;93:13551363.Google Scholar
Tognon, C, Knezevich, SR, Huntsman, D, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002;2:367376.Google Scholar
Skálová, A, Vanecek, T, Sima, R, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol 2010;34:599608.Google Scholar
Leeman-Neill, RJ, Kelly, LM, Liu, P, et al. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer 2014;120:799807.Google Scholar
Bilodeau, EA, Weinreb, I, Antonescu, CR, et al. Clear cell odontogenic carcinomas show EWSR1 rearrangements: a novel finding and a biological link to salivary clear cell carcinomas. Am J Surg Pathol 2013;37:10011005.Google Scholar
Arbajian, E, Magnusson, L, Brosjö, O, et al. A benign vascular tumor with a new fusion gene: EWSR1-NFATC1 in hemangioma of the bone. Am J Surg Pathol 2013;37:613616.Google Scholar
Möller, E, Stenman, G, Mandahl, N, et al. POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J Pathol 2008;215:7886.Google Scholar
Antonescu, CR, Katabi, N, Zhang, L, et al. EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear-cell carcinoma of salivary gland. Genes Chromosomes Cancer 2011;50:559570.Google Scholar
Skálová, A, Weinreb, I, Hyrcza, M, et al. Clear cell myoepithelial carcinoma of salivary glands showing EWSR1 rearrangement: molecular analysis of 94 salivary gland carcinomas with prominent clear cell component. Am J Surg Pathol 2015;39:338348.Google Scholar
Panagopoulos, I, Thorsen, J, Gorunova, L, et al. RNA sequencing identifies fusion of the EWSR1 and YY1 genes in mesothelioma with t(14;22)(q32;q12). Genes Chromosomes Cancer 2013;52:733740.Google Scholar
Yamaguchi, S, Yamazaki, Y, Ishikawa, Y, et al. EWSR1 is fused to POU5F1 in a bone tumor with translocation t(6;22)(p21;q12). Genes Chromosomes Cancer 2005;43:217222.Google Scholar
Panagopoulos, I, Aman, P, Fioretos, T, et al. Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22). Genes Chromosomes Cancer 1994;11:256262.Google Scholar
Puls, F, Arbajian, E, Magnusson, L, et al. Myoepithelioma of bone with a novel FUS-POU5F1 fusion gene. Histopathology 2014;65:917922.Google Scholar
Geurts, JM, Schoenmakers, EF, Röijer, E, Stenman, G, Van de Ven, WJ. Expression of reciprocal hybrid transcripts of HMGIC and FHIT in a pleomorphic adenoma of the parotid gland. Cancer Res 1997;57:1317.Google Scholar
Rogalla, P, Lemke, I, Kazmierczak, B, Bullerdiek, J. An identical HMGIC-LPP fusion transcript is consistently expressed in pulmonary chondroid hamartomas with t(3;12)(q27-28;q14-15). Genes Chromosomes Cancer 2000;29:363366.Google Scholar
Strehl, S, Nebral, K, König, M, et al. ETV6-NCOA2: a novel fusion gene in acute leukemia associated with coexpression of T-lymphoid and myeloid markers and frequent NOTCH1 mutations. Clin Cancer Res 2008;14:977983.Google Scholar
Asp, J, Persson, F, Kost-Alimova, M, Stenman, G. CHCHD7-PLAG1 and TCEA1-PLAG1 gene fusions resulting from cryptic, intrachromosomal 8q rearrangements in pleomorphic salivary gland adenomas. Genes Chromosomes Cancer 2006;45:820828.Google Scholar
Davies, KD, Doebele, RC. Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 2013;19:40404045.Google Scholar
Ross, H, Argani, P. Xp11 translocation renal cell carcinoma. Pathology 2010;42:369373.Google Scholar
Oliveira, AM, Perez-Atayde, AR, Dal Cin, P, et al. Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene 2005;24:34193426.Google Scholar
Oliveira, AM, Chou, MM. USP6-induced neoplasms: the biologic spectrum of aneurysmal bone cyst and nodular fasciitis. Hum Pathol 2014;45:111.Google Scholar
Law, WJ, Cann, KL, Hicks, GG. TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Brief Funct Genomic Proteomic 2006;5:814.Google Scholar
Kovar, H. Kovar, H. Dr. Jekyll and Mr. Hyde: the two faces of the FUS/EWS/TAF15 protein family. Sarcoma 2011;2011:837474.Google Scholar
Turc-Carel, C, Philip, I, Berger, M-P, Philip, T, Lenoir, GM. Chromosomal translocations 11;22 in cell lines of Ewing’s sarcoma. N Engl J Med 1983;309:497498.Google Scholar
Tomlins, SA, Rhodes, DR, Perner, S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005;310:644648.Google Scholar
Wang, J, Cai, Y, Ren, C, Ittmann, M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 2006;66:83478351.Google Scholar
Tomlins, SA, Mehra, R, Rhodes, DR, et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 2006;66:33963400.Google Scholar
Kumar-Sinha, C, Tomlins, SA, Chinnaiyan, AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008;8:497511.Google Scholar
Truong, AH, Ben-David, Y. The role of Fli-1 in normal cell function and malignant transformation. Oncogene 2000;19:64826489.Google Scholar
Arvand, A, Denny, CT. Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene 2001;20:57475754.Google Scholar
Hai, T, Hartman, MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 2001;273:111.Google Scholar
Brown, AD, Lopez-Terrada, D, Denny, C, Lee, KA. Promoters containing ATF-binding sites are de-regulated in cells that express the EWS/ATF1 oncogene. Oncogene 1995;10:17491756.Google Scholar
Panagopoulos, I, Möller, E, Dahlén, A, et al. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 2007;46:181191.Google Scholar
Lee, SB, Haber, DA. Wilms tumor and the WT1 gene. Exp Cell Res 2001;264: 7499.Google Scholar
Kim, J, Lee, K, Pelletier, J. The desmoplastic small round cell tumor t(11;22) translocation produces EWS/WT1 isoforms with differing oncogenic properties. Oncogene 1998;16:19731979.Google Scholar
Reynolds, PA, Smolen, GA, Palmer, RE, et al. Identification of a DNA-binding site and transcriptional target for the EWS-WT1(+KTS) oncoprotein. Genes Dev 2003;17:20942107.Google Scholar
Ohkura, N, Hijikuro, M, Yamamoto, A, Miki, K. Molecular cloning of a novel thyroid/steroid receptor superfamily gene from cultured rat neuronal cells. Biochem Biophys Res Commun 1994;205:19591965.Google Scholar
Ohkura, N, Yaguchi, H, Tsukada, T, Yamaguchi, K. The EWS/NOR1 fusion gene product gains a novel activity affecting pre-mRNA splicing. J Biol Chem 2002;277:535543.Google Scholar
Gan, TI, Rowen, L, Nesbitt, R, et al. Genomic organization of human TCF12 gene and spliced mRNA variants producing isoforms of transcription factor HTF4. Cytogenet Genome Res 2002;98:245248.Google Scholar
Mencinger, M, Panagopoulos, I, Andreasson, P, et al. Characterization and chromosomal mapping of the human TFG gene involved in thyroid carcinoma. Genomics 1997;41:327331.Google Scholar
Greco, A, Mariani, C, Miranda, C, et al. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 1995;15:61186127.Google Scholar
Hunger, SP, Galili, N, Carroll, AJ, et al. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 1991;77:687693.Google Scholar
Kamps, MP, Murre, C, Sun, XH, Baltimore, D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 1990;60:547555.Google Scholar
Turc-Carel, C, Limon, J, Dal Cin, P, et al. Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet 1986;23:291299.Google Scholar
Åman, P, Ron, D, Mandahl, N, et al. Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer 1992;5:278285.Google Scholar
Kuroda, M, Ishida, T, Takanashi, M, et al. Oncogenic transformation and inhibition of adipocytic conversion of preadipocytes by TLS/FUS-CHOP type II chimeric protein. Am J Pathol 1997;151:735744.Google Scholar
Zinszner, H, Albalat, R, Ron, D. A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev 1994;8:25132526.Google Scholar
Ichikawa, H, Shimizu, K, Hayashi, Y, Ohki, M. An RNA-binding protein gene, TLS/FUS, is fused to erg in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res 1994;54:28652868.Google Scholar
Åman, P, Panagopoulos, I, Lassen, C, et al. Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics 1996;37:18.Google Scholar
Ron, D, Brasier, AR, McGehee, RE Jr, Habener, JF. Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP). J Clin Invest 1992;89:223233.Google Scholar
Ron, D, Habener, JF. CHOP a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant negative inhibitor of gene transcription. Genes Dev 1992;6:439453.Google Scholar
Adelmant, G, Gilbert, JD, Freytag, SO. Human translocation liposarcoma-CCAAT/enhancer binding protein (C/EBP) homologous protein (TLS-CHOP) oncoprotein prevents adipocyte differentiation by directly interfering with C/EBPbeta function. J Biol Chem 1998;273:1557415581.Google Scholar
Panagopoulos, I, Möller, E, Dahlén, A, et al. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 2007;46:181191.Google Scholar
Nucci, MR, Weremowicz, S, Neskey, DM, et al. Chromosomal translocation t(8;12) induces aberrant HMGIC expression in aggressive angiomyxoma of the vulva. Genes Chromosomes Cancer 2001;32:172176.Google Scholar
Micci, F, Panagopoulos, I, Bjerkehagen, B, Heim, S. Deregulation of HMGA2 in an aggressive angiomyxoma with t(11;12)(q23;q15). Virchows Arch 2006;448:838842.Google Scholar
Rabban, JT, Dal Cin, P, Oliva, E. HMGA2 rearrangement in a case of vulvar aggressive angiomyxoma. Int J Gynecol Pathol 2006;25:403407.Google Scholar
Rawlinson, NJ, West, WW, Nelson, M, Bridge, JA. Aggressive angiomyxoma with t(12;21) and HMGA2 rearrangement: report of a case and review of the literature. Cancer Genet Cytogenet 2008;181:119124.Google Scholar
Joyama, S, Ueda, T, Shimizu, K, et al. Chromosome rearrangement at 17q25 and Xp11.2 in alveolar soft-part sarcoma: a case report and review of the literature. Cancer 1999;86:12461250.Google Scholar
Ladanyi, M, Lui, MY, Antonescu, CR, et al. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 2001;20:4857.Google Scholar
Jin, Y, Möller, E, Nord, KH, et al. Fusion of the AHRR and NCOA2 genes through a recurrent translocation t(5;8)(p15;q13) in soft tissue angiofibroma results in upregulation of aryl hydrocarbon receptor target genes. Genes Chromosomes Cancer 2012;51:510520.Google Scholar
Arbajian, E, Magnusson, L, Mertens, F, et al. A novel GTF2I/NCOA2 fusion gene emphasizes the role of NCOA2 in soft tissue angiofibroma development. Genes Chromosomes Cancer 2013;52:330331.Google Scholar
Waters, BL, Panagopoulos, I, Allen, EF. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet Cytogenet 2000;121:109116.Google Scholar
Raddaoui, E, Donner, LR, Panagopoulos, I. Fusion of the FUS and ATF1 genes in a large deep-seated angiomatoid fibrous histiocytoma. Diagn Mol Pathol 2002;11:157162.Google Scholar
Antonescu, CR, Dal Cin, P, Nafa, K, et al. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2007;46:10511060.Google Scholar
Hallor, KH, Micci, F, Meis-Kindblom, JM, et al. Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett 2007;251:158163.Google Scholar
Giacomini, CP, Sun, S, Varma, S, et al. Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types. PLoS Genet 2013;9:e1003464.Google Scholar
Huang, D, Sumegi, J, Dal Cin, P, et al. C11orf95-MKL2 is the resulting fusion oncogene of t(11;16)(q13;p13) in chondroid lipoma. Genes Chromosomes Cancer 2010;49:810818.Google Scholar
Tallini, G, Dorfman, H, Brys, P, et al. Correlation between clinicopathological features and karyotype in 100 cartilaginous and chordoid tumours: a report from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. J Pathol 2002;196:194203.CrossRefGoogle ScholarPubMed
Dahlén, A, Mertens, F, Rydholm, A, et al. Fusion, disruption, and expression of HMGA2 in bone and soft tissue chondromas. Mod Pathol 2003;16:11321140.CrossRefGoogle ScholarPubMed
Labelle, Y, Bussières, J, Courjal, F, Goldring, MB. The EWS/TEC fusion protein encoded by the t(9;22) chromosomal translocation in human chondrosarcomas is a highly potent transcriptional activator. Oncogene 1999;18:33033308.Google Scholar
Attwooll, C, Tariq, M, Harris, M, et al. Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2) translocation in an extraskeletal myxoid chondrosarcoma. Oncogene 1999;18:75997601.Google Scholar
Sjögren, H, Meis-Kindblom, J, Kindblom, LG, Åman, P, Stenman, G. Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma. Cancer Res 1999;59:50645067.Google Scholar
Sjögren, H, Wedell, B, Kindblom, JM, Kindblom, LG, Stenman, G. Fusion of the basic helix-loop-helix protein TCF12 to TEC in extraskeletal myxoid chondrosarcoma with translocation t(9;15)(q22;q21). Cancer Res 2000;60:68326835.Google Scholar
Morohoshi, F, Arai, K, Takahashi, EI, Tanigami, A, Ohki, M. Cloning and mapping of a human RBP56 gene encoding a putative RNA binding protein similar to FUS/TLS and EWS proteins. Genomics 1996;38:5157.Google Scholar
Hisaoka, M, Ishida, T, Imamura, T, Hashimoto, H. TFG is a novel fusion partner of NOR1 in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 2004;40:325328.Google Scholar
Broehm, CJ, Wu, J, Gullapalli, RR, Bocklage, T. Extraskeletal myxoid chondrosarcoma with a t(9;16)(q22;p11.2) resulting in a NR4A3-FUS fusion. Cancer Genet 2014;207:276280.Google Scholar
Wang, L, Motoi, T, Khanin, R, et al. Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosomes Cancer 2012;51:127139.CrossRefGoogle ScholarPubMed
Nyquist, KB, Panagopoulos, I, Thorsen, J, et al. Whole-transcriptome sequencing identifies novel IRF2BP2-CDX1 fusion gene brought about by translocation t(1;5)(q42;q32) in mesenchymal chondrosarcoma. PLoS One 2012;7:e49705.Google Scholar
Zucman, J, Delattre, O, Desmaze, C, et al. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet 1993;4:341345.Google Scholar
Panagopoulos, I, Mertens, F, Debiec-Rychter, M, et al. Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses. Int J Cancer 2002;99:560567.CrossRefGoogle ScholarPubMed
Speleman, F, Delattre, O, Peter, M, et al. Malignant melanoma of the soft parts (clear-cell sarcoma): conformation of EWS and ATF-1 gene fusion caused by a t(11;22) translocation. Mod Pathol 1997;10:496499.Google Scholar
Antonescu, CR, Tschernyavsky, SJ, Woodruff, JM, et al. Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J Mol Diagn 2002;4:4452.Google Scholar
Covinsky, M, Gong, S, Rajaram, V, Perry, A, Pfeifer, J. EWS-ATF1 fusion transcripts in gastrointestinal tumors previously diagnosed as malignant melanoma. Hum Pathol 2005;36:7481.Google Scholar
Antonescu, CR, Nafa, K, Segal, NH, Dal Cin, P, Ladanyi, M. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma–association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res 2006;12:53565362.CrossRefGoogle ScholarPubMed
Sciot, R, Samson, I, van den Berghe, H, Van Damme, B, Dal Cin, P. Collagenous fibroma (desmoplastic fibroblastoma): genetic link with fibroma of tendon sheath? Mod Pathol 1999;12:565568.Google Scholar
Macchia, G, Trombetta, D, Möller, E, et al. FOSL1 as a candidate target gene for 11q12 rearrangements in desmoplastic fibroblastoma. Lab Invest 2012;92:735743.Google Scholar
Simon, MP, Pedeutour, F, Sirvent, N, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet 1997;15:9598.Google Scholar
Shimizu, A, O’Brien, KP, Sjöblom, T, et al. The dermatofibrosarcoma protuberans-associated collagen type Iα1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res 1999;59:37193723.Google Scholar
Simon, MP, Navarro, M, Roux, D, Pouysségur, J. Structural and functional analysis of a chimeric protein COL1A1-PDGFB generated by the translocation t(17;22)(q22;q13.1) in dermatofibrosarcoma protuberans (DP). Oncogene 2001;20:29652975.Google Scholar
O’Brien, KP, Seroussi, E, Dal Cin, P, et al. Various regions within the alpha-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcoma protuberans and giant cell fibroblastomas. Genes Chromosomes Cancer 1998;23:187193.Google Scholar
Sirvent, N, Maire, G, Pedeutour, F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer 2003;37:119.Google Scholar
Bianchini, L, Maire, G, Guillot, B, et al. Complex t(5;8) involving the CSPG2 and PTK2B genes in a case of dermatofibrosarcoma protuberans without the COL1A1-PDGFB fusion. Virchows Arch 2008;452:689696.Google Scholar
Ladanyi, M, Gerald, WL. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res 1994;54:28372840.Google Scholar
Gerald, WL, Rosai, J, Ladanyi, M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad Sci USA 1995;14:10281032.Google Scholar
Gerald, WL, Ladanyi, M, de Alava, E, et al. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small-round-cell tumor and its variants. J Clin Oncol 1998;16:30283036.Google Scholar
Gerald, WL, Haber, DA. The EWS-WT1 gene fusion in desmoplastic small round cell tumor. Semin Cancer Biol 2005;15:197205.Google Scholar
Ordi, J, de Alava, E, Torné, A, et al. Intraabdominal desmoplastic small round cell tumor with EWS/ERG fusion transcript. Am J Surg Pathol 1998;22:10261032.Google Scholar
Koontz, JI, Soreng, AL, Nucci, M, et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci 2001;98:63486353.Google Scholar
Micci, F, Panagopoulos, I, Bjerkehagen, B, Heim, S. Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcomas. Cancer Res 2006;66:107112.Google Scholar
Mertens, F, Tayebwa, J. Evolving techniques for gene fusion detection in soft tissue tumours. Histopathology 2014;64:151162.Google Scholar
Micci, F, Gorunova, L, Gatius, S, et al. MEAF6/PHF1 is a recurrent gene fusion in endometrial stromal sarcoma. Cancer Lett 2014;347:7578.Google Scholar
Dewaele, B, Przybyl, J, Quattrone, A, et al. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int J Cancer 2014;134:11121122.CrossRefGoogle ScholarPubMed
Lee, CH, Nucci, MR. Endometrial stromal sarcoma - the new genetic paradigm. Histopathology 2015;67:119.Google Scholar
Panagopoulos, I, Thorsen, J, Gorunova, L, et al. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer 2013;52:610618.Google Scholar
McPherson, A, Hormozdiari, F, Zayed, A, et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol 2011;7:e1001138Google Scholar
Aurias, A, Rimbaut, C, Buffe, D, Zucker, JM, Mazabraud, A. Translocation involving chromosome 22 in Ewing’s sarcoma: a cytogenetic study of four fresh tumors. Cancer Genet Cytogenet 1984;12:2125.Google Scholar
Whang-Peng, J, Triche, TJ, Knutsen, T, et al. Chromosome translocation in peripheral neuroepithelioma. N Engl J Med 1984;311:584585.Google Scholar
Delattre, O, Zucman, J, Plougastel, B, et al. Gene fusion with an ETS DNA binding domain caused by chromosome translocation in human tumors. Nature 1992;359:162165.Google Scholar
Zucman, J, Delattre, O, Desmaze, C, et al. Cloning and characterization of the Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Genes Chromosomes Cancer 1992;5:271277.Google Scholar
Zucman, J, Melot, T, Desmaze, C, et al. Combinatorial generation of variable fusion proteins in Ewing family of tumors. EMBO J 1993;12:44814487.Google Scholar
Sorensen, PH, Lessnick, SL, Lopez-Terrada, D, et al. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 1994;6:146151.CrossRefGoogle ScholarPubMed
Jeon, IS, Davis, JN, Braun, BS, et al. A variant Ewing’s sarcoma translocation t(7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 1995;10:12291234.Google Scholar
Kaneko, Y, Yoshida, K, Handa, M, et al. Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 1996;15:115121.Google Scholar
Peter, M, Couturier, J, Pacquement, H, et al. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 1997;14:11591164.Google Scholar
Mastrangelo, T, Modena, P, Tornielli, S, et al. A novel zinc finger gene is fused to EWS in small round cell tumor. Oncogene 2000;19:37993804.Google Scholar
Wang, L, Bhargava, R, Zheng, T, et al. Undifferentiated small round cell sarcomas with rare EWS gene fusions: identification of the novel EWS-SP3 fusion and of additional cases with the EWS-ETV1 and EWS-FEV fusions. J Mol Diagn 2007;9:498509.Google Scholar
Ng, TL, O’Sullivan, MJ, Pallen, CJ, et al. Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn 2007;9:459463.Google Scholar
Shing, DC, McMullan, DJ, Roberts, P, et al. FUS/ERG gene fusions in Ewing’s tumors. Cancer Res 2003;63:45684576.Google Scholar
Szuhai, K, Ijszenga, M, de Jong, D, et al. The NFATc2 gene is involved in a novel cloned translocation in a Ewing sarcoma variant that couples its function in immunology to oncology. Clin Cancer Res 2009;15:22592268.Google Scholar
Sumegi, J, Nishio, J, Nelson, M, et al. A novel t(4;22)(q31;q12) produces an EWSR1-SMARCA5 fusion in extraskeletal Ewing sarcoma/primitive neuroectodermal tumor. Mod Pathol 2011;24:333342.Google Scholar
Choi, EY, Thomas, DG, McHugh, JB, et al. Undifferentiated small round cell sarcoma with t(4;19)(q35;q13.1) CIC-DUX4 fusion: a novel highly aggressive soft tissue tumor with distinctive histopathology. Am J Surg Pathol 2013;37:13791386.Google Scholar
Italiano, A, Sung, YS, Zhang, L, et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer 2012;51:207218.Google Scholar
Pierron, G, Tirode, F, Lucchesi, C, et al. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet 2012;44:461466.Google Scholar
Sugita, S, Arai, Y, Tonooka, A, et al. A novel CIC-FOXO4 gene fusion in undifferentiated small round cell sarcoma: a genetically distinct variant of Ewing-like sarcoma. Am J Surg Pathol 2014;38:15711576.Google Scholar
Knezevich, SR, McFadden, DE, Tao, W, Lim, JF, Sorensen, PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 1998;18:184187.Google Scholar
Rubin, BP, Chen, CJ, Morgan, TW, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 1998;153:14511458.Google Scholar
Errani, C, Zhang, L, Sung, YS, et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer 2011;50:644653.Google Scholar
Tanas, MR, Sboner, A, Oliveira, AM, et al. Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Sci Transl Med 2011;3:98ra82.Google Scholar
Antonescu, CR, Le Loarer, F, Mosquera, JM, et al. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosomes Cancer 2013;52:775784.Google Scholar
Trombetta, D, Magnusson, L, von Steyern, FV, et al. Translocation t(7;19)(q22;q13) - a recurrent chromosome aberration in pseudomyogenic hemangioendothelioma? Cancer Genet 2011;204:211215.Google Scholar
Walther, C, Tayebwa, J, Lilljebjörn, H, et al. A novel SERPINE1-FOSB fusion gene results in transcriptional up-regulation of FOSB in pseudomyogenic haemangioendothelioma. J Pathol 2014;232:534540.Google Scholar
Antonescu, CR, Zhang, L, Nielsen, GP, et al. Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromosomes Cancer 2011;50:757764.CrossRefGoogle ScholarPubMed
Cools, J, Wlodarska, I, Somers, R, et al. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2002;34:354362.Google Scholar
Bridge, JA, Kanamori, M, Ma, Z, et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol 2001;159:411415.Google Scholar
Debiec-Rychter, M, Marynen, P, Hagemeijer, A, Pauwels, P. ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;38:187190.Google Scholar
Ma, Z, Hill, DA, Collins, MH, et al. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;37:98105.CrossRefGoogle Scholar
Panagopoulos, I, Nilsson, T, Domanski, HA, et al. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer 2006;118:11811186.Google Scholar
Lawrence, B, Perez-Atayde, A, Hibbard, MK, et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 2000;157:377384.Google Scholar
Takeuchi, K, Soda, M, Togashi, Y, et al. Pulmonary inflammatory myofibroblastic tumor expressing a novel fusion, PPFIBP1-ALK: reappraisal of anti-ALK immunohistochemistry as a tool for novel ALK fusion identification. Clin Cancer Res 2011;17:33413348.Google Scholar
Lovly, CM, Gupta, A, Lipson, D, et al. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov 2014;4:889895.Google Scholar
Antonescu, CR, Suurmeijer, AJ, Zhang, L, et al. Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am J Surg Pathol 2015;39:957967.Google Scholar
Kazmierczak, B, Pohnke, Y, Bullerdiek, J. Fusion transcripts between HMGIC gene and RTVL-H-related sequences in mesenchymal tumors without cytogenetic aberrations. Genomics 1996;38:223226.Google Scholar
Schoenmakers, EF, Huysmans, C, van de Ven, WJ. Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas. Cancer Res 1999;59:1923.Google Scholar
Kurose, K, Mine, N, Doi, D, et al. Novel gene fusion COX6C at 8q22–23 to HMGIC at 12q15 in a uterine leiomyoma. Genes Chromosomes Cancer 2000;27:303307.Google Scholar
Mine, N, Kurose, K, Konishi, H, et al. Fusion of a sequence from HEI10 (14q11) to the HMGIC gene at 12q15 in a uterine leiomyoma. Jpn J Cancer Res 2001;92:135139.Google Scholar
Moore, SD, Herrick, SR, Ince, TA, et al. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res 2004;64:55705577.Google Scholar
Velagaleti, GV, Tonk, VS, Hakim, NM, et al. Fusion of HMGA2 to COG5 in uterine leiomyoma. Cancer Genet Cytogenet 2010;202:1116.Google Scholar
Panagopoulos, I, Gorunova, L, Bjerkehagen, B, Heim, S. Novel KAT6B-KANSL1 fusion gene identified by RNA sequencing in retroperitoneal leiomyoma with t(10;17)(q22;q21). PLoS One 2015;10:e0117010.Google Scholar
Astrom, A, D’Amore, ES, Sainati, L, et al. Evidence of involvement of the PLAG1 gene in lipoblastomas. Int J Oncol 2000;16:11071110.Google Scholar
Gisselsson, D, Hibbard, MK, Dal Cin, P, et al. PLAG1 fusion oncogenes in lipoblastoma. Cancer Res 2000;60:48694872.Google Scholar
Sciot, R, De Wever, I, Debiec-Rychter, M. Lipoblastoma in a 23-year-old male: distinction from atypical lipomatous tumor using cytogenetic and fluorescence in-situ hybridization analysis. Virchows Arch 2003;442:468471.Google Scholar
Deen, M, Ebrahim, S, Schloff, D, Mohamed, AN. A novel PLAG1-RAD51L1 gene fusion resulting from a t(8;14)(q12;q24) in a case of lipoblastoma. Cancer Genet 2013;206:233237.Google Scholar
Petit, MM, Mols, R, Schoenmakers, EF, Mandahl, N, Van de Ven, WJ. LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family. Genomics 1996;36:118129.Google Scholar
Petit, MM, Schoenmakers, EF, Huysmans, C, et al. LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new family of LHFP-like genes. Genomics 1999;57:438441.Google Scholar
Kazmierczak, B, Dal Cin, P, Wanschura, S, , et al. Cloning and molecular characterization of part of a new gene fused to HMGIC in mesenchymal tumors. Am J Pathol 1998;152:431435.Google Scholar
Broberg, K, Zhang, M, Strömbeck, B, et al. Fusion of RDC1 with HMGA2 in lipomas as the result of chromosome aberrations involving 2q35–37 and 12q13–15. Int J Oncol 2002;21:321326.Google Scholar
Nilsson, M, Panagopoulos, I, Mertens, F, Mandahl, N. Fusion of the HMGA2 and NFIB genes in lipoma. Virchows Arch 2005;447:855858.Google Scholar
Bianchini, L, Birtwisle, L, Saâda, E, et al. Identification of PPAP2B as a novel recurrent translocation partner gene of HMGA2 in lipomas. Genes Chromosomes Cancer 2013;52:580590.Google Scholar
Panagopoulos, I, Höglund, M, Mertens, F, et al. Fusion of EWS and CHOP genes in myxoid liposarcoma. Oncogene 1996;12:489494.Google Scholar
Crozat, A, Aman, P, Mandahl, N, Ron, D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 1993;363:640644.Google Scholar
Rabbitts, TH, Forster, A, Larson, R, Nathan, P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 1993;4:175180.Google Scholar
Dal Cin, P, Sciot, R, Panagopoulos, I, et al. Additional evidence of a variant translocation t(12;22) with EWS/CHOP fusion in myxoid liposarcoma: clinicopathological features. J Pathol 1997;182:437441.Google Scholar
Taylor, BS, DeCarolis, PL, Angeles, CV, et al. Frequent alterations and epigenetic silencing of differentiation pathway genes in structurally rearranged liposarcomas. Cancer Discov 2011;1:587597.Google Scholar
Storlazzi, CT, Mertens, F, Nascimento, A, et al. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet 2003;12:23492358.Google Scholar
Reid, R, de Silva, MV, Paterson, L, Ryan, E, Fisher, C. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11). Am J Surg Pathol 2003;27:12291236.Google Scholar
Panagopoulos, I, Storlazzi, CT, Fletcher, CD, et al. The chimeric FUS/CREB3L2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer 2004;40:218228.Google Scholar
Mertens, F, Fletcher, CD, Antonescu, CR, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest 2005;85:408415.Google Scholar
Guillou, L, Benhattar, J, Gengler, C, et al. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol 2007;31:13871402.Google Scholar
Brandal, P, Panagopoulos, I, Bjerkehagen, B, et al. Detection of a t(1;22)(q23;q12) translocation leading to an EWSR1-PBX1 fusion gene in a myoepithelioma. Genes Chromosomes Cancer 2008;47:558564.Google Scholar
Antonescu, CR, Zhang, L, Chang, NE, et al. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer 2010;49:11141124.Google Scholar
Brandal, P, Panagopoulos, I, Bjerkehagen, B, Heim, S. t(19;22)(q13;q12) Translocation leading to the novel fusion gene EWSR1-ZNF444 in soft tissue myoepithelial carcinoma. Genes Chromosomes Cancer 2009;48:10511056.Google Scholar
Antonescu, CR, Zhang, L, Shao, SY, et al. Frequent PLAG1 gene rearrangements in skin and soft tissue myoepithelioma with ductal differentiation. Genes Chromosomes Cancer 2013;52:675682.Google Scholar
Huang, SC, Chen, HW, Zhang, L, et al. Novel FUS-KLF17 and EWSR1-KLF17 fusions in myoepithelial tumors. Genes Chromosomes Cancer 2015;54:267275.Google Scholar
Erickson-Johnson, MR, Chou, MM, Evers, BR, et al. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Invest 2011;91:14271433.Google Scholar
Gebre-Medhin, S, Nord, KH, Möller, E, et al. Recurrent rearrangement of the PHF1 gene in ossifying fibromyxoid tumors. Am J Pathol 2012;181:10691077.Google Scholar
Endo, M, Kohashi, K, Yamamoto, H, et al. Ossifying fibromyxoid tumor presenting EP400-PHF1 fusion gene. Hum Pathol 2013;44:26032608.Google Scholar
Antonescu, CR, Sung, YS, Chen, CL, et al. Novel ZC3H7B-BCOR, MEAF6-PHF1, and EPC1-PHF1 fusions in ossifying fibromyxoid tumors: molecular characterization shows genetic overlap with endometrial stromal sarcoma. Genes Chromosomes Cancer 2014;53:183193.Google Scholar
Tanaka, M, Kato, K, Gomi, K, et al. Perivascular epithelioid cell tumor with SFPQ/PSF-TFE3 gene fusion in a patient with advanced neuroblastoma. Am J Surg Pathol 2009;33:14161420.Google Scholar
Dahlén, A, Mertens, F, Mandahl, N, Panagopoulos, I. Molecular genetic characterization of the genomic ACTB-GLI fusion in pericytoma with t(7;12). Biochem Biophys Res Commun 2004;325:13181323.Google Scholar
Carter, JM, Sukov, WR, Montgomery, E, et al. TGFBR3 and MGEA5 rearrangements in pleomorphic hyalinizing angiectatic tumors and the spectrum of related neoplasms. Am J Surg Pathol 2014;38:11821992.Google Scholar
Thway, K, Nicholson, AG, Lawson, K, et al. Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion: a new tumor entity. Am J Surg Pathol 2011;35:17221732.Google Scholar
Barr, FG, Galili, N, Holick, J, et al. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet 1993;3:113117.Google Scholar
Davis, RJ, D’Cruz, CM, Lovell, MA, Biegel, JA, Barr, FG. Fusion of PAX7 to FKHR by the variant t(1;3)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 1994;54:28692872.Google Scholar
Barr, FG, Qualman, SJ, Macris, MH, et al. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res 2002;62:47044710.Google Scholar
Wachtel, M, Dettling, M, Koscielniak, E, et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004;64:55395545.Google Scholar
Mosquera, JM, Sboner, A, Zhang, L, et al. Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer 2013;52:538550.Google Scholar
Robinson, DR, Wu, YM, Kalyana-Sundaram, S, et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet 2013;45:180185.Google Scholar
Mohajeri, A, Tayebwa, J, Collin, A, et al. Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene, nonrandom secondary genomic imbalances, and a characteristic gene expression profile in solitary fibrous tumor. Genes Chromosomes Cancer 2013;52:873886.Google Scholar
Crew, AJ, Clark, J, Fisher, C, et al. Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J 1995;14:23332340.Google Scholar
Skytting, B, Nilsson, G, Brodin, B, et al. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst 1999;91:974975.Google Scholar
Storlazzi, CT, Mertens, F, Mandahl, N, et al. A novel fusion gene, SS18L1/SSX1, in synovial sarcoma. Genes Chromosomes Cancer 2003;37:195200.Google Scholar
West, RB, Rubin, BP, Miller, MA, et al. A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. Proc Natl Acad Sci USA 2006;103:690695.Google Scholar
Möller, E, Mandahl, N, Mertens, F, Panagopoulos, I. Molecular identification of COL6A3-CSF1 fusion transcripts in tenosynovial giant cell tumors. Genes Chromosomes Cancer 2008;47:2125.Google Scholar
Panagopoulos, I, Brandal, P, Gorunova, L, Bjerkehagen, B, Heim, S. Novel CSF1-S100A10 fusion gene and CSF1 transcript identified by RNA sequencing in tenosynovial giant cell tumors. Int J Oncol 2014;44:14251432.Google Scholar
Pfeifer, JD. Molecular Genetic Testing In Surgical Pathology. Philadelphia: Lippincott Williams & Wilkins; 2006.Google Scholar
Yeku, O, Frohman, MA. Rapid amplification of cDNA ends (RACE). Methods Mol Biol 2011;703:107122.Google Scholar
Ladanyi, M. The emerging molecular genetics of sarcoma translocation. Diagn Mol Pathol 1995;4:162173.Google Scholar
Rabbitts, TH. Chromosomal translocation master genes, mouse models and experimental therapeutics. Oncogene 2001;20:57635777.Google Scholar
Xia, SJ, Barr, FG. Chromosome translocations in sarcomas and the emergence of oncogenic transcription factors. Eur J Cancer 2005;41:25132527.Google Scholar
Slater, O, Shipley, J. Clinical relevance of molecular genetics to paediatric sarcomas. J Clin Pathol 2007;60:11871194.Google Scholar
Oda, Y, Tsuneyoshi, M. Recent advances in the molecular pathology of soft tissue sarcoma: implications for diagnosis, patient prognosis, and molecular target therapy in the future. Cancer Sci 2009;100:200208.Google Scholar
Peter, M, Gilbert, E, Delattre, O. A multiplex real-time pcr assay for the detection of gene fusions observed in solid tumors. Lab Invest 2001;81:905912.Google Scholar
Geurts van Kessel, A, de Bruijn, D, Hermsen, L, et al. Masked t(X;18)(p11;q11) in a biphasic synovial sarcoma revealed by FISH and RT-PCR. Genes Chromosomes Cancer 1998;23:198201.Google Scholar
Kaneko, Y, Kobayashi, H, Hanada, M, Satake, N, Maseki, N. EWS-ERG fusion transcript produced by chromosomal insertion in a Ewing sarcoma. Genes Chromosomes Cancer 1997;18:228231.Google Scholar
Lestou, VS, O’Connell, JX, Robichaud, M, et al. Cryptic t(X;18), ins(6;18), and SYT-SSX2 gene fusion in a case of intraneural monophasic synovial sarcoma. Cancer Genet Cytogenet 2002;138:153156.Google Scholar
O’Sullivan, MJ, Kyriakos, M, Zhu, X, et al. Malignant peripheral nerve sheath tumors with t(X;18): a pathologic and molecular genetic study. Mod Pathol 2000;13:12531263.Google Scholar
Ladanyi, M, Woodruff, JM, Scheithauer, BW, et al. Re: O’Sullivan MJ, Kyriakos M, Zhu X, Wick MR, Swanson PE, Dehner LP, Humphrey PA, Pfeifer JD: Malignant peripheral nerve sheath tumors with t(X;18): a pathologic and molecular genetic study. Mod Pathol 2000;13:13361346.Google Scholar
Tamborini, E, Agus, V, Perrone, F, et al. Lack of SYT-SSX fusion transcripts in malignant peripheral nerve sheath tumors on RT-PCR analysis of 34 archival cases. Lab Invest 2002;82:609618.Google Scholar
Fritsch, MK, Bridge, JA, Schuster, AE, Perlman, EJ, Argani, P. Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue. Pediatr Dev Pathol 2003;6:4353.Google Scholar
Stewénius, Y, Jin, Y, Ora, I, et al. High-resolution molecular cytogenetic analysis of Wilms tumors highlights diagnostic difficulties among small round cell kidney tumors. Genes Chromosomes Cancer 2008;47:845852.Google Scholar
Sainati, L, Scapinello, A, Montaldi, A, et al. A mesenchymal chondrosarcoma of a child with the reciprocal translocation (11;22)(q24;q12). Cancer Genet Cytogenet 1993;71:144147.Google Scholar
Li, H, Wang, J, Mor, G, Sklar, J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 2008;321:13571361.Google Scholar
Beck, AH, West, RB, van de Rijn, M. Gene expression profiling for the investigation of soft tissue sarcoma pathogenesis and the identification of diagnostic, prognostic, and predictive biomarkers.Virchows Arch 2010;456:141151.Google Scholar
Løvf, M, Thomassen, GO, Mertens, F, et al. Assessment of fusion gene status in sarcomas using a custom made fusion gene microarray. PLoS One 2013;8:e70649.Google Scholar
Skotheim, RI, Thomassen, GO, Eken, M, et al. A universal assay for detection of oncogenic fusion transcripts by oligo microarray analysis. Mol Cancer 2009;8:5.Google Scholar
Xiong, FF, Li, BS, Zhang, CX, et al. A pipeline with multiplex reverse transcription polymerase chain reaction and microarray for screening of chromosomal translocations in leukemia. Biomed Res Int 2013;2013:135086.Google Scholar
Wada, Y, Matsuura, M, Sugawara, M, et al. Development of detection method for novel fusion gene using GeneChip exon array. J Clin Bioinforma 2014;4:3.Google Scholar
Agerstam, H, Lilljebjörn, H, Lassen, C, et al. Fusion gene-mediated truncation of RUNX1 as a potential mechanism underlying disease progression in the 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 2007;46:635643.Google Scholar
Frith, AE, Hirbe, AC, Van Tine, BA. Novel pathways and molecular targets for the treatment of sarcoma. Curr Oncol Rep 2013;15:378385.Google Scholar
Aragon-Ching, JB, Maki, RG. Treatment of adult soft tissue sarcoma: old concepts, new insights, and potential for drug discovery. Cancer Invest 2012;30:300308.Google Scholar
Martín Liberal, J, Lagares-Tena, L, Sáinz-Jaspeado, M, et al. Targeted therapies in sarcomas: challenging the challenge. Sarcoma 2012;2012:626094.Google Scholar
Wlodarska, I, De Wolf-Peeters, C, Falini, B, et al. The cryptic inv(2)(p23q35) defines a new molecular genetic subtype of ALK-positive anaplastic large-cell lymphoma. Blood 1998;92:26882695.Google Scholar
Touriol, C, Greenland, C, Lamant, L, et al. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 2000;95:32043207.Google Scholar
Tort, F, Pinyol, M, Pulford, K, et al. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest 2001;81:419426.Google Scholar
Lamant, L, Gascoyne, RD, Duplantier, MM, et al. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer 2003;37:427432.Google Scholar
Morris, SW, Kirstein, MN, Valentine, MB, et al. Fusion of a kinase gene, ALK to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1994;263:12811284.Google Scholar
Hernández, L, Pinyol, M, Hernández, S, et al. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 1999;94:32653268.Google Scholar
Lamant, L, Dastugue, N, Pulford, K, Delsol, G, Mariamé, B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 1999;93:30883095.Google Scholar
Liang, X, Meech, SJ, Odom, LF, et al. Assessment of t(2;5)(p23;q35) translocation and variants in pediatric ALK+ anaplastic large cell lymphoma. Am J Clin Pathol 2004;121:496506.Google Scholar
Lin, E, Li, L, Guan, Y, et al. Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Mol Cancer Res 2009;7:14661476.Google Scholar
Lipson, D, Capelletti, M, Yelensky, R, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012;18:382384.Google Scholar
Chikatsu, N, Kojima, H, Suzukawa, K, et al. ALK+, CD30-, CD20- large B-cell lymphoma containing anaplastic lymphoma kinase (ALK) fused to clathrin heavy chain gene (CLTC). Mod Pathol 2003;16:828832.Google Scholar
Adam, P, Katzenberger, T, Seeberger, H, et al. A case of a diffuse large B-cell lymphoma of plasmablastic type associated with the t(2;5)(p23;q35) chromosome translocation. Am J Surg Pathol 2003;27:14731476.Google Scholar
Van Roosbroeck, K, Cools, J, Dierickx, D, et al. ALK-positive large B-cell lymphomas with cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica 2010;95:509513.Google Scholar
Takeuchi, K, Soda, M, Togashi, Y, et al. Identification of a novel fusion, SQSTM1-ALK, in ALK-positive large B-cell lymphoma. Haematologica 2011;96:464467.Google Scholar
Jazii, FR, Najafi, Z, Malekzadeh, R, et al. Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J Gastroenterol 2006;12:71047112.Google Scholar
Debelenko, LV, Raimondi, SC, Daw, N, et al. Renal cell carcinoma with novel VCL-ALK fusion: new representative of ALK-associated tumor spectrum. Mod Pathol 2011;24:430442.Google Scholar
Röttgers, S, Gombert, M, Teigler-Schlegel, A, et al. ALK fusion genes in children with atypical myeloproliferative leukemia. Leukemia 2010;24:11971200.Google Scholar
Takeuchi, K, Choi, YL, Togashi, Y, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 2009;15:31433149.Google Scholar
Togashi, Y, Soda, M, Sakata, S, et al. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One 2012;7:e31323.Google Scholar
Rikova, K, Guo, A, Zeng, Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007;131:11901203.Google Scholar
Ren, H, Tan, ZP, Zhu, X, et al. Identification of anaplastic lymphoma kinase as a potential therapeutic target in ovarian cancer. Cancer Res 2012;72:33123323.Google Scholar
Chan, JK, Lamant, L, Algar, E, et al. ALK+ histiocytosis: a novel type of systemic histiocytic proliferative disorder of early infancy. Blood 2008;112:29652968.Google Scholar
Yamamoto, Y, Tsuzuki, S, Tsuzuki, M, et al. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood 2010;116:42744283.Google Scholar
Bohlander, SK. ETV6: a versatile player in leukemogenesis. Semin Cancer Biol 2005;15:162174.Google Scholar
Eguchi, M, Eguchi-Ishimae, M, Tojo, A, et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 1999;93:13551363.Google Scholar
Tognon, C, Knezevich, SR, Huntsman, D, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002;2:367376.Google Scholar
Skálová, A, Vanecek, T, Sima, R, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol 2010;34:599608.Google Scholar
Leeman-Neill, RJ, Kelly, LM, Liu, P, et al. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer 2014;120:799807.Google Scholar
Bilodeau, EA, Weinreb, I, Antonescu, CR, et al. Clear cell odontogenic carcinomas show EWSR1 rearrangements: a novel finding and a biological link to salivary clear cell carcinomas. Am J Surg Pathol 2013;37:10011005.Google Scholar
Arbajian, E, Magnusson, L, Brosjö, O, et al. A benign vascular tumor with a new fusion gene: EWSR1-NFATC1 in hemangioma of the bone. Am J Surg Pathol 2013;37:613616.Google Scholar
Möller, E, Stenman, G, Mandahl, N, et al. POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J Pathol 2008;215:7886.Google Scholar
Antonescu, CR, Katabi, N, Zhang, L, et al. EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear-cell carcinoma of salivary gland. Genes Chromosomes Cancer 2011;50:559570.Google Scholar
Skálová, A, Weinreb, I, Hyrcza, M, et al. Clear cell myoepithelial carcinoma of salivary glands showing EWSR1 rearrangement: molecular analysis of 94 salivary gland carcinomas with prominent clear cell component. Am J Surg Pathol 2015;39:338348.Google Scholar
Panagopoulos, I, Thorsen, J, Gorunova, L, et al. RNA sequencing identifies fusion of the EWSR1 and YY1 genes in mesothelioma with t(14;22)(q32;q12). Genes Chromosomes Cancer 2013;52:733740.Google Scholar
Yamaguchi, S, Yamazaki, Y, Ishikawa, Y, et al. EWSR1 is fused to POU5F1 in a bone tumor with translocation t(6;22)(p21;q12). Genes Chromosomes Cancer 2005;43:217222.Google Scholar
Panagopoulos, I, Aman, P, Fioretos, T, et al. Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22). Genes Chromosomes Cancer 1994;11:256262.Google Scholar
Puls, F, Arbajian, E, Magnusson, L, et al. Myoepithelioma of bone with a novel FUS-POU5F1 fusion gene. Histopathology 2014;65:917922.Google Scholar
Geurts, JM, Schoenmakers, EF, Röijer, E, Stenman, G, Van de Ven, WJ. Expression of reciprocal hybrid transcripts of HMGIC and FHIT in a pleomorphic adenoma of the parotid gland. Cancer Res 1997;57:1317.Google Scholar
Rogalla, P, Lemke, I, Kazmierczak, B, Bullerdiek, J. An identical HMGIC-LPP fusion transcript is consistently expressed in pulmonary chondroid hamartomas with t(3;12)(q27-28;q14-15). Genes Chromosomes Cancer 2000;29:363366.Google Scholar
Strehl, S, Nebral, K, König, M, et al. ETV6-NCOA2: a novel fusion gene in acute leukemia associated with coexpression of T-lymphoid and myeloid markers and frequent NOTCH1 mutations. Clin Cancer Res 2008;14:977983.Google Scholar
Asp, J, Persson, F, Kost-Alimova, M, Stenman, G. CHCHD7-PLAG1 and TCEA1-PLAG1 gene fusions resulting from cryptic, intrachromosomal 8q rearrangements in pleomorphic salivary gland adenomas. Genes Chromosomes Cancer 2006;45:820828.Google Scholar
Davies, KD, Doebele, RC. Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 2013;19:40404045.Google Scholar
Ross, H, Argani, P. Xp11 translocation renal cell carcinoma. Pathology 2010;42:369373.Google Scholar
Oliveira, AM, Perez-Atayde, AR, Dal Cin, P, et al. Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene 2005;24:34193426.Google Scholar
Oliveira, AM, Chou, MM. USP6-induced neoplasms: the biologic spectrum of aneurysmal bone cyst and nodular fasciitis. Hum Pathol 2014;45:111.Google Scholar
Law, WJ, Cann, KL, Hicks, GG. TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Brief Funct Genomic Proteomic 2006;5:814.Google Scholar
Kovar, H. Kovar, H. Dr. Jekyll and Mr. Hyde: the two faces of the FUS/EWS/TAF15 protein family. Sarcoma 2011;2011:837474.Google Scholar
Turc-Carel, C, Philip, I, Berger, M-P, Philip, T, Lenoir, GM. Chromosomal translocations 11;22 in cell lines of Ewing’s sarcoma. N Engl J Med 1983;309:497498.Google Scholar
Tomlins, SA, Rhodes, DR, Perner, S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005;310:644648.Google Scholar
Wang, J, Cai, Y, Ren, C, Ittmann, M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 2006;66:83478351.Google Scholar
Tomlins, SA, Mehra, R, Rhodes, DR, et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 2006;66:33963400.Google Scholar
Kumar-Sinha, C, Tomlins, SA, Chinnaiyan, AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008;8:497511.Google Scholar
Truong, AH, Ben-David, Y. The role of Fli-1 in normal cell function and malignant transformation. Oncogene 2000;19:64826489.Google Scholar
Arvand, A, Denny, CT. Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene 2001;20:57475754.Google Scholar
Hai, T, Hartman, MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 2001;273:111.Google Scholar
Brown, AD, Lopez-Terrada, D, Denny, C, Lee, KA. Promoters containing ATF-binding sites are de-regulated in cells that express the EWS/ATF1 oncogene. Oncogene 1995;10:17491756.Google Scholar
Panagopoulos, I, Möller, E, Dahlén, A, et al. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 2007;46:181191.Google Scholar
Lee, SB, Haber, DA. Wilms tumor and the WT1 gene. Exp Cell Res 2001;264: 7499.Google Scholar
Kim, J, Lee, K, Pelletier, J. The desmoplastic small round cell tumor t(11;22) translocation produces EWS/WT1 isoforms with differing oncogenic properties. Oncogene 1998;16:19731979.Google Scholar
Reynolds, PA, Smolen, GA, Palmer, RE, et al. Identification of a DNA-binding site and transcriptional target for the EWS-WT1(+KTS) oncoprotein. Genes Dev 2003;17:20942107.Google Scholar
Ohkura, N, Hijikuro, M, Yamamoto, A, Miki, K. Molecular cloning of a novel thyroid/steroid receptor superfamily gene from cultured rat neuronal cells. Biochem Biophys Res Commun 1994;205:19591965.Google Scholar
Ohkura, N, Yaguchi, H, Tsukada, T, Yamaguchi, K. The EWS/NOR1 fusion gene product gains a novel activity affecting pre-mRNA splicing. J Biol Chem 2002;277:535543.Google Scholar
Gan, TI, Rowen, L, Nesbitt, R, et al. Genomic organization of human TCF12 gene and spliced mRNA variants producing isoforms of transcription factor HTF4. Cytogenet Genome Res 2002;98:245248.Google Scholar
Mencinger, M, Panagopoulos, I, Andreasson, P, et al. Characterization and chromosomal mapping of the human TFG gene involved in thyroid carcinoma. Genomics 1997;41:327331.Google Scholar
Greco, A, Mariani, C, Miranda, C, et al. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 1995;15:61186127.Google Scholar
Hunger, SP, Galili, N, Carroll, AJ, et al. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 1991;77:687693.Google Scholar
Kamps, MP, Murre, C, Sun, XH, Baltimore, D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 1990;60:547555.Google Scholar
Turc-Carel, C, Limon, J, Dal Cin, P, et al. Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet 1986;23:291299.Google Scholar
Åman, P, Ron, D, Mandahl, N, et al. Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer 1992;5:278285.Google Scholar
Kuroda, M, Ishida, T, Takanashi, M, et al. Oncogenic transformation and inhibition of adipocytic conversion of preadipocytes by TLS/FUS-CHOP type II chimeric protein. Am J Pathol 1997;151:735744.Google Scholar
Zinszner, H, Albalat, R, Ron, D. A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev 1994;8:25132526.Google Scholar
Ichikawa, H, Shimizu, K, Hayashi, Y, Ohki, M. An RNA-binding protein gene, TLS/FUS, is fused to erg in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res 1994;54:28652868.Google Scholar
Åman, P, Panagopoulos, I, Lassen, C, et al. Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics 1996;37:18.Google Scholar
Ron, D, Brasier, AR, McGehee, RE Jr, Habener, JF. Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP). J Clin Invest 1992;89:223233.Google Scholar
Ron, D, Habener, JF. CHOP a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant negative inhibitor of gene transcription. Genes Dev 1992;6:439453.Google Scholar
Adelmant, G, Gilbert, JD, Freytag, SO. Human translocation liposarcoma-CCAAT/enhancer binding protein (C/EBP) homologous protein (TLS-CHOP) oncoprotein prevents adipocyte differentiation by directly interfering with C/EBPbeta function. J Biol Chem 1998;273:1557415581.Google Scholar
Panagopoulos, I, Möller, E, Dahlén, A, et al. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 2007;46:181191.Google Scholar
Nucci, MR, Weremowicz, S, Neskey, DM, et al. Chromosomal translocation t(8;12) induces aberrant HMGIC expression in aggressive angiomyxoma of the vulva. Genes Chromosomes Cancer 2001;32:172176.Google Scholar
Micci, F, Panagopoulos, I, Bjerkehagen, B, Heim, S. Deregulation of HMGA2 in an aggressive angiomyxoma with t(11;12)(q23;q15). Virchows Arch 2006;448:838842.Google Scholar
Rabban, JT, Dal Cin, P, Oliva, E. HMGA2 rearrangement in a case of vulvar aggressive angiomyxoma. Int J Gynecol Pathol 2006;25:403407.Google Scholar
Rawlinson, NJ, West, WW, Nelson, M, Bridge, JA. Aggressive angiomyxoma with t(12;21) and HMGA2 rearrangement: report of a case and review of the literature. Cancer Genet Cytogenet 2008;181:119124.Google Scholar
Joyama, S, Ueda, T, Shimizu, K, et al. Chromosome rearrangement at 17q25 and Xp11.2 in alveolar soft-part sarcoma: a case report and review of the literature. Cancer 1999;86:12461250.Google Scholar
Ladanyi, M, Lui, MY, Antonescu, CR, et al. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 2001;20:4857.Google Scholar
Jin, Y, Möller, E, Nord, KH, et al. Fusion of the AHRR and NCOA2 genes through a recurrent translocation t(5;8)(p15;q13) in soft tissue angiofibroma results in upregulation of aryl hydrocarbon receptor target genes. Genes Chromosomes Cancer 2012;51:510520.Google Scholar
Arbajian, E, Magnusson, L, Mertens, F, et al. A novel GTF2I/NCOA2 fusion gene emphasizes the role of NCOA2 in soft tissue angiofibroma development. Genes Chromosomes Cancer 2013;52:330331.Google Scholar
Waters, BL, Panagopoulos, I, Allen, EF. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet Cytogenet 2000;121:109116.Google Scholar
Raddaoui, E, Donner, LR, Panagopoulos, I. Fusion of the FUS and ATF1 genes in a large deep-seated angiomatoid fibrous histiocytoma. Diagn Mol Pathol 2002;11:157162.Google Scholar
Antonescu, CR, Dal Cin, P, Nafa, K, et al. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2007;46:10511060.Google Scholar
Hallor, KH, Micci, F, Meis-Kindblom, JM, et al. Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett 2007;251:158163.Google Scholar
Giacomini, CP, Sun, S, Varma, S, et al. Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types. PLoS Genet 2013;9:e1003464.Google Scholar
Huang, D, Sumegi, J, Dal Cin, P, et al. C11orf95-MKL2 is the resulting fusion oncogene of t(11;16)(q13;p13) in chondroid lipoma. Genes Chromosomes Cancer 2010;49:810818.Google Scholar
Tallini, G, Dorfman, H, Brys, P, et al. Correlation between clinicopathological features and karyotype in 100 cartilaginous and chordoid tumours: a report from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. J Pathol 2002;196:194203.CrossRefGoogle ScholarPubMed
Dahlén, A, Mertens, F, Rydholm, A, et al. Fusion, disruption, and expression of HMGA2 in bone and soft tissue chondromas. Mod Pathol 2003;16:11321140.CrossRefGoogle ScholarPubMed
Labelle, Y, Bussières, J, Courjal, F, Goldring, MB. The EWS/TEC fusion protein encoded by the t(9;22) chromosomal translocation in human chondrosarcomas is a highly potent transcriptional activator. Oncogene 1999;18:33033308.Google Scholar
Attwooll, C, Tariq, M, Harris, M, et al. Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2) translocation in an extraskeletal myxoid chondrosarcoma. Oncogene 1999;18:75997601.Google Scholar
Sjögren, H, Meis-Kindblom, J, Kindblom, LG, Åman, P, Stenman, G. Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma. Cancer Res 1999;59:50645067.Google Scholar
Sjögren, H, Wedell, B, Kindblom, JM, Kindblom, LG, Stenman, G. Fusion of the basic helix-loop-helix protein TCF12 to TEC in extraskeletal myxoid chondrosarcoma with translocation t(9;15)(q22;q21). Cancer Res 2000;60:68326835.Google Scholar
Morohoshi, F, Arai, K, Takahashi, EI, Tanigami, A, Ohki, M. Cloning and mapping of a human RBP56 gene encoding a putative RNA binding protein similar to FUS/TLS and EWS proteins. Genomics 1996;38:5157.Google Scholar
Hisaoka, M, Ishida, T, Imamura, T, Hashimoto, H. TFG is a novel fusion partner of NOR1 in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 2004;40:325328.Google Scholar
Broehm, CJ, Wu, J, Gullapalli, RR, Bocklage, T. Extraskeletal myxoid chondrosarcoma with a t(9;16)(q22;p11.2) resulting in a NR4A3-FUS fusion. Cancer Genet 2014;207:276280.Google Scholar
Wang, L, Motoi, T, Khanin, R, et al. Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosomes Cancer 2012;51:127139.CrossRefGoogle ScholarPubMed
Nyquist, KB, Panagopoulos, I, Thorsen, J, et al. Whole-transcriptome sequencing identifies novel IRF2BP2-CDX1 fusion gene brought about by translocation t(1;5)(q42;q32) in mesenchymal chondrosarcoma. PLoS One 2012;7:e49705.Google Scholar
Zucman, J, Delattre, O, Desmaze, C, et al. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet 1993;4:341345.Google Scholar
Panagopoulos, I, Mertens, F, Debiec-Rychter, M, et al. Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses. Int J Cancer 2002;99:560567.CrossRefGoogle ScholarPubMed
Speleman, F, Delattre, O, Peter, M, et al. Malignant melanoma of the soft parts (clear-cell sarcoma): conformation of EWS and ATF-1 gene fusion caused by a t(11;22) translocation. Mod Pathol 1997;10:496499.Google Scholar
Antonescu, CR, Tschernyavsky, SJ, Woodruff, JM, et al. Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J Mol Diagn 2002;4:4452.Google Scholar
Covinsky, M, Gong, S, Rajaram, V, Perry, A, Pfeifer, J. EWS-ATF1 fusion transcripts in gastrointestinal tumors previously diagnosed as malignant melanoma. Hum Pathol 2005;36:7481.Google Scholar
Antonescu, CR, Nafa, K, Segal, NH, Dal Cin, P, Ladanyi, M. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma–association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res 2006;12:53565362.CrossRefGoogle ScholarPubMed
Sciot, R, Samson, I, van den Berghe, H, Van Damme, B, Dal Cin, P. Collagenous fibroma (desmoplastic fibroblastoma): genetic link with fibroma of tendon sheath? Mod Pathol 1999;12:565568.Google Scholar
Macchia, G, Trombetta, D, Möller, E, et al. FOSL1 as a candidate target gene for 11q12 rearrangements in desmoplastic fibroblastoma. Lab Invest 2012;92:735743.Google Scholar
Simon, MP, Pedeutour, F, Sirvent, N, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet 1997;15:9598.Google Scholar
Shimizu, A, O’Brien, KP, Sjöblom, T, et al. The dermatofibrosarcoma protuberans-associated collagen type Iα1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res 1999;59:37193723.Google Scholar
Simon, MP, Navarro, M, Roux, D, Pouysségur, J. Structural and functional analysis of a chimeric protein COL1A1-PDGFB generated by the translocation t(17;22)(q22;q13.1) in dermatofibrosarcoma protuberans (DP). Oncogene 2001;20:29652975.Google Scholar
O’Brien, KP, Seroussi, E, Dal Cin, P, et al. Various regions within the alpha-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcoma protuberans and giant cell fibroblastomas. Genes Chromosomes Cancer 1998;23:187193.Google Scholar
Sirvent, N, Maire, G, Pedeutour, F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer 2003;37:119.Google Scholar
Bianchini, L, Maire, G, Guillot, B, et al. Complex t(5;8) involving the CSPG2 and PTK2B genes in a case of dermatofibrosarcoma protuberans without the COL1A1-PDGFB fusion. Virchows Arch 2008;452:689696.Google Scholar
Ladanyi, M, Gerald, WL. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res 1994;54:28372840.Google Scholar
Gerald, WL, Rosai, J, Ladanyi, M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad Sci USA 1995;14:10281032.Google Scholar
Gerald, WL, Ladanyi, M, de Alava, E, et al. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small-round-cell tumor and its variants. J Clin Oncol 1998;16:30283036.Google Scholar
Gerald, WL, Haber, DA. The EWS-WT1 gene fusion in desmoplastic small round cell tumor. Semin Cancer Biol 2005;15:197205.Google Scholar
Ordi, J, de Alava, E, Torné, A, et al. Intraabdominal desmoplastic small round cell tumor with EWS/ERG fusion transcript. Am J Surg Pathol 1998;22:10261032.Google Scholar
Koontz, JI, Soreng, AL, Nucci, M, et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci 2001;98:63486353.Google Scholar
Micci, F, Panagopoulos, I, Bjerkehagen, B, Heim, S. Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcomas. Cancer Res 2006;66:107112.Google Scholar
Mertens, F, Tayebwa, J. Evolving techniques for gene fusion detection in soft tissue tumours. Histopathology 2014;64:151162.Google Scholar
Micci, F, Gorunova, L, Gatius, S, et al. MEAF6/PHF1 is a recurrent gene fusion in endometrial stromal sarcoma. Cancer Lett 2014;347:7578.Google Scholar
Dewaele, B, Przybyl, J, Quattrone, A, et al. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int J Cancer 2014;134:11121122.CrossRefGoogle ScholarPubMed
Lee, CH, Nucci, MR. Endometrial stromal sarcoma - the new genetic paradigm. Histopathology 2015;67:119.Google Scholar
Panagopoulos, I, Thorsen, J, Gorunova, L, et al. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer 2013;52:610618.Google Scholar
McPherson, A, Hormozdiari, F, Zayed, A, et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol 2011;7:e1001138Google Scholar
Aurias, A, Rimbaut, C, Buffe, D, Zucker, JM, Mazabraud, A. Translocation involving chromosome 22 in Ewing’s sarcoma: a cytogenetic study of four fresh tumors. Cancer Genet Cytogenet 1984;12:2125.Google Scholar
Whang-Peng, J, Triche, TJ, Knutsen, T, et al. Chromosome translocation in peripheral neuroepithelioma. N Engl J Med 1984;311:584585.Google Scholar
Delattre, O, Zucman, J, Plougastel, B, et al. Gene fusion with an ETS DNA binding domain caused by chromosome translocation in human tumors. Nature 1992;359:162165.Google Scholar
Zucman, J, Delattre, O, Desmaze, C, et al. Cloning and characterization of the Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Genes Chromosomes Cancer 1992;5:271277.Google Scholar
Zucman, J, Melot, T, Desmaze, C, et al. Combinatorial generation of variable fusion proteins in Ewing family of tumors. EMBO J 1993;12:44814487.Google Scholar
Sorensen, PH, Lessnick, SL, Lopez-Terrada, D, et al. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 1994;6:146151.CrossRefGoogle ScholarPubMed
Jeon, IS, Davis, JN, Braun, BS, et al. A variant Ewing’s sarcoma translocation t(7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 1995;10:12291234.Google Scholar
Kaneko, Y, Yoshida, K, Handa, M, et al. Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 1996;15:115121.Google Scholar
Peter, M, Couturier, J, Pacquement, H, et al. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 1997;14:11591164.Google Scholar
Mastrangelo, T, Modena, P, Tornielli, S, et al. A novel zinc finger gene is fused to EWS in small round cell tumor. Oncogene 2000;19:37993804.Google Scholar
Wang, L, Bhargava, R, Zheng, T, et al. Undifferentiated small round cell sarcomas with rare EWS gene fusions: identification of the novel EWS-SP3 fusion and of additional cases with the EWS-ETV1 and EWS-FEV fusions. J Mol Diagn 2007;9:498509.Google Scholar
Ng, TL, O’Sullivan, MJ, Pallen, CJ, et al. Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn 2007;9:459463.Google Scholar
Shing, DC, McMullan, DJ, Roberts, P, et al. FUS/ERG gene fusions in Ewing’s tumors. Cancer Res 2003;63:45684576.Google Scholar
Szuhai, K, Ijszenga, M, de Jong, D, et al. The NFATc2 gene is involved in a novel cloned translocation in a Ewing sarcoma variant that couples its function in immunology to oncology. Clin Cancer Res 2009;15:22592268.Google Scholar
Sumegi, J, Nishio, J, Nelson, M, et al. A novel t(4;22)(q31;q12) produces an EWSR1-SMARCA5 fusion in extraskeletal Ewing sarcoma/primitive neuroectodermal tumor. Mod Pathol 2011;24:333342.Google Scholar
Choi, EY, Thomas, DG, McHugh, JB, et al. Undifferentiated small round cell sarcoma with t(4;19)(q35;q13.1) CIC-DUX4 fusion: a novel highly aggressive soft tissue tumor with distinctive histopathology. Am J Surg Pathol 2013;37:13791386.Google Scholar
Italiano, A, Sung, YS, Zhang, L, et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer 2012;51:207218.Google Scholar
Pierron, G, Tirode, F, Lucchesi, C, et al. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet 2012;44:461466.Google Scholar
Sugita, S, Arai, Y, Tonooka, A, et al. A novel CIC-FOXO4 gene fusion in undifferentiated small round cell sarcoma: a genetically distinct variant of Ewing-like sarcoma. Am J Surg Pathol 2014;38:15711576.Google Scholar
Knezevich, SR, McFadden, DE, Tao, W, Lim, JF, Sorensen, PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 1998;18:184187.Google Scholar
Rubin, BP, Chen, CJ, Morgan, TW, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 1998;153:14511458.Google Scholar
Errani, C, Zhang, L, Sung, YS, et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer 2011;50:644653.Google Scholar
Tanas, MR, Sboner, A, Oliveira, AM, et al. Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Sci Transl Med 2011;3:98ra82.Google Scholar
Antonescu, CR, Le Loarer, F, Mosquera, JM, et al. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosomes Cancer 2013;52:775784.Google Scholar
Trombetta, D, Magnusson, L, von Steyern, FV, et al. Translocation t(7;19)(q22;q13) - a recurrent chromosome aberration in pseudomyogenic hemangioendothelioma? Cancer Genet 2011;204:211215.Google Scholar
Walther, C, Tayebwa, J, Lilljebjörn, H, et al. A novel SERPINE1-FOSB fusion gene results in transcriptional up-regulation of FOSB in pseudomyogenic haemangioendothelioma. J Pathol 2014;232:534540.Google Scholar
Antonescu, CR, Zhang, L, Nielsen, GP, et al. Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromosomes Cancer 2011;50:757764.CrossRefGoogle ScholarPubMed
Cools, J, Wlodarska, I, Somers, R, et al. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2002;34:354362.Google Scholar
Bridge, JA, Kanamori, M, Ma, Z, et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol 2001;159:411415.Google Scholar
Debiec-Rychter, M, Marynen, P, Hagemeijer, A, Pauwels, P. ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;38:187190.Google Scholar
Ma, Z, Hill, DA, Collins, MH, et al. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;37:98105.CrossRefGoogle Scholar
Panagopoulos, I, Nilsson, T, Domanski, HA, et al. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer 2006;118:11811186.Google Scholar
Lawrence, B, Perez-Atayde, A, Hibbard, MK, et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 2000;157:377384.Google Scholar
Takeuchi, K, Soda, M, Togashi, Y, et al. Pulmonary inflammatory myofibroblastic tumor expressing a novel fusion, PPFIBP1-ALK: reappraisal of anti-ALK immunohistochemistry as a tool for novel ALK fusion identification. Clin Cancer Res 2011;17:33413348.Google Scholar
Lovly, CM, Gupta, A, Lipson, D, et al. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov 2014;4:889895.Google Scholar
Antonescu, CR, Suurmeijer, AJ, Zhang, L, et al. Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am J Surg Pathol 2015;39:957967.Google Scholar
Kazmierczak, B, Pohnke, Y, Bullerdiek, J. Fusion transcripts between HMGIC gene and RTVL-H-related sequences in mesenchymal tumors without cytogenetic aberrations. Genomics 1996;38:223226.Google Scholar
Schoenmakers, EF, Huysmans, C, van de Ven, WJ. Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas. Cancer Res 1999;59:1923.Google Scholar
Kurose, K, Mine, N, Doi, D, et al. Novel gene fusion COX6C at 8q22–23 to HMGIC at 12q15 in a uterine leiomyoma. Genes Chromosomes Cancer 2000;27:303307.Google Scholar
Mine, N, Kurose, K, Konishi, H, et al. Fusion of a sequence from HEI10 (14q11) to the HMGIC gene at 12q15 in a uterine leiomyoma. Jpn J Cancer Res 2001;92:135139.Google Scholar
Moore, SD, Herrick, SR, Ince, TA, et al. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res 2004;64:55705577.Google Scholar
Velagaleti, GV, Tonk, VS, Hakim, NM, et al. Fusion of HMGA2 to COG5 in uterine leiomyoma. Cancer Genet Cytogenet 2010;202:1116.Google Scholar
Panagopoulos, I, Gorunova, L, Bjerkehagen, B, Heim, S. Novel KAT6B-KANSL1 fusion gene identified by RNA sequencing in retroperitoneal leiomyoma with t(10;17)(q22;q21). PLoS One 2015;10:e0117010.Google Scholar
Astrom, A, D’Amore, ES, Sainati, L, et al. Evidence of involvement of the PLAG1 gene in lipoblastomas. Int J Oncol 2000;16:11071110.Google Scholar
Gisselsson, D, Hibbard, MK, Dal Cin, P, et al. PLAG1 fusion oncogenes in lipoblastoma. Cancer Res 2000;60:48694872.Google Scholar
Sciot, R, De Wever, I, Debiec-Rychter, M. Lipoblastoma in a 23-year-old male: distinction from atypical lipomatous tumor using cytogenetic and fluorescence in-situ hybridization analysis. Virchows Arch 2003;442:468471.Google Scholar
Deen, M, Ebrahim, S, Schloff, D, Mohamed, AN. A novel PLAG1-RAD51L1 gene fusion resulting from a t(8;14)(q12;q24) in a case of lipoblastoma. Cancer Genet 2013;206:233237.Google Scholar
Petit, MM, Mols, R, Schoenmakers, EF, Mandahl, N, Van de Ven, WJ. LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family. Genomics 1996;36:118129.Google Scholar
Petit, MM, Schoenmakers, EF, Huysmans, C, et al. LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new family of LHFP-like genes. Genomics 1999;57:438441.Google Scholar
Kazmierczak, B, Dal Cin, P, Wanschura, S, , et al. Cloning and molecular characterization of part of a new gene fused to HMGIC in mesenchymal tumors. Am J Pathol 1998;152:431435.Google Scholar
Broberg, K, Zhang, M, Strömbeck, B, et al. Fusion of RDC1 with HMGA2 in lipomas as the result of chromosome aberrations involving 2q35–37 and 12q13–15. Int J Oncol 2002;21:321326.Google Scholar
Nilsson, M, Panagopoulos, I, Mertens, F, Mandahl, N. Fusion of the HMGA2 and NFIB genes in lipoma. Virchows Arch 2005;447:855858.Google Scholar
Bianchini, L, Birtwisle, L, Saâda, E, et al. Identification of PPAP2B as a novel recurrent translocation partner gene of HMGA2 in lipomas. Genes Chromosomes Cancer 2013;52:580590.Google Scholar
Panagopoulos, I, Höglund, M, Mertens, F, et al. Fusion of EWS and CHOP genes in myxoid liposarcoma. Oncogene 1996;12:489494.Google Scholar
Crozat, A, Aman, P, Mandahl, N, Ron, D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 1993;363:640644.Google Scholar
Rabbitts, TH, Forster, A, Larson, R, Nathan, P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 1993;4:175180.Google Scholar
Dal Cin, P, Sciot, R, Panagopoulos, I, et al. Additional evidence of a variant translocation t(12;22) with EWS/CHOP fusion in myxoid liposarcoma: clinicopathological features. J Pathol 1997;182:437441.Google Scholar
Taylor, BS, DeCarolis, PL, Angeles, CV, et al. Frequent alterations and epigenetic silencing of differentiation pathway genes in structurally rearranged liposarcomas. Cancer Discov 2011;1:587597.Google Scholar
Storlazzi, CT, Mertens, F, Nascimento, A, et al. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet 2003;12:23492358.Google Scholar
Reid, R, de Silva, MV, Paterson, L, Ryan, E, Fisher, C. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11). Am J Surg Pathol 2003;27:12291236.Google Scholar
Panagopoulos, I, Storlazzi, CT, Fletcher, CD, et al. The chimeric FUS/CREB3L2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer 2004;40:218228.Google Scholar
Mertens, F, Fletcher, CD, Antonescu, CR, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest 2005;85:408415.Google Scholar
Guillou, L, Benhattar, J, Gengler, C, et al. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol 2007;31:13871402.Google Scholar
Brandal, P, Panagopoulos, I, Bjerkehagen, B, et al. Detection of a t(1;22)(q23;q12) translocation leading to an EWSR1-PBX1 fusion gene in a myoepithelioma. Genes Chromosomes Cancer 2008;47:558564.Google Scholar
Antonescu, CR, Zhang, L, Chang, NE, et al. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer 2010;49:11141124.Google Scholar
Brandal, P, Panagopoulos, I, Bjerkehagen, B, Heim, S. t(19;22)(q13;q12) Translocation leading to the novel fusion gene EWSR1-ZNF444 in soft tissue myoepithelial carcinoma. Genes Chromosomes Cancer 2009;48:10511056.Google Scholar
Antonescu, CR, Zhang, L, Shao, SY, et al. Frequent PLAG1 gene rearrangements in skin and soft tissue myoepithelioma with ductal differentiation. Genes Chromosomes Cancer 2013;52:675682.Google Scholar
Huang, SC, Chen, HW, Zhang, L, et al. Novel FUS-KLF17 and EWSR1-KLF17 fusions in myoepithelial tumors. Genes Chromosomes Cancer 2015;54:267275.Google Scholar
Erickson-Johnson, MR, Chou, MM, Evers, BR, et al. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Invest 2011;91:14271433.Google Scholar
Gebre-Medhin, S, Nord, KH, Möller, E, et al. Recurrent rearrangement of the PHF1 gene in ossifying fibromyxoid tumors. Am J Pathol 2012;181:10691077.Google Scholar
Endo, M, Kohashi, K, Yamamoto, H, et al. Ossifying fibromyxoid tumor presenting EP400-PHF1 fusion gene. Hum Pathol 2013;44:26032608.Google Scholar
Antonescu, CR, Sung, YS, Chen, CL, et al. Novel ZC3H7B-BCOR, MEAF6-PHF1, and EPC1-PHF1 fusions in ossifying fibromyxoid tumors: molecular characterization shows genetic overlap with endometrial stromal sarcoma. Genes Chromosomes Cancer 2014;53:183193.Google Scholar
Tanaka, M, Kato, K, Gomi, K, et al. Perivascular epithelioid cell tumor with SFPQ/PSF-TFE3 gene fusion in a patient with advanced neuroblastoma. Am J Surg Pathol 2009;33:14161420.Google Scholar
Dahlén, A, Mertens, F, Mandahl, N, Panagopoulos, I. Molecular genetic characterization of the genomic ACTB-GLI fusion in pericytoma with t(7;12). Biochem Biophys Res Commun 2004;325:13181323.Google Scholar
Carter, JM, Sukov, WR, Montgomery, E, et al. TGFBR3 and MGEA5 rearrangements in pleomorphic hyalinizing angiectatic tumors and the spectrum of related neoplasms. Am J Surg Pathol 2014;38:11821992.Google Scholar
Thway, K, Nicholson, AG, Lawson, K, et al. Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion: a new tumor entity. Am J Surg Pathol 2011;35:17221732.Google Scholar
Barr, FG, Galili, N, Holick, J, et al. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet 1993;3:113117.Google Scholar
Davis, RJ, D’Cruz, CM, Lovell, MA, Biegel, JA, Barr, FG. Fusion of PAX7 to FKHR by the variant t(1;3)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 1994;54:28692872.Google Scholar
Barr, FG, Qualman, SJ, Macris, MH, et al. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res 2002;62:47044710.Google Scholar
Wachtel, M, Dettling, M, Koscielniak, E, et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004;64:55395545.Google Scholar
Mosquera, JM, Sboner, A, Zhang, L, et al. Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer 2013;52:538550.Google Scholar
Robinson, DR, Wu, YM, Kalyana-Sundaram, S, et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet 2013;45:180185.Google Scholar
Mohajeri, A, Tayebwa, J, Collin, A, et al. Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene, nonrandom secondary genomic imbalances, and a characteristic gene expression profile in solitary fibrous tumor. Genes Chromosomes Cancer 2013;52:873886.Google Scholar
Crew, AJ, Clark, J, Fisher, C, et al. Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J 1995;14:23332340.Google Scholar
Skytting, B, Nilsson, G, Brodin, B, et al. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst 1999;91:974975.Google Scholar
Storlazzi, CT, Mertens, F, Mandahl, N, et al. A novel fusion gene, SS18L1/SSX1, in synovial sarcoma. Genes Chromosomes Cancer 2003;37:195200.Google Scholar
West, RB, Rubin, BP, Miller, MA, et al. A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. Proc Natl Acad Sci USA 2006;103:690695.Google Scholar
Möller, E, Mandahl, N, Mertens, F, Panagopoulos, I. Molecular identification of COL6A3-CSF1 fusion transcripts in tenosynovial giant cell tumors. Genes Chromosomes Cancer 2008;47:2125.Google Scholar
Panagopoulos, I, Brandal, P, Gorunova, L, Bjerkehagen, B, Heim, S. Novel CSF1-S100A10 fusion gene and CSF1 transcript identified by RNA sequencing in tenosynovial giant cell tumors. Int J Oncol 2014;44:14251432.Google Scholar
Pfeifer, JD. Molecular Genetic Testing In Surgical Pathology. Philadelphia: Lippincott Williams & Wilkins; 2006.Google Scholar
Yeku, O, Frohman, MA. Rapid amplification of cDNA ends (RACE). Methods Mol Biol 2011;703:107122.Google Scholar
Ladanyi, M. The emerging molecular genetics of sarcoma translocation. Diagn Mol Pathol 1995;4:162173.Google Scholar
Rabbitts, TH. Chromosomal translocation master genes, mouse models and experimental therapeutics. Oncogene 2001;20:57635777.Google Scholar
Xia, SJ, Barr, FG. Chromosome translocations in sarcomas and the emergence of oncogenic transcription factors. Eur J Cancer 2005;41:25132527.Google Scholar
Slater, O, Shipley, J. Clinical relevance of molecular genetics to paediatric sarcomas. J Clin Pathol 2007;60:11871194.Google Scholar
Oda, Y, Tsuneyoshi, M. Recent advances in the molecular pathology of soft tissue sarcoma: implications for diagnosis, patient prognosis, and molecular target therapy in the future. Cancer Sci 2009;100:200208.Google Scholar
Peter, M, Gilbert, E, Delattre, O. A multiplex real-time pcr assay for the detection of gene fusions observed in solid tumors. Lab Invest 2001;81:905912.Google Scholar
Geurts van Kessel, A, de Bruijn, D, Hermsen, L, et al. Masked t(X;18)(p11;q11) in a biphasic synovial sarcoma revealed by FISH and RT-PCR. Genes Chromosomes Cancer 1998;23:198201.Google Scholar
Kaneko, Y, Kobayashi, H, Hanada, M, Satake, N, Maseki, N. EWS-ERG fusion transcript produced by chromosomal insertion in a Ewing sarcoma. Genes Chromosomes Cancer 1997;18:228231.Google Scholar
Lestou, VS, O’Connell, JX, Robichaud, M, et al. Cryptic t(X;18), ins(6;18), and SYT-SSX2 gene fusion in a case of intraneural monophasic synovial sarcoma. Cancer Genet Cytogenet 2002;138:153156.Google Scholar
O’Sullivan, MJ, Kyriakos, M, Zhu, X, et al. Malignant peripheral nerve sheath tumors with t(X;18): a pathologic and molecular genetic study. Mod Pathol 2000;13:12531263.Google Scholar
Ladanyi, M, Woodruff, JM, Scheithauer, BW, et al. Re: O’Sullivan MJ, Kyriakos M, Zhu X, Wick MR, Swanson PE, Dehner LP, Humphrey PA, Pfeifer JD: Malignant peripheral nerve sheath tumors with t(X;18): a pathologic and molecular genetic study. Mod Pathol 2000;13:13361346.Google Scholar
Tamborini, E, Agus, V, Perrone, F, et al. Lack of SYT-SSX fusion transcripts in malignant peripheral nerve sheath tumors on RT-PCR analysis of 34 archival cases. Lab Invest 2002;82:609618.Google Scholar
Fritsch, MK, Bridge, JA, Schuster, AE, Perlman, EJ, Argani, P. Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue. Pediatr Dev Pathol 2003;6:4353.Google Scholar
Stewénius, Y, Jin, Y, Ora, I, et al. High-resolution molecular cytogenetic analysis of Wilms tumors highlights diagnostic difficulties among small round cell kidney tumors. Genes Chromosomes Cancer 2008;47:845852.Google Scholar
Sainati, L, Scapinello, A, Montaldi, A, et al. A mesenchymal chondrosarcoma of a child with the reciprocal translocation (11;22)(q24;q12). Cancer Genet Cytogenet 1993;71:144147.Google Scholar
Li, H, Wang, J, Mor, G, Sklar, J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 2008;321:13571361.Google Scholar
Beck, AH, West, RB, van de Rijn, M. Gene expression profiling for the investigation of soft tissue sarcoma pathogenesis and the identification of diagnostic, prognostic, and predictive biomarkers.Virchows Arch 2010;456:141151.Google Scholar
Løvf, M, Thomassen, GO, Mertens, F, et al. Assessment of fusion gene status in sarcomas using a custom made fusion gene microarray. PLoS One 2013;8:e70649.Google Scholar
Skotheim, RI, Thomassen, GO, Eken, M, et al. A universal assay for detection of oncogenic fusion transcripts by oligo microarray analysis. Mol Cancer 2009;8:5.Google Scholar
Xiong, FF, Li, BS, Zhang, CX, et al. A pipeline with multiplex reverse transcription polymerase chain reaction and microarray for screening of chromosomal translocations in leukemia. Biomed Res Int 2013;2013:135086.Google Scholar
Wada, Y, Matsuura, M, Sugawara, M, et al. Development of detection method for novel fusion gene using GeneChip exon array. J Clin Bioinforma 2014;4:3.Google Scholar
Agerstam, H, Lilljebjörn, H, Lassen, C, et al. Fusion gene-mediated truncation of RUNX1 as a potential mechanism underlying disease progression in the 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 2007;46:635643.Google Scholar
Frith, AE, Hirbe, AC, Van Tine, BA. Novel pathways and molecular targets for the treatment of sarcoma. Curr Oncol Rep 2013;15:378385.Google Scholar
Aragon-Ching, JB, Maki, RG. Treatment of adult soft tissue sarcoma: old concepts, new insights, and potential for drug discovery. Cancer Invest 2012;30:300308.Google Scholar
Martín Liberal, J, Lagares-Tena, L, Sáinz-Jaspeado, M, et al. Targeted therapies in sarcomas: challenging the challenge. Sarcoma 2012;2012:626094.Google Scholar
Wlodarska, I, De Wolf-Peeters, C, Falini, B, et al. The cryptic inv(2)(p23q35) defines a new molecular genetic subtype of ALK-positive anaplastic large-cell lymphoma. Blood 1998;92:26882695.Google Scholar
Touriol, C, Greenland, C, Lamant, L, et al. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 2000;95:32043207.Google Scholar
Tort, F, Pinyol, M, Pulford, K, et al. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest 2001;81:419426.Google Scholar
Lamant, L, Gascoyne, RD, Duplantier, MM, et al. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer 2003;37:427432.Google Scholar
Morris, SW, Kirstein, MN, Valentine, MB, et al. Fusion of a kinase gene, ALK to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1994;263:12811284.Google Scholar
Hernández, L, Pinyol, M, Hernández, S, et al. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 1999;94:32653268.Google Scholar
Lamant, L, Dastugue, N, Pulford, K, Delsol, G, Mariamé, B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 1999;93:30883095.Google Scholar
Liang, X, Meech, SJ, Odom, LF, et al. Assessment of t(2;5)(p23;q35) translocation and variants in pediatric ALK+ anaplastic large cell lymphoma. Am J Clin Pathol 2004;121:496506.Google Scholar
Lin, E, Li, L, Guan, Y, et al. Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Mol Cancer Res 2009;7:14661476.Google Scholar
Lipson, D, Capelletti, M, Yelensky, R, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012;18:382384.Google Scholar
Chikatsu, N, Kojima, H, Suzukawa, K, et al. ALK+, CD30-, CD20- large B-cell lymphoma containing anaplastic lymphoma kinase (ALK) fused to clathrin heavy chain gene (CLTC). Mod Pathol 2003;16:828832.Google Scholar
Adam, P, Katzenberger, T, Seeberger, H, et al. A case of a diffuse large B-cell lymphoma of plasmablastic type associated with the t(2;5)(p23;q35) chromosome translocation. Am J Surg Pathol 2003;27:14731476.Google Scholar
Van Roosbroeck, K, Cools, J, Dierickx, D, et al. ALK-positive large B-cell lymphomas with cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica 2010;95:509513.Google Scholar
Takeuchi, K, Soda, M, Togashi, Y, et al. Identification of a novel fusion, SQSTM1-ALK, in ALK-positive large B-cell lymphoma. Haematologica 2011;96:464467.Google Scholar
Jazii, FR, Najafi, Z, Malekzadeh, R, et al. Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J Gastroenterol 2006;12:71047112.Google Scholar
Debelenko, LV, Raimondi, SC, Daw, N, et al. Renal cell carcinoma with novel VCL-ALK fusion: new representative of ALK-associated tumor spectrum. Mod Pathol 2011;24:430442.Google Scholar
Röttgers, S, Gombert, M, Teigler-Schlegel, A, et al. ALK fusion genes in children with atypical myeloproliferative leukemia. Leukemia 2010;24:11971200.Google Scholar
Takeuchi, K, Choi, YL, Togashi, Y, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 2009;15:31433149.Google Scholar
Togashi, Y, Soda, M, Sakata, S, et al. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One 2012;7:e31323.Google Scholar
Rikova, K, Guo, A, Zeng, Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007;131:11901203.Google Scholar
Ren, H, Tan, ZP, Zhu, X, et al. Identification of anaplastic lymphoma kinase as a potential therapeutic target in ovarian cancer. Cancer Res 2012;72:33123323.Google Scholar
Chan, JK, Lamant, L, Algar, E, et al. ALK+ histiocytosis: a novel type of systemic histiocytic proliferative disorder of early infancy. Blood 2008;112:29652968.Google Scholar
Yamamoto, Y, Tsuzuki, S, Tsuzuki, M, et al. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood 2010;116:42744283.Google Scholar
Bohlander, SK. ETV6: a versatile player in leukemogenesis. Semin Cancer Biol 2005;15:162174.Google Scholar
Eguchi, M, Eguchi-Ishimae, M, Tojo, A, et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 1999;93:13551363.Google Scholar
Tognon, C, Knezevich, SR, Huntsman, D, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002;2:367376.Google Scholar
Skálová, A, Vanecek, T, Sima, R, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol 2010;34:599608.Google Scholar
Leeman-Neill, RJ, Kelly, LM, Liu, P, et al. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer 2014;120:799807.Google Scholar
Bilodeau, EA, Weinreb, I, Antonescu, CR, et al. Clear cell odontogenic carcinomas show EWSR1 rearrangements: a novel finding and a biological link to salivary clear cell carcinomas. Am J Surg Pathol 2013;37:10011005.Google Scholar
Arbajian, E, Magnusson, L, Brosjö, O, et al. A benign vascular tumor with a new fusion gene: EWSR1-NFATC1 in hemangioma of the bone. Am J Surg Pathol 2013;37:613616.Google Scholar
Möller, E, Stenman, G, Mandahl, N, et al. POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J Pathol 2008;215:7886.Google Scholar
Antonescu, CR, Katabi, N, Zhang, L, et al. EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear-cell carcinoma of salivary gland. Genes Chromosomes Cancer 2011;50:559570.Google Scholar
Skálová, A, Weinreb, I, Hyrcza, M, et al. Clear cell myoepithelial carcinoma of salivary glands showing EWSR1 rearrangement: molecular analysis of 94 salivary gland carcinomas with prominent clear cell component. Am J Surg Pathol 2015;39:338348.Google Scholar
Panagopoulos, I, Thorsen, J, Gorunova, L, et al. RNA sequencing identifies fusion of the EWSR1 and YY1 genes in mesothelioma with t(14;22)(q32;q12). Genes Chromosomes Cancer 2013;52:733740.Google Scholar
Yamaguchi, S, Yamazaki, Y, Ishikawa, Y, et al. EWSR1 is fused to POU5F1 in a bone tumor with translocation t(6;22)(p21;q12). Genes Chromosomes Cancer 2005;43:217222.Google Scholar
Panagopoulos, I, Aman, P, Fioretos, T, et al. Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22). Genes Chromosomes Cancer 1994;11:256262.Google Scholar
Puls, F, Arbajian, E, Magnusson, L, et al. Myoepithelioma of bone with a novel FUS-POU5F1 fusion gene. Histopathology 2014;65:917922.Google Scholar
Geurts, JM, Schoenmakers, EF, Röijer, E, Stenman, G, Van de Ven, WJ. Expression of reciprocal hybrid transcripts of HMGIC and FHIT in a pleomorphic adenoma of the parotid gland. Cancer Res 1997;57:1317.Google Scholar
Rogalla, P, Lemke, I, Kazmierczak, B, Bullerdiek, J. An identical HMGIC-LPP fusion transcript is consistently expressed in pulmonary chondroid hamartomas with t(3;12)(q27-28;q14-15). Genes Chromosomes Cancer 2000;29:363366.Google Scholar
Strehl, S, Nebral, K, König, M, et al. ETV6-NCOA2: a novel fusion gene in acute leukemia associated with coexpression of T-lymphoid and myeloid markers and frequent NOTCH1 mutations. Clin Cancer Res 2008;14:977983.Google Scholar
Asp, J, Persson, F, Kost-Alimova, M, Stenman, G. CHCHD7-PLAG1 and TCEA1-PLAG1 gene fusions resulting from cryptic, intrachromosomal 8q rearrangements in pleomorphic salivary gland adenomas. Genes Chromosomes Cancer 2006;45:820828.Google Scholar
Davies, KD, Doebele, RC. Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 2013;19:40404045.Google Scholar
Ross, H, Argani, P. Xp11 translocation renal cell carcinoma. Pathology 2010;42:369373.Google Scholar
Oliveira, AM, Perez-Atayde, AR, Dal Cin, P, et al. Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene 2005;24:34193426.Google Scholar
Oliveira, AM, Chou, MM. USP6-induced neoplasms: the biologic spectrum of aneurysmal bone cyst and nodular fasciitis. Hum Pathol 2014;45:111.Google Scholar
Law, WJ, Cann, KL, Hicks, GG. TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Brief Funct Genomic Proteomic 2006;5:814.Google Scholar
Kovar, H. Kovar, H. Dr. Jekyll and Mr. Hyde: the two faces of the FUS/EWS/TAF15 protein family. Sarcoma 2011;2011:837474.Google Scholar
Turc-Carel, C, Philip, I, Berger, M-P, Philip, T, Lenoir, GM. Chromosomal translocations 11;22 in cell lines of Ewing’s sarcoma. N Engl J Med 1983;309:497498.Google Scholar
Tomlins, SA, Rhodes, DR, Perner, S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005;310:644648.Google Scholar
Wang, J, Cai, Y, Ren, C, Ittmann, M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 2006;66:83478351.Google Scholar
Tomlins, SA, Mehra, R, Rhodes, DR, et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 2006;66:33963400.Google Scholar
Kumar-Sinha, C, Tomlins, SA, Chinnaiyan, AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008;8:497511.Google Scholar
Truong, AH, Ben-David, Y. The role of Fli-1 in normal cell function and malignant transformation. Oncogene 2000;19:64826489.Google Scholar
Arvand, A, Denny, CT. Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene 2001;20:57475754.Google Scholar
Hai, T, Hartman, MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 2001;273:111.Google Scholar
Brown, AD, Lopez-Terrada, D, Denny, C, Lee, KA. Promoters containing ATF-binding sites are de-regulated in cells that express the EWS/ATF1 oncogene. Oncogene 1995;10:17491756.Google Scholar
Panagopoulos, I, Möller, E, Dahlén, A, et al. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 2007;46:181191.Google Scholar
Lee, SB, Haber, DA. Wilms tumor and the WT1 gene. Exp Cell Res 2001;264: 7499.Google Scholar
Kim, J, Lee, K, Pelletier, J. The desmoplastic small round cell tumor t(11;22) translocation produces EWS/WT1 isoforms with differing oncogenic properties. Oncogene 1998;16:19731979.Google Scholar
Reynolds, PA, Smolen, GA, Palmer, RE, et al. Identification of a DNA-binding site and transcriptional target for the EWS-WT1(+KTS) oncoprotein. Genes Dev 2003;17:20942107.Google Scholar
Ohkura, N, Hijikuro, M, Yamamoto, A, Miki, K. Molecular cloning of a novel thyroid/steroid receptor superfamily gene from cultured rat neuronal cells. Biochem Biophys Res Commun 1994;205:19591965.Google Scholar
Ohkura, N, Yaguchi, H, Tsukada, T, Yamaguchi, K. The EWS/NOR1 fusion gene product gains a novel activity affecting pre-mRNA splicing. J Biol Chem 2002;277:535543.Google Scholar
Gan, TI, Rowen, L, Nesbitt, R, et al. Genomic organization of human TCF12 gene and spliced mRNA variants producing isoforms of transcription factor HTF4. Cytogenet Genome Res 2002;98:245248.Google Scholar
Mencinger, M, Panagopoulos, I, Andreasson, P, et al. Characterization and chromosomal mapping of the human TFG gene involved in thyroid carcinoma. Genomics 1997;41:327331.Google Scholar
Greco, A, Mariani, C, Miranda, C, et al. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 1995;15:61186127.Google Scholar
Hunger, SP, Galili, N, Carroll, AJ, et al. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 1991;77:687693.Google Scholar
Kamps, MP, Murre, C, Sun, XH, Baltimore, D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 1990;60:547555.Google Scholar
Turc-Carel, C, Limon, J, Dal Cin, P, et al. Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet 1986;23:291299.Google Scholar
Åman, P, Ron, D, Mandahl, N, et al. Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer 1992;5:278285.Google Scholar
Kuroda, M, Ishida, T, Takanashi, M, et al. Oncogenic transformation and inhibition of adipocytic conversion of preadipocytes by TLS/FUS-CHOP type II chimeric protein. Am J Pathol 1997;151:735744.Google Scholar
Zinszner, H, Albalat, R, Ron, D. A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev 1994;8:25132526.Google Scholar
Ichikawa, H, Shimizu, K, Hayashi, Y, Ohki, M. An RNA-binding protein gene, TLS/FUS, is fused to erg in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res 1994;54:28652868.Google Scholar
Åman, P, Panagopoulos, I, Lassen, C, et al. Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics 1996;37:18.Google Scholar
Ron, D, Brasier, AR, McGehee, RE Jr, Habener, JF. Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP). J Clin Invest 1992;89:223233.Google Scholar
Ron, D, Habener, JF. CHOP a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant negative inhibitor of gene transcription. Genes Dev 1992;6:439453.Google Scholar
Adelmant, G, Gilbert, JD, Freytag, SO. Human translocation liposarcoma-CCAAT/enhancer binding protein (C/EBP) homologous protein (TLS-CHOP) oncoprotein prevents adipocyte differentiation by directly interfering with C/EBPbeta function. J Biol Chem 1998;273:1557415581.Google Scholar
Panagopoulos, I, Möller, E, Dahlén, A, et al. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 2007;46:181191.Google Scholar
Robinson, DR, Wu, YM, Lin, SF. The protein tyrosine kinase family of the human genome. Oncogene 2000;19:55485557.Google Scholar
Blume-Jensen, P, Hunter, T. Oncogenic kinase signalling. Nature 2001; 411:355365.Google Scholar
Demetri, GD. Targeting c-kit mutations in solid tumors: scientific rationale and novel therapeutic options. Semin Oncol 2001;28(5 Suppl 17):1926.Google Scholar
Zhang, J, Hochwald, SN. Targeting receptor tyrosine kinases in solid tumors. Surg Oncol Clin N Am 2013;22:685703.Google Scholar
Ladanyi, M. Aberrant ALK tyrosine kinase signaling. Different cellular lineages, common oncogenic mechanisms? Am J Pathol 2000;157:341345.Google Scholar
Duyster, J, Bai, R-Y, Morris, SW. Translocations involving anaplastic lymphoma kinase (ALK). Oncogene 2001;20:56235637.Google Scholar
Bai, RY, Dieter, P, Peschel, C, Morris, SW, Duyster, J. Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-gamma to mediate its mitogenicity. Mol Cell Biol 1998;18:69516961.Google Scholar
Bai, RY, Ouyang, T, Miething, C, et al. Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 2000;96:43194327.Google Scholar
Kuefer, MU, Look, AT, Pulford, K, et al. Retrovirus-mediated gene transfer of NPM-ALK causes lymphoid malignancy in mice. Blood 1997;90:29012910.Google Scholar
Chiarle, R, Gong, JZ, Guasparri, I, et al. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood 2003;101:19191927.CrossRefGoogle ScholarPubMed
Armstrong, F, Duplantier, MM, Trempat, P, et al. Differential effects of X-ALK fusion proteins on proliferation, transformation, and invasion properties of NIH3T3 cells. Oncogene 2004;23:60716082.Google Scholar
Roskoski, R Jr. Anaplastic lymphoma kinase (ALK): structure, oncogenic activation, and pharmacological inhibition. Pharmacol Res 2013;68:6894.Google Scholar
Ou, SH. Crizotinib: a novel and first-in-class multitargeted tyrosine kinase inhibitor for the treatment of anaplastic lymphoma kinase rearranged non-small cell lung cancer and beyond. Drug Des Devel Ther 2011;5:471485.Google Scholar
Butrynski, JE, D'Adamo, DR, Hornick, JL, et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med 2010;363:17271733.Google Scholar
Jacob, SV, Reith, JD, Kojima, AY, et al. An unusual case of systemic inflammatory myofibroblastic tumor with successful treatment with ALK-inhibitor. Case Rep Pathol 2014;2014:470340.Google Scholar
Bibel, M, Barde, YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 2000;14:29192937.Google Scholar
Lannon, CL, Sorensen, PH. ETV6-NTRK3: a chimeric protein tyrosine kinase with transformation activity in multiple cell lineages. Semin Cancer Biol 2005;15:215223.Google Scholar
Wai, DH, Knezevich, SR, Lucas, T, et al. The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene 2000;19:906915.Google Scholar
Tognon, C, Garnett, M, Kenward, E, et al. The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling for fibroblast transformation. Cancer Res 2001;61:89098916.Google Scholar
Lannon, CL, Martin, MJ, Tognon, CE, et al. A highly conserved NTRK3 C-terminal sequence in the ETV6-NTRK3 oncoprotein binds the phosphotyrosine binding domain of insulin receptor substrate-1: an essential interaction for transformation. J Biol Chem 2004;279:62256234.Google Scholar
Chi, HT, Ly, BT, Kano, Y, et al. ETV6-NTRK3 as a therapeutic target of small molecule inhibitor PKC412. Biochem Biophys Res Commun 2012;429:8792.Google Scholar
Limon, J, Dal Cin, P, Sandberg, AA. Translocations involving the X chromosome in solid tumors: presentation of of two sarcomas with t(X;18)(q13;p11). Cancer Genet Cytogenet 1986;23:8791.Google Scholar
Turc-Carel, C, Dal Cin, P, Limon, J, et al. Involvment of chromosome X in primary cytogenetic change in human neoplasia: nonrandom translocation in synovial sarcoma. Proc Natl Acad Sci USA 1987;84:19811985.Google Scholar
Dal Cin, P, Rao, U, Jani-Sait, S, Karakousis, C, Sandberg, AA. Chromosomes in the diagnosis of soft tissue tumors. I. Synovial sarcoma. Mod Pathol 1992;5:357362.Google Scholar
dos Santos, NR, de Bruijn, DR, van Kessel, AG. Molecular mechanisms underlying human synovial sarcoma development. Genes Chromosomes Cancer 2001;30:114.Google Scholar
Clark, AJ, Rocques, PJ, Crew, AJ, et al. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet 1994;7:502508.Google Scholar
Güre, AO, Wei, IJ, Old, LJ, Chen, YT. The SSX gene family: characterization of 9 complete genes. Int J Cancer 2002;101:448453.Google Scholar
Fligman, I, Lonardo, F, Jhanwar, SC, et al. Molecular diagnosis of synovial sarcoma and characterization of a variant SYT-SSX2 fusion transcript. Am J Pathol 1995;147:15921599.Google Scholar
Mancuso, T, Mezzelani, A, Riva, C, et al. Analysis of SYT-SSX fusion transcripts and bcl-2 expression and phosphorylation status in synovial sarcoma. Lab Invest 2000;80:805813.Google Scholar
Safar, A, Wickert, R, Nelson, M, Neff, JR, Bridge, JA. Characterization of a variant SYT-SSX1 synovial sarcoma fusion transcript. Diagn Mol Pathol 1998;7:283287.Google Scholar
Hendricks, KB, Shanahan, F, Lees, E. Role for BRG1 in cell cycle control and tumor suppression. Mol Cell Biol 2004;24:362376.Google Scholar
Gure, AO, Türeci, Ö, Sahin, U, et al. SSX: a multigene family with several members transcribed in normal testis and human cancer. Int J Cancer 1997;72:965971.Google Scholar
de Bruijn, DR, dos Santos, NR, Thijssen, J, et al. The synovial sarcoma associated protein SYT interacts with the acute leukemia associated protein AF10. Oncogene 2001;20:32813289.Google Scholar
Eid, JE, Kung, AL, Scully, R, Livingston, DM. p300 Interacts with the nuclear proto-oncoprotein SYT as part of the active control of cell adhesion. Cell 2000;102:839848.Google Scholar
Ishida, M, Tanaka, S, Ohki, M, Ohta, T. Transcriptional coactivator activity of SYT is negatively regulated by BRM and Brg1. Genes Cells 2004;9:419428.Google Scholar
Ito, T, Ouchida, M, Ito, S, et al. SYT, a partner of SYT-SSX oncoprotein in synovial sarcomas, interacts with mSin3A, a component of histone deacetylase complex. Lab Invest 2004;84:14841490.Google Scholar
Nagai, M, Tanaka, S, Tsuda, M, et al. Analysis of transforming activity of human synovial sarcoma-associated chimeric protein SYT-SSX1 bound to chromatin remodeling factor hBRM/hSNF1 alpha. Proc Natl Acad Sci USA 2001;98:38433848.Google Scholar
Thaete, C, Brett, D, Monaghan, P, et al. Functional domains of SYT and SYT-SSX synovial sarcoma translocation proteins and co-localization with the SNF protein BRM in the nucleus. Hum Mol Genet 1999;8:585591.Google Scholar
Tureci, O, Sahin, U, Schobert, I, et al. The SSX-2 gene, which is involved in the t(X;18) translocation of synovial sarcomas, codes for the human tumor antigen HOM-MEL-40. Cancer Res 1996;56:47664772.Google Scholar
de Bruijn, DR, Nap, JP, van Kessel, AG. The (epi)genetics of human synovial sarcoma. Genes Chromosomes Cancer 2007;46:107117.Google Scholar
de Bruijn, DR, Allander, SV, van Dijk, AH, et al. The synovial sarcoma-associated SS18-SSX2 fusion protein induces epigenetic gene (de)regulation. Cancer Res 2006;66:94749482.Google Scholar
Ito, T, Ouchida, M, Morimoto, Y, et al. Significant growth suppression of synovial sarcomas by the histone deacetylase inhibitor FK228 in vitro and in vivo. Cancer Lett 2005;224:311319.Google Scholar
Lubieniecka, JM, de Bruijn, DR, Su, L, et al. Histone deacetylase inhibitors reverse SS18-SSX-mediated polycomb silencing of the tumor suppressor early growth response 1 in synovial sarcoma. Cancer Res 2008;68:43034310.Google Scholar
Subramaniam, MM, Calabuig-Fariñas, S, Pellin, A, Llombart-Bosch, A. Mutation analysis of E-cadherin, beta-catenin and APC genes in synovial sarcoma. Histopathology 2010;57:482486.Google Scholar
Barham, W, Frump, AL, Sherrill, TP, et al. Targeting the Wnt pathway in synovial sarcoma models. Cancer Discov 2013;3:12861301.Google Scholar
Friedrichs, N, Trautmann, M, Endl, E, et al. Phosphatidylinositol-3’-kinase/AKT signaling is essential in synovial sarcoma. Int J Cancer 2011;129:15641575.Google Scholar
Setsu, N, Kohashi, K, Fushimi, F, et al. Prognostic impact of the activation status of the Akt/mTOR pathway in synovial sarcoma. Cancer 2013;119:35043513.Google Scholar
Nielsen, TO, Poulin, NM, Ladanyi, M. Synovial sarcoma: recent discoveries as a roadmap to new avenues for therapy. Cancer Discov 2015;5:124134.Google Scholar
Pedeutour, F, Simon, MP, Minoletti, F, et al. Translocation, t(17;22)(q22;q13), in dermatofibrosarcoma protuberans: a new tumor-associated chromosome rearrangement. Cytogenet Cell Genet 1996;72:171174.Google Scholar
Sjoblom, T, Shimizu, A, O’Brien, KP, et al. Growth inhibition of dermatofibrosarcoma protuberans tumors by the platelet-derived growth factor receptor antagonist STI571 through induction of apoptosis. Cancer Res 2001;61:57785783.Google Scholar
Abrams, TA, Schuetze, SM. Targeted therapy for dermatofibrosarcoma protuberans. Curr Oncol Rep 2006;8:291296.Google Scholar
Llombart, B, Sanmartín, O, López-Guerrero, JA, et al. Dermatofibrosarcoma protuberans: clinical, pathological, and genetic (COL1A1-PDGFB ) study with therapeutic implications. Histopathology 2009;54:860872.Google Scholar
Barr, FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 2001;20:57365746.Google Scholar
Tremblay, P, Gruss, P. Pax: genes for mice and men. Pharmacol Ther 1994;61:205226.Google Scholar
Underhill, DA. Genetic and biochemical diversity in the Pax gene family. Biochem Cell Biol 2000;78:629638.Google Scholar
Chi, N, Epstein, JA. Getting your Pax straight: Pax proteins in development and disease. Trends Genet 2002;18:4147.Google Scholar
Buckingham, M, Relaix, F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 2007;23:645673.Google Scholar
Epstein, DJ, Vekemans, M, Gros, P. Splotch (Sp-2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 1991;67:767774.Google Scholar
Baldwin, CT, Hoth, CF, Amos, JA, da-Silva, EO, Milunsky, A. An exonic mutation in the HuP2 paired domain gene causes Waardenburg’s syndrome. Nature 1992;355:637638.Google Scholar
Tassabehji, M, Read, AP, Newton, VE, et al. Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Nat Genet 1993;3:2630.Google Scholar
Asher, JH Jr, Sommer, A, Morell, R, Friedman, TB. Missense mutation in the paired domain of PAX3 causes craniofacial-deafness-hand syndrome. Hum Mutat 1996;7:3035.Google Scholar
Kaufmann, E, Knochel, W. Five years on the wings of fork head. Mech Dev 1996;57:320.Google Scholar
Katoh, M, Katoh, M. Human FOX gene family [review]. Int J Oncol 2004;25:14951500.Google Scholar
Durham, SK, Suwanichkul, A, Scheimann, AO, et al. FKHR binds the insulin response element in the insulin-like growth factor binding protein-1 promoter. Endocrinology 1999;140:31403146.Google Scholar
Guo, S, Rena, G, Cichy, S, et al. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem 1999;274:1718417192.Google Scholar
Brunet, A, Bonni, A, Zigmond, MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857868.Google Scholar
Accili, D, Arden, KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004;117:421426.Google Scholar
Hillion, J, Le Coniat, M, Jonveaux, P, Berger, R, Bernard, OA. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood 1997;90:37143719.Google Scholar
Parry, P, Wei, Y, Evans, G. Cloning and characterization of the t(X;11) breakpoint from a leukemic cell line identify a new member of the forkhead gene family. Genes Chromosomes Cancer 1994;11:7984.Google Scholar
Barr, FG, Nauta, LE, Davis, RJ, et al. In vivo amplification of the PAX3-FKHR and PAX7-FKHR fusion genes in alveolar rhabdomyosarcoma. Hum Mol Genet 1996;5:1521.Google Scholar
Davis, RJ, Barr, FG. Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA 1997;94:80478051.Google Scholar
Weber-Hall, S, McManus, A, Anderson, J, et al. Novel formation and amplification of the PAX7-FKHR fusion gene in a case of alveolar rhabdomyosarcoma. Genes Chromosomes Cancer 1996;17:713.Google Scholar
Fitzgerald, JC, Scherr, AM, Barr, FG. Structural analysis of PAX 7 rearrangements in alveolar rhabdomyosarcoma. Cancer Genet Cytogenet 2000;117:3740.Google Scholar
del Peso, L, González, VM, Hernández, R, Barr, FG, Núñez, G. Regulation of the forkhead transcription factor FKHR, but not the PAX3-FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene 1999;18:73287333.Google Scholar
Fredericks, WJ, Galili, N, Mukhopadhyay, S, et al. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol 1995;15:15221535.Google Scholar
Scheidler, S, Fredericks, WJ, Rauscher, FJ III, Barr, FG, Vogt, PK. The hybrid PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma transforms fibroblasts in culture. Proc Natl Acad Sci USA 1996;93:98059809.Google Scholar
Lam, PY, Sublett, JE, Hollenbach, AD, Roussel, MF. The oncogenic potential of the Pax3-FKHR fusion protein requires the Pax3 homeodomain recognition helix but not the Pax3 paired-box DNA binding domain. Mol Cell Biol 1999;19:594601.Google Scholar
Xia, SJ, Barr, FG. Analysis of the transforming and growth suppressive activities of the PAX3-FKHR oncoprotein. Oncogene 2004;23:68646871.Google Scholar
Deneen, B, Denny, CT. Loss of p16 pathways stabilizes EWS/FLI1 expression and complements EWS/FLI1 mediated transformation. Oncogene 2001;20:67316741.Google Scholar
Ren, YX, Finckenstein, FG, Abdueva, DA, et al. Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res 2008;68:65876597.Google Scholar
Keller, C, Arenkiel, BR, Coffin, CM, et al.. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 2004;18:26142626.Google Scholar
Begum, S, Emami, N, Cheung, A, et al. Cell-type-specific regulation of distinct sets of gene targets by Pax3 and Pax3/FKHR. Oncogene 2005;24:18601872.Google Scholar
Marshall, AD, Grosveld, GC. Alveolar rhabdomyosarcoma-The molecular drivers of PAX3/7-FOXO1-induced tumorigenesis. Skelet Muscle 2012;2:25.Google Scholar
Wachtel, M, Dettling, M, Koscielniak, E, et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004;64:55395545.Google Scholar
Jankowski, K, Kucia, M, Wysoczynski, M, et al. Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res 2003;63:79267935.Google Scholar
Nabarro, S, Himoudi, N, Papanastasiou, A, et al. Coordinated oncogenic transformation and inhibition of host immune responses by the PAX3-FKHR fusion oncoprotein. J Exp Med 2005;202:13991410.Google Scholar
Reichek, JL, Duan, F, Smith, LM, et al. Genomic and clinical analysis of amplification of the 13q31 chromosomal region in alveolar rhabdomyosarcoma: a report from the Children's Oncology Group. Clin Cancer Res 2011;17:14631473.Google Scholar
Heimann, P, el Housni, H, Ogur, G, et al. Fusion of a novel gene, RCC17, to the TFE3 gene in t(X;17)(p11.2;q25.3)-bearing papillary renal cell carcinomas. Cancer Res 2001;61:41304135.Google Scholar
Alexandru, G, Graumann, J, Smith, GT, et al. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell 2008;134:804816.Google Scholar
Martina, JA, Diab, HI, Li, H, Puertollano, R. Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis. Cell Mol Life Sci 2014;71:24832497.Google Scholar
Sidhar, SK, Clark, J, Gill, S, et al. The t(X;1)(p11.2;q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene. Hum Mol Genet 1996;5:13331338.Google Scholar
Clark, J, Lu, YJ, Sidhar, SK, et al. Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene 1997;15:22332239.Google Scholar
Argani, P, Lui, MY, Couturier, J, et al. A novel CLTC-TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23). Oncogene 2003;22:53745378.Google Scholar
Davis, IJ, Hsi, BL, Arroyo, JD, et al. Cloning of an alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proc Natl Acad Sci USA 2003;100:60516056.Google Scholar
Argani, P, Antonescu, CR, Illei, PB, et al. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol 2001;159:179192.Google Scholar
Tsuda, M, Davis, IJ, Argani, P, et al. TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res 2007;67:919929.Google Scholar
Mitton, B, Federman, N. Alveolar soft part sarcoma: molecular pathogenesis and implications for novel targeted therapies. Sarcoma 2012;2012:428789.Google Scholar
Barr, FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 2001;20:57365746.Google Scholar
Tremblay, P, Gruss, P. Pax: genes for mice and men. Pharmacol Ther 1994;61:205226.Google Scholar
Underhill, DA. Genetic and biochemical diversity in the Pax gene family. Biochem Cell Biol 2000;78:629638.Google Scholar
Chi, N, Epstein, JA. Getting your Pax straight: Pax proteins in development and disease. Trends Genet 2002;18:4147.Google Scholar
Buckingham, M, Relaix, F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 2007;23:645673.Google Scholar
Epstein, DJ, Vekemans, M, Gros, P. Splotch (Sp-2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 1991;67:767774.Google Scholar
Baldwin, CT, Hoth, CF, Amos, JA, da-Silva, EO, Milunsky, A. An exonic mutation in the HuP2 paired domain gene causes Waardenburg’s syndrome. Nature 1992;355:637638.Google Scholar
Tassabehji, M, Read, AP, Newton, VE, et al. Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Nat Genet 1993;3:2630.Google Scholar
Asher, JH Jr, Sommer, A, Morell, R, Friedman, TB. Missense mutation in the paired domain of PAX3 causes craniofacial-deafness-hand syndrome. Hum Mutat 1996;7:3035.Google Scholar
Kaufmann, E, Knochel, W. Five years on the wings of fork head. Mech Dev 1996;57:320.Google Scholar
Katoh, M, Katoh, M. Human FOX gene family [review]. Int J Oncol 2004;25:14951500.Google Scholar
Durham, SK, Suwanichkul, A, Scheimann, AO, et al. FKHR binds the insulin response element in the insulin-like growth factor binding protein-1 promoter. Endocrinology 1999;140:31403146.Google Scholar
Guo, S, Rena, G, Cichy, S, et al. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem 1999;274:1718417192.Google Scholar
Brunet, A, Bonni, A, Zigmond, MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857868.Google Scholar
Accili, D, Arden, KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004;117:421426.Google Scholar
Hillion, J, Le Coniat, M, Jonveaux, P, Berger, R, Bernard, OA. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood 1997;90:37143719.Google Scholar
Parry, P, Wei, Y, Evans, G. Cloning and characterization of the t(X;11) breakpoint from a leukemic cell line identify a new member of the forkhead gene family. Genes Chromosomes Cancer 1994;11:7984.Google Scholar
Barr, FG, Nauta, LE, Davis, RJ, et al. In vivo amplification of the PAX3-FKHR and PAX7-FKHR fusion genes in alveolar rhabdomyosarcoma. Hum Mol Genet 1996;5:1521.Google Scholar
Davis, RJ, Barr, FG. Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA 1997;94:80478051.Google Scholar
Weber-Hall, S, McManus, A, Anderson, J, et al. Novel formation and amplification of the PAX7-FKHR fusion gene in a case of alveolar rhabdomyosarcoma. Genes Chromosomes Cancer 1996;17:713.Google Scholar
Fitzgerald, JC, Scherr, AM, Barr, FG. Structural analysis of PAX 7 rearrangements in alveolar rhabdomyosarcoma. Cancer Genet Cytogenet 2000;117:3740.Google Scholar
del Peso, L, González, VM, Hernández, R, Barr, FG, Núñez, G. Regulation of the forkhead transcription factor FKHR, but not the PAX3-FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene 1999;18:73287333.Google Scholar
Fredericks, WJ, Galili, N, Mukhopadhyay, S, et al. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol 1995;15:15221535.Google Scholar
Scheidler, S, Fredericks, WJ, Rauscher, FJ III, Barr, FG, Vogt, PK. The hybrid PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma transforms fibroblasts in culture. Proc Natl Acad Sci USA 1996;93:98059809.Google Scholar
Lam, PY, Sublett, JE, Hollenbach, AD, Roussel, MF. The oncogenic potential of the Pax3-FKHR fusion protein requires the Pax3 homeodomain recognition helix but not the Pax3 paired-box DNA binding domain. Mol Cell Biol 1999;19:594601.Google Scholar
Xia, SJ, Barr, FG. Analysis of the transforming and growth suppressive activities of the PAX3-FKHR oncoprotein. Oncogene 2004;23:68646871.Google Scholar
Deneen, B, Denny, CT. Loss of p16 pathways stabilizes EWS/FLI1 expression and complements EWS/FLI1 mediated transformation. Oncogene 2001;20:67316741.Google Scholar
Ren, YX, Finckenstein, FG, Abdueva, DA, et al. Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res 2008;68:65876597.Google Scholar
Keller, C, Arenkiel, BR, Coffin, CM, et al.. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 2004;18:26142626.Google Scholar
Begum, S, Emami, N, Cheung, A, et al. Cell-type-specific regulation of distinct sets of gene targets by Pax3 and Pax3/FKHR. Oncogene 2005;24:18601872.Google Scholar
Marshall, AD, Grosveld, GC. Alveolar rhabdomyosarcoma-The molecular drivers of PAX3/7-FOXO1-induced tumorigenesis. Skelet Muscle 2012;2:25.Google Scholar
Wachtel, M, Dettling, M, Koscielniak, E, et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004;64:55395545.Google Scholar
Jankowski, K, Kucia, M, Wysoczynski, M, et al. Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res 2003;63:79267935.Google Scholar
Nabarro, S, Himoudi, N, Papanastasiou, A, et al. Coordinated oncogenic transformation and inhibition of host immune responses by the PAX3-FKHR fusion oncoprotein. J Exp Med 2005;202:13991410.Google Scholar
Reichek, JL, Duan, F, Smith, LM, et al. Genomic and clinical analysis of amplification of the 13q31 chromosomal region in alveolar rhabdomyosarcoma: a report from the Children's Oncology Group. Clin Cancer Res 2011;17:14631473.Google Scholar
Heimann, P, el Housni, H, Ogur, G, et al. Fusion of a novel gene, RCC17, to the TFE3 gene in t(X;17)(p11.2;q25.3)-bearing papillary renal cell carcinomas. Cancer Res 2001;61:41304135.Google Scholar
Alexandru, G, Graumann, J, Smith, GT, et al. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell 2008;134:804816.Google Scholar
Martina, JA, Diab, HI, Li, H, Puertollano, R. Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis. Cell Mol Life Sci 2014;71:24832497.Google Scholar
Sidhar, SK, Clark, J, Gill, S, et al. The t(X;1)(p11.2;q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene. Hum Mol Genet 1996;5:13331338.Google Scholar
Clark, J, Lu, YJ, Sidhar, SK, et al. Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene 1997;15:22332239.Google Scholar
Argani, P, Lui, MY, Couturier, J, et al. A novel CLTC-TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23). Oncogene 2003;22:53745378.Google Scholar
Davis, IJ, Hsi, BL, Arroyo, JD, et al. Cloning of an alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proc Natl Acad Sci USA 2003;100:60516056.Google Scholar
Argani, P, Antonescu, CR, Illei, PB, et al. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol 2001;159:179192.Google Scholar
Tsuda, M, Davis, IJ, Argani, P, et al. TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res 2007;67:919929.Google Scholar
Mitton, B, Federman, N. Alveolar soft part sarcoma: molecular pathogenesis and implications for novel targeted therapies. Sarcoma 2012;2012:428789.Google Scholar
Kimonis, VE, Goldstein, AM, Pastakia, B, et al. Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am J Med Genet 1997;69:299308.Google Scholar
Fujii, K, Miyashita, T. Gorlin syndrome (nevoid basal cell carcinoma syndrome): update and literature review. Pediatr Int 2014;56:667674.Google Scholar
Weksberg, R, Shuman, C, Beckwith, JB. Beckwith-Wiedemann syndrome. Eur J Hum Genet 2010;18:814.Google Scholar
Wiedemann, H-R. Tumours and hemihypertrophy associated with Wiedemann-Beckwith syndrome. (Letter) Eur J Pediatr 1983;141:129.Google Scholar
Jin, XL, Wang, ZH, Xiao, XB, Huang, LS, Zhao, XY. Blue rubber bleb nevus syndrome: a case report and literature review. World J Gastroenterol 2014;20:1725417259.Google Scholar
Espiard, S, Bertherat, J. Carney complex. Front Horm Res 2013;41:5062.Google Scholar
Estep, AL, Tidyman, WE, Teitell, MA, Cotter, PD, Rauen, KA. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy. Am J Med Genet A 2006;140:816.Google Scholar
Nishisho, I, Nakamura, Y, Miyoshi, Y, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991;253:665669.Google Scholar
Eccles, DM, Van Der Luijt, R, Breukel, C, et al. Hereditary desmoid disease due to a frameshift mutation at codon 1924 of the APC gene. Am J Hum Genet 1996;59:11931201.Google Scholar
Scott, RJ, Froggatt, NJ, Trembath, RC, et al. Familial infiltrative fibromatosis (desmoid tumours) (MIM135290) caused by a recurrent 3ʹ APC gene mutation. Hum Mol Genet 1996;5:19211924.Google Scholar
Hussussian, CJ, Struewing, JP, Goldstein, AM, et al. Germline p16 mutations in familial melanoma. Nat Genet 1994;8:1521.Google Scholar
Randerson-Moor, JA, Harland, M, Williams, S, et al. A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 2001;10:5562.CrossRefGoogle ScholarPubMed
Vanneste, R, Smith, E, Graham, G. Multiple neurofibromas as the presenting feature of familial atypical multiple malignant melanoma (FAMMM) syndrome. Am J Med Genet A 2013;161A:14251431.Google Scholar
Nishida, T, Hirota, S, Taniguchi, M, et al. Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat Genet 1998;19:323324.Google Scholar
Chompret, A, Kannengiesser, C, Barrois, M, et al. PDGFRA germline mutation in a family with multiple cases of gastrointestinal stromal tumor. Gastroenterology 2004;126:318321.Google Scholar
Ligon, AH, Moore, SD, Parisi, MA, et al. Constitutional rearrangement of the architectural factor HMGA2: a novel human phenotype including overgrowth and lipomas. Am J Hum Genet 2005;76:340348.Google Scholar
Dryja, TP, Mukai, S, Petersen, R, et al. Parental origin of mutations of the retinoblastoma gene. Nature 1989;339:556558.Google Scholar
Zhu, XP, Dunn, JM, Phillips, RA, et al. Preferential germline mutation of the paternal allele in retinoblastoma. Nature 1989;340:312313.Google Scholar
Barbaux, S, Niaudet, P, Gubler, MC, et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 1997;17:467470.CrossRefGoogle ScholarPubMed
Pelletier, J, Bruening, W, Kashtan, CE, et al. Germinal mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 1991; 67:437447.Google Scholar
van Heyningen, V, Bickmore, WA, Seawright, A, et al. Role for the Wilms tumor gene in genital development? Proc Natl Acad Sci USA 1990;87:53835386.Google Scholar
Ruteshouser, EC, Huff, V. Familial Wilms tumor. Am J Med Genet C Semin Med Genet 2004;129C:2934.Google Scholar
Brouillard, P, Boon, LM, Mulliken, JB, et al. Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations ("glomangiomas"). Am J Hum Genet 2002;70:866874.Google Scholar
Kiuru, M, Launonen, V. Hereditary leiomyomatosis and renal cell cancer (HLRCC). Curr Mol Med 2004;4(8):869875.Google Scholar
Gardie, B, Remenieras, A, Kattygnarath, D, et al. Novel FH mutations in families with hereditary leiomyomatosis and renal cell cancer (HLRCC) and patients with isolated type 2 papillary renal cell carcinoma. J Med Genet 2011;48:226234.Google Scholar
Denadai, R, Raposo-Amaral, CE, Bertola, D, et al. Identification of 2 novel ANTXR2 mutations in patients with hyaline fibromatosis syndrome and proposal of a modified grading system. Am J Med Genet A 2012;158A:732742.Google Scholar
Li, FP, Fraumeni, JF. Rhabdomyosarcoma in children: epidemiologic study and identification of a cancer family syndrome. J Natl Cancer Inst 1969;43:13651373.Google Scholar
Li, FP, Fraumeni, JF. Soft tissue sarcomas, breast cancer and other neoplasms: a familial syndrome? Ann Int Med 1969;71:747752.Google Scholar
Amary, MF, Damato, S, Halai, D, et al. Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet 2011;43:12621265.Google Scholar
Rasmussen, SA, Friedman, JM. NF1 gene and neurofibromatosis 1. Am J Epidemiol 2000;151:3340.Google Scholar
Gutmann, DH. Molecular insights into neurofibromatosis 2. Neurobiol Dis 1997;3:247261.Google Scholar
Meyer, S, Kingston, H, Taylor, AM, et al. Rhabdomyosarcoma in Nijmegen breakage syndrome: strong association with perianal primary site. Cancer Genet Cytogenet 2004;154:169174.Google Scholar
Astuti, D, Latif, F, Dallol, A, et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001;69:4954.Google Scholar
Müller, U. Pathological mechanisms and parent-of-origin effects in hereditary paraganglioma/pheochromocytoma (PGL/PCC). Neurogenetics 2011;12:175181.Google Scholar
Pasini, B, McWhinney, SR, Bei, T, et al. Clinical and molecular genetics of patients with the Carney–Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet 2008;16:7988.Google Scholar
Miettinen, M, Lasota, J. Succinate dehydrogenase deficient gastrointestinal stromal tumors (GISTs): a review. Int J Biochem Cell Biol 2014;53:514519.Google Scholar
Blumenthal, GM, Dennis, PA. PTEN hamartoma tumor syndromes. Eur J Hum Genet 2008;16:12891300.Google Scholar
Cohen, MM Jr. Proteus syndrome review: molecular, clinical, and pathologic features. Clin Genet 2014;85:111119.Google Scholar
Taylor, MD, Gokgoz, N, Andrulis, IL, et al. Familial posterior fossa brain tumors of infancy secondary to germline mutation of the hSNF5 gene. Am J Hum Genet 2000;66:14031406.Google Scholar
Foulkes, WD, Clarke, BA, Hasselblatt, M, et al. No small surprise: small cell carcinoma of the ovary, hypercalcaemic type, is a malignant rhabdoid tumour. J Pathol 2014;233:209214.Google Scholar
Jelinic, P, Mueller, JJ, Olvera, N, et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet 2014;46:424426.Google Scholar
Ramos, P, Karnezis, AN, Craig, DW, et al. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat Genet 2014;46:427429.Google Scholar
Miller, RW, Rubinstein, JH. Tumors in Rubinstein–Taybi syndrome. Am J Med Genet 1995;56:112115.Google Scholar
van de Kar, AL, Houge, G, Shaw, AC, et al. Keloids in Rubinstein-Taybi syndrome: a clinical study. Br J Dermatol 2014;171:615621.Google Scholar
Negri, G, Milani, D, Colapietro, P, et al. Clinical and molecular characterization of Rubinstein-Taybi syndrome patients carrying distinct novel mutations of the EP300 gene. Clin Genet 2015;87:148154.Google Scholar
Hadfield, KD, Newman, WG, Bowers, NL, et al. Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis. J Med Genet 2008;45:332339.Google Scholar
Crino, PB, Nathanson, KL, Henske, EP. The tuberous sclerosis complex. N Engl J Med 2006;355:13451356.Google Scholar
Curatolo, P, Bombardieri, R, Jozwiak, S. Tuberous sclerosis. Lancet 2008;372:657668.Google Scholar
O' Brien, FJ, Danapal, M, Jairam, S, et al. Manifestations of Von Hippel Lindau syndrome: a retrospective national review. QJM 2014;107:291296.Google Scholar
Wanebo, JE, Lonser, RR, Glenn, GM, Oldfield, EH. The natural history of hemangioblastomas of the central nervous system in patients with von Hippel-Lindau disease. J Neurosurg 2003;98:8294.Google Scholar
Yamamoto, K, Imakiire, A, Miyagawa, N, Kasahara, T. A report of two cases of Werner's syndrome and review of the literature. J Orthop Surg (Hong Kong) 2003;11:224233.Google Scholar
Nucci, MR, Weremowicz, S, Neskey, DM, et al. Chromosomal translocation t(8;12) induces aberrant HMGIC expression in aggressive angiomyxoma of the vulva. Genes Chromosomes Cancer 2001;32:172176.Google Scholar
Micci, F, Panagopoulos, I, Bjerkehagen, B, Heim, S. Deregulation of HMGA2 in an aggressive angiomyxoma with t(11;12)(q23;q15). Virchows Arch 2006;448:838842.Google Scholar
Rabban, JT, Dal Cin, P, Oliva, E. HMGA2 rearrangement in a case of vulvar aggressive angiomyxoma. Int J Gynecol Pathol 2006;25:403407.Google Scholar
Rawlinson, NJ, West, WW, Nelson, M, Bridge, JA. Aggressive angiomyxoma with t(12;21) and HMGA2 rearrangement: report of a case and review of the literature. Cancer Genet Cytogenet 2008;181:119124.Google Scholar
Joyama, S, Ueda, T, Shimizu, K, et al. Chromosome rearrangement at 17q25 and Xp11.2 in alveolar soft-part sarcoma: a case report and review of the literature. Cancer 1999;86:12461250.Google Scholar
Ladanyi, M, Lui, MY, Antonescu, CR, et al. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 2001;20:4857.Google Scholar
Jin, Y, Möller, E, Nord, KH, et al. Fusion of the AHRR and NCOA2 genes through a recurrent translocation t(5;8)(p15;q13) in soft tissue angiofibroma results in upregulation of aryl hydrocarbon receptor target genes. Genes Chromosomes Cancer 2012;51:510520.Google Scholar
Arbajian, E, Magnusson, L, Mertens, F, et al. A novel GTF2I/NCOA2 fusion gene emphasizes the role of NCOA2 in soft tissue angiofibroma development. Genes Chromosomes Cancer 2013;52:330331.Google Scholar
Waters, BL, Panagopoulos, I, Allen, EF. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet Cytogenet 2000;121:109116.Google Scholar
Raddaoui, E, Donner, LR, Panagopoulos, I. Fusion of the FUS and ATF1 genes in a large deep-seated angiomatoid fibrous histiocytoma. Diagn Mol Pathol 2002;11:157162.Google Scholar
Antonescu, CR, Dal Cin, P, Nafa, K, et al. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2007;46:10511060.Google Scholar
Hallor, KH, Micci, F, Meis-Kindblom, JM, et al. Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett 2007;251:158163.Google Scholar
Giacomini, CP, Sun, S, Varma, S, et al. Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types. PLoS Genet 2013;9:e1003464.Google Scholar
Huang, D, Sumegi, J, Dal Cin, P, et al. C11orf95-MKL2 is the resulting fusion oncogene of t(11;16)(q13;p13) in chondroid lipoma. Genes Chromosomes Cancer 2010;49:810818.Google Scholar
Tallini, G, Dorfman, H, Brys, P, et al. Correlation between clinicopathological features and karyotype in 100 cartilaginous and chordoid tumours: a report from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. J Pathol 2002;196:194203.CrossRefGoogle ScholarPubMed
Dahlén, A, Mertens, F, Rydholm, A, et al. Fusion, disruption, and expression of HMGA2 in bone and soft tissue chondromas. Mod Pathol 2003;16:11321140.CrossRefGoogle ScholarPubMed
Labelle, Y, Bussières, J, Courjal, F, Goldring, MB. The EWS/TEC fusion protein encoded by the t(9;22) chromosomal translocation in human chondrosarcomas is a highly potent transcriptional activator. Oncogene 1999;18:33033308.Google Scholar
Attwooll, C, Tariq, M, Harris, M, et al. Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2) translocation in an extraskeletal myxoid chondrosarcoma. Oncogene 1999;18:75997601.Google Scholar
Sjögren, H, Meis-Kindblom, J, Kindblom, LG, Åman, P, Stenman, G. Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma. Cancer Res 1999;59:50645067.Google Scholar
Sjögren, H, Wedell, B, Kindblom, JM, Kindblom, LG, Stenman, G. Fusion of the basic helix-loop-helix protein TCF12 to TEC in extraskeletal myxoid chondrosarcoma with translocation t(9;15)(q22;q21). Cancer Res 2000;60:68326835.Google Scholar
Morohoshi, F, Arai, K, Takahashi, EI, Tanigami, A, Ohki, M. Cloning and mapping of a human RBP56 gene encoding a putative RNA binding protein similar to FUS/TLS and EWS proteins. Genomics 1996;38:5157.Google Scholar
Hisaoka, M, Ishida, T, Imamura, T, Hashimoto, H. TFG is a novel fusion partner of NOR1 in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 2004;40:325328.Google Scholar
Broehm, CJ, Wu, J, Gullapalli, RR, Bocklage, T. Extraskeletal myxoid chondrosarcoma with a t(9;16)(q22;p11.2) resulting in a NR4A3-FUS fusion. Cancer Genet 2014;207:276280.Google Scholar
Wang, L, Motoi, T, Khanin, R, et al. Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosomes Cancer 2012;51:127139.CrossRefGoogle ScholarPubMed
Nyquist, KB, Panagopoulos, I, Thorsen, J, et al. Whole-transcriptome sequencing identifies novel IRF2BP2-CDX1 fusion gene brought about by translocation t(1;5)(q42;q32) in mesenchymal chondrosarcoma. PLoS One 2012;7:e49705.Google Scholar
Zucman, J, Delattre, O, Desmaze, C, et al. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet 1993;4:341345.Google Scholar
Panagopoulos, I, Mertens, F, Debiec-Rychter, M, et al. Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses. Int J Cancer 2002;99:560567.CrossRefGoogle ScholarPubMed
Speleman, F, Delattre, O, Peter, M, et al. Malignant melanoma of the soft parts (clear-cell sarcoma): conformation of EWS and ATF-1 gene fusion caused by a t(11;22) translocation. Mod Pathol 1997;10:496499.Google Scholar
Antonescu, CR, Tschernyavsky, SJ, Woodruff, JM, et al. Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J Mol Diagn 2002;4:4452.Google Scholar
Covinsky, M, Gong, S, Rajaram, V, Perry, A, Pfeifer, J. EWS-ATF1 fusion transcripts in gastrointestinal tumors previously diagnosed as malignant melanoma. Hum Pathol 2005;36:7481.Google Scholar
Antonescu, CR, Nafa, K, Segal, NH, Dal Cin, P, Ladanyi, M. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma–association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res 2006;12:53565362.CrossRefGoogle ScholarPubMed
Sciot, R, Samson, I, van den Berghe, H, Van Damme, B, Dal Cin, P. Collagenous fibroma (desmoplastic fibroblastoma): genetic link with fibroma of tendon sheath? Mod Pathol 1999;12:565568.Google Scholar
Macchia, G, Trombetta, D, Möller, E, et al. FOSL1 as a candidate target gene for 11q12 rearrangements in desmoplastic fibroblastoma. Lab Invest 2012;92:735743.Google Scholar
Simon, MP, Pedeutour, F, Sirvent, N, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet 1997;15:9598.Google Scholar
Shimizu, A, O’Brien, KP, Sjöblom, T, et al. The dermatofibrosarcoma protuberans-associated collagen type Iα1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res 1999;59:37193723.Google Scholar
Simon, MP, Navarro, M, Roux, D, Pouysségur, J. Structural and functional analysis of a chimeric protein COL1A1-PDGFB generated by the translocation t(17;22)(q22;q13.1) in dermatofibrosarcoma protuberans (DP). Oncogene 2001;20:29652975.Google Scholar
O’Brien, KP, Seroussi, E, Dal Cin, P, et al. Various regions within the alpha-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcoma protuberans and giant cell fibroblastomas. Genes Chromosomes Cancer 1998;23:187193.Google Scholar
Sirvent, N, Maire, G, Pedeutour, F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer 2003;37:119.Google Scholar
Bianchini, L, Maire, G, Guillot, B, et al. Complex t(5;8) involving the CSPG2 and PTK2B genes in a case of dermatofibrosarcoma protuberans without the COL1A1-PDGFB fusion. Virchows Arch 2008;452:689696.Google Scholar
Ladanyi, M, Gerald, WL. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res 1994;54:28372840.Google Scholar
Gerald, WL, Rosai, J, Ladanyi, M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad Sci USA 1995;14:10281032.Google Scholar
Gerald, WL, Ladanyi, M, de Alava, E, et al. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small-round-cell tumor and its variants. J Clin Oncol 1998;16:30283036.Google Scholar
Gerald, WL, Haber, DA. The EWS-WT1 gene fusion in desmoplastic small round cell tumor. Semin Cancer Biol 2005;15:197205.Google Scholar
Ordi, J, de Alava, E, Torné, A, et al. Intraabdominal desmoplastic small round cell tumor with EWS/ERG fusion transcript. Am J Surg Pathol 1998;22:10261032.Google Scholar
Koontz, JI, Soreng, AL, Nucci, M, et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci 2001;98:63486353.Google Scholar
Micci, F, Panagopoulos, I, Bjerkehagen, B, Heim, S. Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcomas. Cancer Res 2006;66:107112.Google Scholar
Mertens, F, Tayebwa, J. Evolving techniques for gene fusion detection in soft tissue tumours. Histopathology 2014;64:151162.Google Scholar
Micci, F, Gorunova, L, Gatius, S, et al. MEAF6/PHF1 is a recurrent gene fusion in endometrial stromal sarcoma. Cancer Lett 2014;347:7578.Google Scholar
Dewaele, B, Przybyl, J, Quattrone, A, et al. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int J Cancer 2014;134:11121122.CrossRefGoogle ScholarPubMed
Lee, CH, Nucci, MR. Endometrial stromal sarcoma - the new genetic paradigm. Histopathology 2015;67:119.Google Scholar
Panagopoulos, I, Thorsen, J, Gorunova, L, et al. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer 2013;52:610618.Google Scholar
McPherson, A, Hormozdiari, F, Zayed, A, et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol 2011;7:e1001138Google Scholar
Aurias, A, Rimbaut, C, Buffe, D, Zucker, JM, Mazabraud, A. Translocation involving chromosome 22 in Ewing’s sarcoma: a cytogenetic study of four fresh tumors. Cancer Genet Cytogenet 1984;12:2125.Google Scholar
Whang-Peng, J, Triche, TJ, Knutsen, T, et al. Chromosome translocation in peripheral neuroepithelioma. N Engl J Med 1984;311:584585.Google Scholar
Delattre, O, Zucman, J, Plougastel, B, et al. Gene fusion with an ETS DNA binding domain caused by chromosome translocation in human tumors. Nature 1992;359:162165.Google Scholar
Zucman, J, Delattre, O, Desmaze, C, et al. Cloning and characterization of the Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Genes Chromosomes Cancer 1992;5:271277.Google Scholar
Zucman, J, Melot, T, Desmaze, C, et al. Combinatorial generation of variable fusion proteins in Ewing family of tumors. EMBO J 1993;12:44814487.Google Scholar
Sorensen, PH, Lessnick, SL, Lopez-Terrada, D, et al. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 1994;6:146151.CrossRefGoogle ScholarPubMed
Jeon, IS, Davis, JN, Braun, BS, et al. A variant Ewing’s sarcoma translocation t(7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 1995;10:12291234.Google Scholar
Kaneko, Y, Yoshida, K, Handa, M, et al. Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 1996;15:115121.Google Scholar
Peter, M, Couturier, J, Pacquement, H, et al. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 1997;14:11591164.Google Scholar
Mastrangelo, T, Modena, P, Tornielli, S, et al. A novel zinc finger gene is fused to EWS in small round cell tumor. Oncogene 2000;19:37993804.Google Scholar
Wang, L, Bhargava, R, Zheng, T, et al. Undifferentiated small round cell sarcomas with rare EWS gene fusions: identification of the novel EWS-SP3 fusion and of additional cases with the EWS-ETV1 and EWS-FEV fusions. J Mol Diagn 2007;9:498509.Google Scholar
Ng, TL, O’Sullivan, MJ, Pallen, CJ, et al. Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn 2007;9:459463.Google Scholar
Shing, DC, McMullan, DJ, Roberts, P, et al. FUS/ERG gene fusions in Ewing’s tumors. Cancer Res 2003;63:45684576.Google Scholar
Szuhai, K, Ijszenga, M, de Jong, D, et al. The NFATc2 gene is involved in a novel cloned translocation in a Ewing sarcoma variant that couples its function in immunology to oncology. Clin Cancer Res 2009;15:22592268.Google Scholar
Sumegi, J, Nishio, J, Nelson, M, et al. A novel t(4;22)(q31;q12) produces an EWSR1-SMARCA5 fusion in extraskeletal Ewing sarcoma/primitive neuroectodermal tumor. Mod Pathol 2011;24:333342.Google Scholar
Choi, EY, Thomas, DG, McHugh, JB, et al. Undifferentiated small round cell sarcoma with t(4;19)(q35;q13.1) CIC-DUX4 fusion: a novel highly aggressive soft tissue tumor with distinctive histopathology. Am J Surg Pathol 2013;37:13791386.Google Scholar
Italiano, A, Sung, YS, Zhang, L, et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer 2012;51:207218.Google Scholar
Pierron, G, Tirode, F, Lucchesi, C, et al. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet 2012;44:461466.Google Scholar
Sugita, S, Arai, Y, Tonooka, A, et al. A novel CIC-FOXO4 gene fusion in undifferentiated small round cell sarcoma: a genetically distinct variant of Ewing-like sarcoma. Am J Surg Pathol 2014;38:15711576.Google Scholar
Knezevich, SR, McFadden, DE, Tao, W, Lim, JF, Sorensen, PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 1998;18:184187.Google Scholar
Rubin, BP, Chen, CJ, Morgan, TW, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 1998;153:14511458.Google Scholar
Errani, C, Zhang, L, Sung, YS, et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer 2011;50:644653.Google Scholar
Tanas, MR, Sboner, A, Oliveira, AM, et al. Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Sci Transl Med 2011;3:98ra82.Google Scholar
Antonescu, CR, Le Loarer, F, Mosquera, JM, et al. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosomes Cancer 2013;52:775784.Google Scholar
Trombetta, D, Magnusson, L, von Steyern, FV, et al. Translocation t(7;19)(q22;q13) - a recurrent chromosome aberration in pseudomyogenic hemangioendothelioma? Cancer Genet 2011;204:211215.Google Scholar
Walther, C, Tayebwa, J, Lilljebjörn, H, et al. A novel SERPINE1-FOSB fusion gene results in transcriptional up-regulation of FOSB in pseudomyogenic haemangioendothelioma. J Pathol 2014;232:534540.Google Scholar
Antonescu, CR, Zhang, L, Nielsen, GP, et al. Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromosomes Cancer 2011;50:757764.CrossRefGoogle ScholarPubMed
Cools, J, Wlodarska, I, Somers, R, et al. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2002;34:354362.Google Scholar
Bridge, JA, Kanamori, M, Ma, Z, et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol 2001;159:411415.Google Scholar
Debiec-Rychter, M, Marynen, P, Hagemeijer, A, Pauwels, P. ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;38:187190.Google Scholar
Ma, Z, Hill, DA, Collins, MH, et al. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;37:98105.CrossRefGoogle Scholar
Panagopoulos, I, Nilsson, T, Domanski, HA, et al. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer 2006;118:11811186.Google Scholar
Lawrence, B, Perez-Atayde, A, Hibbard, MK, et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 2000;157:377384.Google Scholar
Takeuchi, K, Soda, M, Togashi, Y, et al. Pulmonary inflammatory myofibroblastic tumor expressing a novel fusion, PPFIBP1-ALK: reappraisal of anti-ALK immunohistochemistry as a tool for novel ALK fusion identification. Clin Cancer Res 2011;17:33413348.Google Scholar
Lovly, CM, Gupta, A, Lipson, D, et al. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov 2014;4:889895.Google Scholar
Antonescu, CR, Suurmeijer, AJ, Zhang, L, et al. Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am J Surg Pathol 2015;39:957967.Google Scholar
Kazmierczak, B, Pohnke, Y, Bullerdiek, J. Fusion transcripts between HMGIC gene and RTVL-H-related sequences in mesenchymal tumors without cytogenetic aberrations. Genomics 1996;38:223226.Google Scholar
Schoenmakers, EF, Huysmans, C, van de Ven, WJ. Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas. Cancer Res 1999;59:1923.Google Scholar
Kurose, K, Mine, N, Doi, D, et al. Novel gene fusion COX6C at 8q22–23 to HMGIC at 12q15 in a uterine leiomyoma. Genes Chromosomes Cancer 2000;27:303307.Google Scholar
Mine, N, Kurose, K, Konishi, H, et al. Fusion of a sequence from HEI10 (14q11) to the HMGIC gene at 12q15 in a uterine leiomyoma. Jpn J Cancer Res 2001;92:135139.Google Scholar
Moore, SD, Herrick, SR, Ince, TA, et al. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res 2004;64:55705577.Google Scholar
Velagaleti, GV, Tonk, VS, Hakim, NM, et al. Fusion of HMGA2 to COG5 in uterine leiomyoma. Cancer Genet Cytogenet 2010;202:1116.Google Scholar
Panagopoulos, I, Gorunova, L, Bjerkehagen, B, Heim, S. Novel KAT6B-KANSL1 fusion gene identified by RNA sequencing in retroperitoneal leiomyoma with t(10;17)(q22;q21). PLoS One 2015;10:e0117010.Google Scholar
Astrom, A, D’Amore, ES, Sainati, L, et al. Evidence of involvement of the PLAG1 gene in lipoblastomas. Int J Oncol 2000;16:11071110.Google Scholar
Gisselsson, D, Hibbard, MK, Dal Cin, P, et al. PLAG1 fusion oncogenes in lipoblastoma. Cancer Res 2000;60:48694872.Google Scholar
Sciot, R, De Wever, I, Debiec-Rychter, M. Lipoblastoma in a 23-year-old male: distinction from atypical lipomatous tumor using cytogenetic and fluorescence in-situ hybridization analysis. Virchows Arch 2003;442:468471.Google Scholar
Deen, M, Ebrahim, S, Schloff, D, Mohamed, AN. A novel PLAG1-RAD51L1 gene fusion resulting from a t(8;14)(q12;q24) in a case of lipoblastoma. Cancer Genet 2013;206:233237.Google Scholar
Petit, MM, Mols, R, Schoenmakers, EF, Mandahl, N, Van de Ven, WJ. LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family. Genomics 1996;36:118129.Google Scholar
Petit, MM, Schoenmakers, EF, Huysmans, C, et al. LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new family of LHFP-like genes. Genomics 1999;57:438441.Google Scholar
Kazmierczak, B, Dal Cin, P, Wanschura, S, , et al. Cloning and molecular characterization of part of a new gene fused to HMGIC in mesenchymal tumors. Am J Pathol 1998;152:431435.Google Scholar
Broberg, K, Zhang, M, Strömbeck, B, et al. Fusion of RDC1 with HMGA2 in lipomas as the result of chromosome aberrations involving 2q35–37 and 12q13–15. Int J Oncol 2002;21:321326.Google Scholar
Nilsson, M, Panagopoulos, I, Mertens, F, Mandahl, N. Fusion of the HMGA2 and NFIB genes in lipoma. Virchows Arch 2005;447:855858.Google Scholar
Bianchini, L, Birtwisle, L, Saâda, E, et al. Identification of PPAP2B as a novel recurrent translocation partner gene of HMGA2 in lipomas. Genes Chromosomes Cancer 2013;52:580590.Google Scholar
Panagopoulos, I, Höglund, M, Mertens, F, et al. Fusion of EWS and CHOP genes in myxoid liposarcoma. Oncogene 1996;12:489494.Google Scholar
Crozat, A, Aman, P, Mandahl, N, Ron, D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 1993;363:640644.Google Scholar
Rabbitts, TH, Forster, A, Larson, R, Nathan, P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 1993;4:175180.Google Scholar
Dal Cin, P, Sciot, R, Panagopoulos, I, et al. Additional evidence of a variant translocation t(12;22) with EWS/CHOP fusion in myxoid liposarcoma: clinicopathological features. J Pathol 1997;182:437441.Google Scholar
Taylor, BS, DeCarolis, PL, Angeles, CV, et al. Frequent alterations and epigenetic silencing of differentiation pathway genes in structurally rearranged liposarcomas. Cancer Discov 2011;1:587597.Google Scholar
Storlazzi, CT, Mertens, F, Nascimento, A, et al. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet 2003;12:23492358.Google Scholar
Reid, R, de Silva, MV, Paterson, L, Ryan, E, Fisher, C. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11). Am J Surg Pathol 2003;27:12291236.Google Scholar
Panagopoulos, I, Storlazzi, CT, Fletcher, CD, et al. The chimeric FUS/CREB3L2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer 2004;40:218228.Google Scholar
Mertens, F, Fletcher, CD, Antonescu, CR, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest 2005;85:408415.Google Scholar
Guillou, L, Benhattar, J, Gengler, C, et al. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol 2007;31:13871402.Google Scholar
Brandal, P, Panagopoulos, I, Bjerkehagen, B, et al. Detection of a t(1;22)(q23;q12) translocation leading to an EWSR1-PBX1 fusion gene in a myoepithelioma. Genes Chromosomes Cancer 2008;47:558564.Google Scholar
Antonescu, CR, Zhang, L, Chang, NE, et al. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer 2010;49:11141124.Google Scholar
Brandal, P, Panagopoulos, I, Bjerkehagen, B, Heim, S. t(19;22)(q13;q12) Translocation leading to the novel fusion gene EWSR1-ZNF444 in soft tissue myoepithelial carcinoma. Genes Chromosomes Cancer 2009;48:10511056.Google Scholar
Antonescu, CR, Zhang, L, Shao, SY, et al. Frequent PLAG1 gene rearrangements in skin and soft tissue myoepithelioma with ductal differentiation. Genes Chromosomes Cancer 2013;52:675682.Google Scholar
Huang, SC, Chen, HW, Zhang, L, et al. Novel FUS-KLF17 and EWSR1-KLF17 fusions in myoepithelial tumors. Genes Chromosomes Cancer 2015;54:267275.Google Scholar
Erickson-Johnson, MR, Chou, MM, Evers, BR, et al. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Invest 2011;91:14271433.Google Scholar
Gebre-Medhin, S, Nord, KH, Möller, E, et al. Recurrent rearrangement of the PHF1 gene in ossifying fibromyxoid tumors. Am J Pathol 2012;181:10691077.Google Scholar
Endo, M, Kohashi, K, Yamamoto, H, et al. Ossifying fibromyxoid tumor presenting EP400-PHF1 fusion gene. Hum Pathol 2013;44:26032608.Google Scholar
Antonescu, CR, Sung, YS, Chen, CL, et al. Novel ZC3H7B-BCOR, MEAF6-PHF1, and EPC1-PHF1 fusions in ossifying fibromyxoid tumors: molecular characterization shows genetic overlap with endometrial stromal sarcoma. Genes Chromosomes Cancer 2014;53:183193.Google Scholar
Tanaka, M, Kato, K, Gomi, K, et al. Perivascular epithelioid cell tumor with SFPQ/PSF-TFE3 gene fusion in a patient with advanced neuroblastoma. Am J Surg Pathol 2009;33:14161420.Google Scholar
Dahlén, A, Mertens, F, Mandahl, N, Panagopoulos, I. Molecular genetic characterization of the genomic ACTB-GLI fusion in pericytoma with t(7;12). Biochem Biophys Res Commun 2004;325:13181323.Google Scholar
Carter, JM, Sukov, WR, Montgomery, E, et al. TGFBR3 and MGEA5 rearrangements in pleomorphic hyalinizing angiectatic tumors and the spectrum of related neoplasms. Am J Surg Pathol 2014;38:11821992.Google Scholar
Thway, K, Nicholson, AG, Lawson, K, et al. Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion: a new tumor entity. Am J Surg Pathol 2011;35:17221732.Google Scholar
Barr, FG, Galili, N, Holick, J, et al. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet 1993;3:113117.Google Scholar
Davis, RJ, D’Cruz, CM, Lovell, MA, Biegel, JA, Barr, FG. Fusion of PAX7 to FKHR by the variant t(1;3)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 1994;54:28692872.Google Scholar
Barr, FG, Qualman, SJ, Macris, MH, et al. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res 2002;62:47044710.Google Scholar
Wachtel, M, Dettling, M, Koscielniak, E, et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004;64:55395545.Google Scholar
Mosquera, JM, Sboner, A, Zhang, L, et al. Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer 2013;52:538550.Google Scholar
Robinson, DR, Wu, YM, Kalyana-Sundaram, S, et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet 2013;45:180185.Google Scholar
Mohajeri, A, Tayebwa, J, Collin, A, et al. Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene, nonrandom secondary genomic imbalances, and a characteristic gene expression profile in solitary fibrous tumor. Genes Chromosomes Cancer 2013;52:873886.Google Scholar
Crew, AJ, Clark, J, Fisher, C, et al. Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J 1995;14:23332340.Google Scholar
Skytting, B, Nilsson, G, Brodin, B, et al. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst 1999;91:974975.Google Scholar
Storlazzi, CT, Mertens, F, Mandahl, N, et al. A novel fusion gene, SS18L1/SSX1, in synovial sarcoma. Genes Chromosomes Cancer 2003;37:195200.Google Scholar
West, RB, Rubin, BP, Miller, MA, et al. A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. Proc Natl Acad Sci USA 2006;103:690695.Google Scholar
Möller, E, Mandahl, N, Mertens, F, Panagopoulos, I. Molecular identification of COL6A3-CSF1 fusion transcripts in tenosynovial giant cell tumors. Genes Chromosomes Cancer 2008;47:2125.Google Scholar
Panagopoulos, I, Brandal, P, Gorunova, L, Bjerkehagen, B, Heim, S. Novel CSF1-S100A10 fusion gene and CSF1 transcript identified by RNA sequencing in tenosynovial giant cell tumors. Int J Oncol 2014;44:14251432.Google Scholar
Pfeifer, JD. Molecular Genetic Testing In Surgical Pathology. Philadelphia: Lippincott Williams & Wilkins; 2006.Google Scholar
Yeku, O, Frohman, MA. Rapid amplification of cDNA ends (RACE). Methods Mol Biol 2011;703:107122.Google Scholar
Ladanyi, M. The emerging molecular genetics of sarcoma translocation. Diagn Mol Pathol 1995;4:162173.Google Scholar
Rabbitts, TH. Chromosomal translocation master genes, mouse models and experimental therapeutics. Oncogene 2001;20:57635777.Google Scholar
Xia, SJ, Barr, FG. Chromosome translocations in sarcomas and the emergence of oncogenic transcription factors. Eur J Cancer 2005;41:25132527.Google Scholar
Slater, O, Shipley, J. Clinical relevance of molecular genetics to paediatric sarcomas. J Clin Pathol 2007;60:11871194.Google Scholar
Oda, Y, Tsuneyoshi, M. Recent advances in the molecular pathology of soft tissue sarcoma: implications for diagnosis, patient prognosis, and molecular target therapy in the future. Cancer Sci 2009;100:200208.Google Scholar
Peter, M, Gilbert, E, Delattre, O. A multiplex real-time pcr assay for the detection of gene fusions observed in solid tumors. Lab Invest 2001;81:905912.Google Scholar
Geurts van Kessel, A, de Bruijn, D, Hermsen, L, et al. Masked t(X;18)(p11;q11) in a biphasic synovial sarcoma revealed by FISH and RT-PCR. Genes Chromosomes Cancer 1998;23:198201.Google Scholar
Kaneko, Y, Kobayashi, H, Hanada, M, Satake, N, Maseki, N. EWS-ERG fusion transcript produced by chromosomal insertion in a Ewing sarcoma. Genes Chromosomes Cancer 1997;18:228231.Google Scholar
Lestou, VS, O’Connell, JX, Robichaud, M, et al. Cryptic t(X;18), ins(6;18), and SYT-SSX2 gene fusion in a case of intraneural monophasic synovial sarcoma. Cancer Genet Cytogenet 2002;138:153156.Google Scholar
O’Sullivan, MJ, Kyriakos, M, Zhu, X, et al. Malignant peripheral nerve sheath tumors with t(X;18): a pathologic and molecular genetic study. Mod Pathol 2000;13:12531263.Google Scholar
Ladanyi, M, Woodruff, JM, Scheithauer, BW, et al. Re: O’Sullivan MJ, Kyriakos M, Zhu X, Wick MR, Swanson PE, Dehner LP, Humphrey PA, Pfeifer JD: Malignant peripheral nerve sheath tumors with t(X;18): a pathologic and molecular genetic study. Mod Pathol 2000;13:13361346.Google Scholar
Tamborini, E, Agus, V, Perrone, F, et al. Lack of SYT-SSX fusion transcripts in malignant peripheral nerve sheath tumors on RT-PCR analysis of 34 archival cases. Lab Invest 2002;82:609618.Google Scholar
Fritsch, MK, Bridge, JA, Schuster, AE, Perlman, EJ, Argani, P. Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue. Pediatr Dev Pathol 2003;6:4353.Google Scholar
Stewénius, Y, Jin, Y, Ora, I, et al. High-resolution molecular cytogenetic analysis of Wilms tumors highlights diagnostic difficulties among small round cell kidney tumors. Genes Chromosomes Cancer 2008;47:845852.Google Scholar
Sainati, L, Scapinello, A, Montaldi, A, et al. A mesenchymal chondrosarcoma of a child with the reciprocal translocation (11;22)(q24;q12). Cancer Genet Cytogenet 1993;71:144147.Google Scholar
Li, H, Wang, J, Mor, G, Sklar, J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 2008;321:13571361.Google Scholar
Beck, AH, West, RB, van de Rijn, M. Gene expression profiling for the investigation of soft tissue sarcoma pathogenesis and the identification of diagnostic, prognostic, and predictive biomarkers.Virchows Arch 2010;456:141151.Google Scholar
Løvf, M, Thomassen, GO, Mertens, F, et al. Assessment of fusion gene status in sarcomas using a custom made fusion gene microarray. PLoS One 2013;8:e70649.Google Scholar
Skotheim, RI, Thomassen, GO, Eken, M, et al. A universal assay for detection of oncogenic fusion transcripts by oligo microarray analysis. Mol Cancer 2009;8:5.Google Scholar
Xiong, FF, Li, BS, Zhang, CX, et al. A pipeline with multiplex reverse transcription polymerase chain reaction and microarray for screening of chromosomal translocations in leukemia. Biomed Res Int 2013;2013:135086.Google Scholar
Wada, Y, Matsuura, M, Sugawara, M, et al. Development of detection method for novel fusion gene using GeneChip exon array. J Clin Bioinforma 2014;4:3.Google Scholar
Agerstam, H, Lilljebjörn, H, Lassen, C, et al. Fusion gene-mediated truncation of RUNX1 as a potential mechanism underlying disease progression in the 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 2007;46:635643.Google Scholar
Frith, AE, Hirbe, AC, Van Tine, BA. Novel pathways and molecular targets for the treatment of sarcoma. Curr Oncol Rep 2013;15:378385.Google Scholar
Aragon-Ching, JB, Maki, RG. Treatment of adult soft tissue sarcoma: old concepts, new insights, and potential for drug discovery. Cancer Invest 2012;30:300308.Google Scholar
Martín Liberal, J, Lagares-Tena, L, Sáinz-Jaspeado, M, et al. Targeted therapies in sarcomas: challenging the challenge. Sarcoma 2012;2012:626094.Google Scholar
Wlodarska, I, De Wolf-Peeters, C, Falini, B, et al. The cryptic inv(2)(p23q35) defines a new molecular genetic subtype of ALK-positive anaplastic large-cell lymphoma. Blood 1998;92:26882695.Google Scholar
Touriol, C, Greenland, C, Lamant, L, et al. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 2000;95:32043207.Google Scholar
Tort, F, Pinyol, M, Pulford, K, et al. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest 2001;81:419426.Google Scholar
Lamant, L, Gascoyne, RD, Duplantier, MM, et al. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer 2003;37:427432.Google Scholar
Morris, SW, Kirstein, MN, Valentine, MB, et al. Fusion of a kinase gene, ALK to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1994;263:12811284.Google Scholar
Hernández, L, Pinyol, M, Hernández, S, et al. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 1999;94:32653268.Google Scholar
Lamant, L, Dastugue, N, Pulford, K, Delsol, G, Mariamé, B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 1999;93:30883095.Google Scholar
Liang, X, Meech, SJ, Odom, LF, et al. Assessment of t(2;5)(p23;q35) translocation and variants in pediatric ALK+ anaplastic large cell lymphoma. Am J Clin Pathol 2004;121:496506.Google Scholar
Lin, E, Li, L, Guan, Y, et al. Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Mol Cancer Res 2009;7:14661476.Google Scholar
Lipson, D, Capelletti, M, Yelensky, R, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012;18:382384.Google Scholar
Chikatsu, N, Kojima, H, Suzukawa, K, et al. ALK+, CD30-, CD20- large B-cell lymphoma containing anaplastic lymphoma kinase (ALK) fused to clathrin heavy chain gene (CLTC). Mod Pathol 2003;16:828832.Google Scholar
Adam, P, Katzenberger, T, Seeberger, H, et al. A case of a diffuse large B-cell lymphoma of plasmablastic type associated with the t(2;5)(p23;q35) chromosome translocation. Am J Surg Pathol 2003;27:14731476.Google Scholar
Van Roosbroeck, K, Cools, J, Dierickx, D, et al. ALK-positive large B-cell lymphomas with cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica 2010;95:509513.Google Scholar
Takeuchi, K, Soda, M, Togashi, Y, et al. Identification of a novel fusion, SQSTM1-ALK, in ALK-positive large B-cell lymphoma. Haematologica 2011;96:464467.Google Scholar
Jazii, FR, Najafi, Z, Malekzadeh, R, et al. Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J Gastroenterol 2006;12:71047112.Google Scholar
Debelenko, LV, Raimondi, SC, Daw, N, et al. Renal cell carcinoma with novel VCL-ALK fusion: new representative of ALK-associated tumor spectrum. Mod Pathol 2011;24:430442.Google Scholar
Röttgers, S, Gombert, M, Teigler-Schlegel, A, et al. ALK fusion genes in children with atypical myeloproliferative leukemia. Leukemia 2010;24:11971200.Google Scholar
Takeuchi, K, Choi, YL, Togashi, Y, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 2009;15:31433149.Google Scholar
Togashi, Y, Soda, M, Sakata, S, et al. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One 2012;7:e31323.Google Scholar
Rikova, K, Guo, A, Zeng, Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007;131:11901203.Google Scholar
Ren, H, Tan, ZP, Zhu, X, et al. Identification of anaplastic lymphoma kinase as a potential therapeutic target in ovarian cancer. Cancer Res 2012;72:33123323.Google Scholar
Chan, JK, Lamant, L, Algar, E, et al. ALK+ histiocytosis: a novel type of systemic histiocytic proliferative disorder of early infancy. Blood 2008;112:29652968.Google Scholar
Yamamoto, Y, Tsuzuki, S, Tsuzuki, M, et al. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood 2010;116:42744283.Google Scholar
Bohlander, SK. ETV6: a versatile player in leukemogenesis. Semin Cancer Biol 2005;15:162174.Google Scholar
Eguchi, M, Eguchi-Ishimae, M, Tojo, A, et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 1999;93:13551363.Google Scholar
Tognon, C, Knezevich, SR, Huntsman, D, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002;2:367376.Google Scholar
Skálová, A, Vanecek, T, Sima, R, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol 2010;34:599608.Google Scholar
Leeman-Neill, RJ, Kelly, LM, Liu, P, et al. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer 2014;120:799807.Google Scholar
Bilodeau, EA, Weinreb, I, Antonescu, CR, et al. Clear cell odontogenic carcinomas show EWSR1 rearrangements: a novel finding and a biological link to salivary clear cell carcinomas. Am J Surg Pathol 2013;37:10011005.Google Scholar
Arbajian, E, Magnusson, L, Brosjö, O, et al. A benign vascular tumor with a new fusion gene: EWSR1-NFATC1 in hemangioma of the bone. Am J Surg Pathol 2013;37:613616.Google Scholar
Möller, E, Stenman, G, Mandahl, N, et al. POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J Pathol 2008;215:7886.Google Scholar
Antonescu, CR, Katabi, N, Zhang, L, et al. EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear-cell carcinoma of salivary gland. Genes Chromosomes Cancer 2011;50:559570.Google Scholar
Skálová, A, Weinreb, I, Hyrcza, M, et al. Clear cell myoepithelial carcinoma of salivary glands showing EWSR1 rearrangement: molecular analysis of 94 salivary gland carcinomas with prominent clear cell component. Am J Surg Pathol 2015;39:338348.Google Scholar
Panagopoulos, I, Thorsen, J, Gorunova, L, et al. RNA sequencing identifies fusion of the EWSR1 and YY1 genes in mesothelioma with t(14;22)(q32;q12). Genes Chromosomes Cancer 2013;52:733740.Google Scholar
Yamaguchi, S, Yamazaki, Y, Ishikawa, Y, et al. EWSR1 is fused to POU5F1 in a bone tumor with translocation t(6;22)(p21;q12). Genes Chromosomes Cancer 2005;43:217222.Google Scholar
Panagopoulos, I, Aman, P, Fioretos, T, et al. Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22). Genes Chromosomes Cancer 1994;11:256262.Google Scholar
Puls, F, Arbajian, E, Magnusson, L, et al. Myoepithelioma of bone with a novel FUS-POU5F1 fusion gene. Histopathology 2014;65:917922.Google Scholar
Geurts, JM, Schoenmakers, EF, Röijer, E, Stenman, G, Van de Ven, WJ. Expression of reciprocal hybrid transcripts of HMGIC and FHIT in a pleomorphic adenoma of the parotid gland. Cancer Res 1997;57:1317.Google Scholar
Rogalla, P, Lemke, I, Kazmierczak, B, Bullerdiek, J. An identical HMGIC-LPP fusion transcript is consistently expressed in pulmonary chondroid hamartomas with t(3;12)(q27-28;q14-15). Genes Chromosomes Cancer 2000;29:363366.Google Scholar
Strehl, S, Nebral, K, König, M, et al. ETV6-NCOA2: a novel fusion gene in acute leukemia associated with coexpression of T-lymphoid and myeloid markers and frequent NOTCH1 mutations. Clin Cancer Res 2008;14:977983.Google Scholar
Asp, J, Persson, F, Kost-Alimova, M, Stenman, G. CHCHD7-PLAG1 and TCEA1-PLAG1 gene fusions resulting from cryptic, intrachromosomal 8q rearrangements in pleomorphic salivary gland adenomas. Genes Chromosomes Cancer 2006;45:820828.Google Scholar
Davies, KD, Doebele, RC. Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 2013;19:40404045.Google Scholar
Ross, H, Argani, P. Xp11 translocation renal cell carcinoma. Pathology 2010;42:369373.Google Scholar
Oliveira, AM, Perez-Atayde, AR, Dal Cin, P, et al. Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene 2005;24:34193426.Google Scholar
Oliveira, AM, Chou, MM. USP6-induced neoplasms: the biologic spectrum of aneurysmal bone cyst and nodular fasciitis. Hum Pathol 2014;45:111.Google Scholar
Law, WJ, Cann, KL, Hicks, GG. TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Brief Funct Genomic Proteomic 2006;5:814.Google Scholar
Kovar, H. Kovar, H. Dr. Jekyll and Mr. Hyde: the two faces of the FUS/EWS/TAF15 protein family. Sarcoma 2011;2011:837474.Google Scholar
Turc-Carel, C, Philip, I, Berger, M-P, Philip, T, Lenoir, GM. Chromosomal translocations 11;22 in cell lines of Ewing’s sarcoma. N Engl J Med 1983;309:497498.Google Scholar
Tomlins, SA, Rhodes, DR, Perner, S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005;310:644648.Google Scholar
Wang, J, Cai, Y, Ren, C, Ittmann, M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 2006;66:83478351.Google Scholar
Tomlins, SA, Mehra, R, Rhodes, DR, et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 2006;66:33963400.Google Scholar
Kumar-Sinha, C, Tomlins, SA, Chinnaiyan, AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008;8:497511.Google Scholar
Truong, AH, Ben-David, Y. The role of Fli-1 in normal cell function and malignant transformation. Oncogene 2000;19:64826489.Google Scholar
Arvand, A, Denny, CT. Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene 2001;20:57475754.Google Scholar
Hai, T, Hartman, MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 2001;273:111.Google Scholar
Brown, AD, Lopez-Terrada, D, Denny, C, Lee, KA. Promoters containing ATF-binding sites are de-regulated in cells that express the EWS/ATF1 oncogene. Oncogene 1995;10:17491756.Google Scholar
Panagopoulos, I, Möller, E, Dahlén, A, et al. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 2007;46:181191.Google Scholar
Lee, SB, Haber, DA. Wilms tumor and the WT1 gene. Exp Cell Res 2001;264: 7499.Google Scholar
Kim, J, Lee, K, Pelletier, J. The desmoplastic small round cell tumor t(11;22) translocation produces EWS/WT1 isoforms with differing oncogenic properties. Oncogene 1998;16:19731979.Google Scholar
Reynolds, PA, Smolen, GA, Palmer, RE, et al. Identification of a DNA-binding site and transcriptional target for the EWS-WT1(+KTS) oncoprotein. Genes Dev 2003;17:20942107.Google Scholar
Ohkura, N, Hijikuro, M, Yamamoto, A, Miki, K. Molecular cloning of a novel thyroid/steroid receptor superfamily gene from cultured rat neuronal cells. Biochem Biophys Res Commun 1994;205:19591965.Google Scholar
Ohkura, N, Yaguchi, H, Tsukada, T, Yamaguchi, K. The EWS/NOR1 fusion gene product gains a novel activity affecting pre-mRNA splicing. J Biol Chem 2002;277:535543.Google Scholar
Gan, TI, Rowen, L, Nesbitt, R, et al. Genomic organization of human TCF12 gene and spliced mRNA variants producing isoforms of transcription factor HTF4. Cytogenet Genome Res 2002;98:245248.Google Scholar
Mencinger, M, Panagopoulos, I, Andreasson, P, et al. Characterization and chromosomal mapping of the human TFG gene involved in thyroid carcinoma. Genomics 1997;41:327331.Google Scholar
Greco, A, Mariani, C, Miranda, C, et al. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 1995;15:61186127.Google Scholar
Hunger, SP, Galili, N, Carroll, AJ, et al. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 1991;77:687693.Google Scholar
Kamps, MP, Murre, C, Sun, XH, Baltimore, D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 1990;60:547555.Google Scholar
Turc-Carel, C, Limon, J, Dal Cin, P, et al. Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet 1986;23:291299.Google Scholar
Åman, P, Ron, D, Mandahl, N, et al. Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer 1992;5:278285.Google Scholar
Kuroda, M, Ishida, T, Takanashi, M, et al. Oncogenic transformation and inhibition of adipocytic conversion of preadipocytes by TLS/FUS-CHOP type II chimeric protein. Am J Pathol 1997;151:735744.Google Scholar
Zinszner, H, Albalat, R, Ron, D. A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev 1994;8:25132526.Google Scholar
Ichikawa, H, Shimizu, K, Hayashi, Y, Ohki, M. An RNA-binding protein gene, TLS/FUS, is fused to erg in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res 1994;54:28652868.Google Scholar
Åman, P, Panagopoulos, I, Lassen, C, et al. Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics 1996;37:18.Google Scholar
Ron, D, Brasier, AR, McGehee, RE Jr, Habener, JF. Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP). J Clin Invest 1992;89:223233.Google Scholar
Ron, D, Habener, JF. CHOP a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant negative inhibitor of gene transcription. Genes Dev 1992;6:439453.Google Scholar
Adelmant, G, Gilbert, JD, Freytag, SO. Human translocation liposarcoma-CCAAT/enhancer binding protein (C/EBP) homologous protein (TLS-CHOP) oncoprotein prevents adipocyte differentiation by directly interfering with C/EBPbeta function. J Biol Chem 1998;273:1557415581.Google Scholar
Panagopoulos, I, Möller, E, Dahlén, A, et al. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 2007;46:181191.Google Scholar
Nucci, MR, Weremowicz, S, Neskey, DM, et al. Chromosomal translocation t(8;12) induces aberrant HMGIC expression in aggressive angiomyxoma of the vulva. Genes Chromosomes Cancer 2001;32:172176.Google Scholar
Micci, F, Panagopoulos, I, Bjerkehagen, B, Heim, S. Deregulation of HMGA2 in an aggressive angiomyxoma with t(11;12)(q23;q15). Virchows Arch 2006;448:838842.Google Scholar
Rabban, JT, Dal Cin, P, Oliva, E. HMGA2 rearrangement in a case of vulvar aggressive angiomyxoma. Int J Gynecol Pathol 2006;25:403407.Google Scholar
Rawlinson, NJ, West, WW, Nelson, M, Bridge, JA. Aggressive angiomyxoma with t(12;21) and HMGA2 rearrangement: report of a case and review of the literature. Cancer Genet Cytogenet 2008;181:119124.Google Scholar
Joyama, S, Ueda, T, Shimizu, K, et al. Chromosome rearrangement at 17q25 and Xp11.2 in alveolar soft-part sarcoma: a case report and review of the literature. Cancer 1999;86:12461250.Google Scholar
Ladanyi, M, Lui, MY, Antonescu, CR, et al. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 2001;20:4857.Google Scholar
Jin, Y, Möller, E, Nord, KH, et al. Fusion of the AHRR and NCOA2 genes through a recurrent translocation t(5;8)(p15;q13) in soft tissue angiofibroma results in upregulation of aryl hydrocarbon receptor target genes. Genes Chromosomes Cancer 2012;51:510520.Google Scholar
Arbajian, E, Magnusson, L, Mertens, F, et al. A novel GTF2I/NCOA2 fusion gene emphasizes the role of NCOA2 in soft tissue angiofibroma development. Genes Chromosomes Cancer 2013;52:330331.Google Scholar
Waters, BL, Panagopoulos, I, Allen, EF. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet Cytogenet 2000;121:109116.Google Scholar
Raddaoui, E, Donner, LR, Panagopoulos, I. Fusion of the FUS and ATF1 genes in a large deep-seated angiomatoid fibrous histiocytoma. Diagn Mol Pathol 2002;11:157162.Google Scholar
Antonescu, CR, Dal Cin, P, Nafa, K, et al. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2007;46:10511060.Google Scholar
Hallor, KH, Micci, F, Meis-Kindblom, JM, et al. Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett 2007;251:158163.Google Scholar
Giacomini, CP, Sun, S, Varma, S, et al. Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types. PLoS Genet 2013;9:e1003464.Google Scholar
Huang, D, Sumegi, J, Dal Cin, P, et al. C11orf95-MKL2 is the resulting fusion oncogene of t(11;16)(q13;p13) in chondroid lipoma. Genes Chromosomes Cancer 2010;49:810818.Google Scholar
Tallini, G, Dorfman, H, Brys, P, et al. Correlation between clinicopathological features and karyotype in 100 cartilaginous and chordoid tumours: a report from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. J Pathol 2002;196:194203.CrossRefGoogle ScholarPubMed
Dahlén, A, Mertens, F, Rydholm, A, et al. Fusion, disruption, and expression of HMGA2 in bone and soft tissue chondromas. Mod Pathol 2003;16:11321140.CrossRefGoogle ScholarPubMed
Labelle, Y, Bussières, J, Courjal, F, Goldring, MB. The EWS/TEC fusion protein encoded by the t(9;22) chromosomal translocation in human chondrosarcomas is a highly potent transcriptional activator. Oncogene 1999;18:33033308.Google Scholar
Attwooll, C, Tariq, M, Harris, M, et al. Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2) translocation in an extraskeletal myxoid chondrosarcoma. Oncogene 1999;18:75997601.Google Scholar
Sjögren, H, Meis-Kindblom, J, Kindblom, LG, Åman, P, Stenman, G. Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma. Cancer Res 1999;59:50645067.Google Scholar
Sjögren, H, Wedell, B, Kindblom, JM, Kindblom, LG, Stenman, G. Fusion of the basic helix-loop-helix protein TCF12 to TEC in extraskeletal myxoid chondrosarcoma with translocation t(9;15)(q22;q21). Cancer Res 2000;60:68326835.Google Scholar
Morohoshi, F, Arai, K, Takahashi, EI, Tanigami, A, Ohki, M. Cloning and mapping of a human RBP56 gene encoding a putative RNA binding protein similar to FUS/TLS and EWS proteins. Genomics 1996;38:5157.Google Scholar
Hisaoka, M, Ishida, T, Imamura, T, Hashimoto, H. TFG is a novel fusion partner of NOR1 in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 2004;40:325328.Google Scholar
Broehm, CJ, Wu, J, Gullapalli, RR, Bocklage, T. Extraskeletal myxoid chondrosarcoma with a t(9;16)(q22;p11.2) resulting in a NR4A3-FUS fusion. Cancer Genet 2014;207:276280.Google Scholar
Wang, L, Motoi, T, Khanin, R, et al. Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosomes Cancer 2012;51:127139.CrossRefGoogle ScholarPubMed
Nyquist, KB, Panagopoulos, I, Thorsen, J, et al. Whole-transcriptome sequencing identifies novel IRF2BP2-CDX1 fusion gene brought about by translocation t(1;5)(q42;q32) in mesenchymal chondrosarcoma. PLoS One 2012;7:e49705.Google Scholar
Zucman, J, Delattre, O, Desmaze, C, et al. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet 1993;4:341345.Google Scholar
Panagopoulos, I, Mertens, F, Debiec-Rychter, M, et al. Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses. Int J Cancer 2002;99:560567.CrossRefGoogle ScholarPubMed
Speleman, F, Delattre, O, Peter, M, et al. Malignant melanoma of the soft parts (clear-cell sarcoma): conformation of EWS and ATF-1 gene fusion caused by a t(11;22) translocation. Mod Pathol 1997;10:496499.Google Scholar
Antonescu, CR, Tschernyavsky, SJ, Woodruff, JM, et al. Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J Mol Diagn 2002;4:4452.Google Scholar
Covinsky, M, Gong, S, Rajaram, V, Perry, A, Pfeifer, J. EWS-ATF1 fusion transcripts in gastrointestinal tumors previously diagnosed as malignant melanoma. Hum Pathol 2005;36:7481.Google Scholar
Antonescu, CR, Nafa, K, Segal, NH, Dal Cin, P, Ladanyi, M. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma–association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res 2006;12:53565362.CrossRefGoogle ScholarPubMed
Sciot, R, Samson, I, van den Berghe, H, Van Damme, B, Dal Cin, P. Collagenous fibroma (desmoplastic fibroblastoma): genetic link with fibroma of tendon sheath? Mod Pathol 1999;12:565568.Google Scholar
Macchia, G, Trombetta, D, Möller, E, et al. FOSL1 as a candidate target gene for 11q12 rearrangements in desmoplastic fibroblastoma. Lab Invest 2012;92:735743.Google Scholar
Simon, MP, Pedeutour, F, Sirvent, N, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet 1997;15:9598.Google Scholar
Shimizu, A, O’Brien, KP, Sjöblom, T, et al. The dermatofibrosarcoma protuberans-associated collagen type Iα1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res 1999;59:37193723.Google Scholar
Simon, MP, Navarro, M, Roux, D, Pouysségur, J. Structural and functional analysis of a chimeric protein COL1A1-PDGFB generated by the translocation t(17;22)(q22;q13.1) in dermatofibrosarcoma protuberans (DP). Oncogene 2001;20:29652975.Google Scholar
O’Brien, KP, Seroussi, E, Dal Cin, P, et al. Various regions within the alpha-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcoma protuberans and giant cell fibroblastomas. Genes Chromosomes Cancer 1998;23:187193.Google Scholar
Sirvent, N, Maire, G, Pedeutour, F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer 2003;37:119.Google Scholar
Bianchini, L, Maire, G, Guillot, B, et al. Complex t(5;8) involving the CSPG2 and PTK2B genes in a case of dermatofibrosarcoma protuberans without the COL1A1-PDGFB fusion. Virchows Arch 2008;452:689696.Google Scholar
Ladanyi, M, Gerald, WL. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res 1994;54:28372840.Google Scholar
Gerald, WL, Rosai, J, Ladanyi, M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad Sci USA 1995;14:10281032.Google Scholar
Gerald, WL, Ladanyi, M, de Alava, E, et al. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small-round-cell tumor and its variants. J Clin Oncol 1998;16:30283036.Google Scholar
Gerald, WL, Haber, DA. The EWS-WT1 gene fusion in desmoplastic small round cell tumor. Semin Cancer Biol 2005;15:197205.Google Scholar
Ordi, J, de Alava, E, Torné, A, et al. Intraabdominal desmoplastic small round cell tumor with EWS/ERG fusion transcript. Am J Surg Pathol 1998;22:10261032.Google Scholar
Koontz, JI, Soreng, AL, Nucci, M, et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci 2001;98:63486353.Google Scholar
Micci, F, Panagopoulos, I, Bjerkehagen, B, Heim, S. Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcomas. Cancer Res 2006;66:107112.Google Scholar
Mertens, F, Tayebwa, J. Evolving techniques for gene fusion detection in soft tissue tumours. Histopathology 2014;64:151162.Google Scholar
Micci, F, Gorunova, L, Gatius, S, et al. MEAF6/PHF1 is a recurrent gene fusion in endometrial stromal sarcoma. Cancer Lett 2014;347:7578.Google Scholar
Dewaele, B, Przybyl, J, Quattrone, A, et al. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int J Cancer 2014;134:11121122.CrossRefGoogle ScholarPubMed
Lee, CH, Nucci, MR. Endometrial stromal sarcoma - the new genetic paradigm. Histopathology 2015;67:119.Google Scholar
Panagopoulos, I, Thorsen, J, Gorunova, L, et al. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer 2013;52:610618.Google Scholar
McPherson, A, Hormozdiari, F, Zayed, A, et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol 2011;7:e1001138Google Scholar
Aurias, A, Rimbaut, C, Buffe, D, Zucker, JM, Mazabraud, A. Translocation involving chromosome 22 in Ewing’s sarcoma: a cytogenetic study of four fresh tumors. Cancer Genet Cytogenet 1984;12:2125.Google Scholar
Whang-Peng, J, Triche, TJ, Knutsen, T, et al. Chromosome translocation in peripheral neuroepithelioma. N Engl J Med 1984;311:584585.Google Scholar
Delattre, O, Zucman, J, Plougastel, B, et al. Gene fusion with an ETS DNA binding domain caused by chromosome translocation in human tumors. Nature 1992;359:162165.Google Scholar
Zucman, J, Delattre, O, Desmaze, C, et al. Cloning and characterization of the Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Genes Chromosomes Cancer 1992;5:271277.Google Scholar
Zucman, J, Melot, T, Desmaze, C, et al. Combinatorial generation of variable fusion proteins in Ewing family of tumors. EMBO J 1993;12:44814487.Google Scholar
Sorensen, PH, Lessnick, SL, Lopez-Terrada, D, et al. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 1994;6:146151.CrossRefGoogle ScholarPubMed
Jeon, IS, Davis, JN, Braun, BS, et al. A variant Ewing’s sarcoma translocation t(7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 1995;10:12291234.Google Scholar
Kaneko, Y, Yoshida, K, Handa, M, et al. Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 1996;15:115121.Google Scholar
Peter, M, Couturier, J, Pacquement, H, et al. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 1997;14:11591164.Google Scholar
Mastrangelo, T, Modena, P, Tornielli, S, et al. A novel zinc finger gene is fused to EWS in small round cell tumor. Oncogene 2000;19:37993804.Google Scholar
Wang, L, Bhargava, R, Zheng, T, et al. Undifferentiated small round cell sarcomas with rare EWS gene fusions: identification of the novel EWS-SP3 fusion and of additional cases with the EWS-ETV1 and EWS-FEV fusions. J Mol Diagn 2007;9:498509.Google Scholar
Ng, TL, O’Sullivan, MJ, Pallen, CJ, et al. Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn 2007;9:459463.Google Scholar
Shing, DC, McMullan, DJ, Roberts, P, et al. FUS/ERG gene fusions in Ewing’s tumors. Cancer Res 2003;63:45684576.Google Scholar
Szuhai, K, Ijszenga, M, de Jong, D, et al. The NFATc2 gene is involved in a novel cloned translocation in a Ewing sarcoma variant that couples its function in immunology to oncology. Clin Cancer Res 2009;15:22592268.Google Scholar
Sumegi, J, Nishio, J, Nelson, M, et al. A novel t(4;22)(q31;q12) produces an EWSR1-SMARCA5 fusion in extraskeletal Ewing sarcoma/primitive neuroectodermal tumor. Mod Pathol 2011;24:333342.Google Scholar
Choi, EY, Thomas, DG, McHugh, JB, et al. Undifferentiated small round cell sarcoma with t(4;19)(q35;q13.1) CIC-DUX4 fusion: a novel highly aggressive soft tissue tumor with distinctive histopathology. Am J Surg Pathol 2013;37:13791386.Google Scholar
Italiano, A, Sung, YS, Zhang, L, et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer 2012;51:207218.Google Scholar
Pierron, G, Tirode, F, Lucchesi, C, et al. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet 2012;44:461466.Google Scholar
Sugita, S, Arai, Y, Tonooka, A, et al. A novel CIC-FOXO4 gene fusion in undifferentiated small round cell sarcoma: a genetically distinct variant of Ewing-like sarcoma. Am J Surg Pathol 2014;38:15711576.Google Scholar
Knezevich, SR, McFadden, DE, Tao, W, Lim, JF, Sorensen, PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 1998;18:184187.Google Scholar
Rubin, BP, Chen, CJ, Morgan, TW, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 1998;153:14511458.Google Scholar
Errani, C, Zhang, L, Sung, YS, et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer 2011;50:644653.Google Scholar
Tanas, MR, Sboner, A, Oliveira, AM, et al. Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Sci Transl Med 2011;3:98ra82.Google Scholar
Antonescu, CR, Le Loarer, F, Mosquera, JM, et al. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosomes Cancer 2013;52:775784.Google Scholar
Trombetta, D, Magnusson, L, von Steyern, FV, et al. Translocation t(7;19)(q22;q13) - a recurrent chromosome aberration in pseudomyogenic hemangioendothelioma? Cancer Genet 2011;204:211215.Google Scholar
Walther, C, Tayebwa, J, Lilljebjörn, H, et al. A novel SERPINE1-FOSB fusion gene results in transcriptional up-regulation of FOSB in pseudomyogenic haemangioendothelioma. J Pathol 2014;232:534540.Google Scholar
Antonescu, CR, Zhang, L, Nielsen, GP, et al. Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromosomes Cancer 2011;50:757764.CrossRefGoogle ScholarPubMed
Cools, J, Wlodarska, I, Somers, R, et al. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2002;34:354362.Google Scholar
Bridge, JA, Kanamori, M, Ma, Z, et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol 2001;159:411415.Google Scholar
Debiec-Rychter, M, Marynen, P, Hagemeijer, A, Pauwels, P. ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;38:187190.Google Scholar
Ma, Z, Hill, DA, Collins, MH, et al. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;37:98105.CrossRefGoogle Scholar
Panagopoulos, I, Nilsson, T, Domanski, HA, et al. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer 2006;118:11811186.Google Scholar
Lawrence, B, Perez-Atayde, A, Hibbard, MK, et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 2000;157:377384.Google Scholar
Takeuchi, K, Soda, M, Togashi, Y, et al. Pulmonary inflammatory myofibroblastic tumor expressing a novel fusion, PPFIBP1-ALK: reappraisal of anti-ALK immunohistochemistry as a tool for novel ALK fusion identification. Clin Cancer Res 2011;17:33413348.Google Scholar
Lovly, CM, Gupta, A, Lipson, D, et al. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov 2014;4:889895.Google Scholar
Antonescu, CR, Suurmeijer, AJ, Zhang, L, et al. Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am J Surg Pathol 2015;39:957967.Google Scholar
Kazmierczak, B, Pohnke, Y, Bullerdiek, J. Fusion transcripts between HMGIC gene and RTVL-H-related sequences in mesenchymal tumors without cytogenetic aberrations. Genomics 1996;38:223226.Google Scholar
Schoenmakers, EF, Huysmans, C, van de Ven, WJ. Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas. Cancer Res 1999;59:1923.Google Scholar
Kurose, K, Mine, N, Doi, D, et al. Novel gene fusion COX6C at 8q22–23 to HMGIC at 12q15 in a uterine leiomyoma. Genes Chromosomes Cancer 2000;27:303307.Google Scholar
Mine, N, Kurose, K, Konishi, H, et al. Fusion of a sequence from HEI10 (14q11) to the HMGIC gene at 12q15 in a uterine leiomyoma. Jpn J Cancer Res 2001;92:135139.Google Scholar
Moore, SD, Herrick, SR, Ince, TA, et al. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res 2004;64:55705577.Google Scholar
Velagaleti, GV, Tonk, VS, Hakim, NM, et al. Fusion of HMGA2 to COG5 in uterine leiomyoma. Cancer Genet Cytogenet 2010;202:1116.Google Scholar
Panagopoulos, I, Gorunova, L, Bjerkehagen, B, Heim, S. Novel KAT6B-KANSL1 fusion gene identified by RNA sequencing in retroperitoneal leiomyoma with t(10;17)(q22;q21). PLoS One 2015;10:e0117010.Google Scholar
Astrom, A, D’Amore, ES, Sainati, L, et al. Evidence of involvement of the PLAG1 gene in lipoblastomas. Int J Oncol 2000;16:11071110.Google Scholar
Gisselsson, D, Hibbard, MK, Dal Cin, P, et al. PLAG1 fusion oncogenes in lipoblastoma. Cancer Res 2000;60:48694872.Google Scholar
Sciot, R, De Wever, I, Debiec-Rychter, M. Lipoblastoma in a 23-year-old male: distinction from atypical lipomatous tumor using cytogenetic and fluorescence in-situ hybridization analysis. Virchows Arch 2003;442:468471.Google Scholar
Deen, M, Ebrahim, S, Schloff, D, Mohamed, AN. A novel PLAG1-RAD51L1 gene fusion resulting from a t(8;14)(q12;q24) in a case of lipoblastoma. Cancer Genet 2013;206:233237.Google Scholar
Petit, MM, Mols, R, Schoenmakers, EF, Mandahl, N, Van de Ven, WJ. LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family. Genomics 1996;36:118129.Google Scholar
Petit, MM, Schoenmakers, EF, Huysmans, C, et al. LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new family of LHFP-like genes. Genomics 1999;57:438441.Google Scholar
Kazmierczak, B, Dal Cin, P, Wanschura, S, , et al. Cloning and molecular characterization of part of a new gene fused to HMGIC in mesenchymal tumors. Am J Pathol 1998;152:431435.Google Scholar
Broberg, K, Zhang, M, Strömbeck, B, et al. Fusion of RDC1 with HMGA2 in lipomas as the result of chromosome aberrations involving 2q35–37 and 12q13–15. Int J Oncol 2002;21:321326.Google Scholar
Nilsson, M, Panagopoulos, I, Mertens, F, Mandahl, N. Fusion of the HMGA2 and NFIB genes in lipoma. Virchows Arch 2005;447:855858.Google Scholar
Bianchini, L, Birtwisle, L, Saâda, E, et al. Identification of PPAP2B as a novel recurrent translocation partner gene of HMGA2 in lipomas. Genes Chromosomes Cancer 2013;52:580590.Google Scholar
Panagopoulos, I, Höglund, M, Mertens, F, et al. Fusion of EWS and CHOP genes in myxoid liposarcoma. Oncogene 1996;12:489494.Google Scholar
Crozat, A, Aman, P, Mandahl, N, Ron, D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 1993;363:640644.Google Scholar
Rabbitts, TH, Forster, A, Larson, R, Nathan, P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 1993;4:175180.Google Scholar
Dal Cin, P, Sciot, R, Panagopoulos, I, et al. Additional evidence of a variant translocation t(12;22) with EWS/CHOP fusion in myxoid liposarcoma: clinicopathological features. J Pathol 1997;182:437441.Google Scholar
Taylor, BS, DeCarolis, PL, Angeles, CV, et al. Frequent alterations and epigenetic silencing of differentiation pathway genes in structurally rearranged liposarcomas. Cancer Discov 2011;1:587597.Google Scholar
Storlazzi, CT, Mertens, F, Nascimento, A, et al. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet 2003;12:23492358.Google Scholar
Reid, R, de Silva, MV, Paterson, L, Ryan, E, Fisher, C. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11). Am J Surg Pathol 2003;27:12291236.Google Scholar
Panagopoulos, I, Storlazzi, CT, Fletcher, CD, et al. The chimeric FUS/CREB3L2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer 2004;40:218228.Google Scholar
Mertens, F, Fletcher, CD, Antonescu, CR, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest 2005;85:408415.Google Scholar
Guillou, L, Benhattar, J, Gengler, C, et al. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol 2007;31:13871402.Google Scholar
Brandal, P, Panagopoulos, I, Bjerkehagen, B, et al. Detection of a t(1;22)(q23;q12) translocation leading to an EWSR1-PBX1 fusion gene in a myoepithelioma. Genes Chromosomes Cancer 2008;47:558564.Google Scholar
Antonescu, CR, Zhang, L, Chang, NE, et al. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer 2010;49:11141124.Google Scholar
Brandal, P, Panagopoulos, I, Bjerkehagen, B, Heim, S. t(19;22)(q13;q12) Translocation leading to the novel fusion gene EWSR1-ZNF444 in soft tissue myoepithelial carcinoma. Genes Chromosomes Cancer 2009;48:10511056.Google Scholar
Antonescu, CR, Zhang, L, Shao, SY, et al. Frequent PLAG1 gene rearrangements in skin and soft tissue myoepithelioma with ductal differentiation. Genes Chromosomes Cancer 2013;52:675682.Google Scholar
Huang, SC, Chen, HW, Zhang, L, et al. Novel FUS-KLF17 and EWSR1-KLF17 fusions in myoepithelial tumors. Genes Chromosomes Cancer 2015;54:267275.Google Scholar
Erickson-Johnson, MR, Chou, MM, Evers, BR, et al. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Invest 2011;91:14271433.Google Scholar
Gebre-Medhin, S, Nord, KH, Möller, E, et al. Recurrent rearrangement of the PHF1 gene in ossifying fibromyxoid tumors. Am J Pathol 2012;181:10691077.Google Scholar
Endo, M, Kohashi, K, Yamamoto, H, et al. Ossifying fibromyxoid tumor presenting EP400-PHF1 fusion gene. Hum Pathol 2013;44:26032608.Google Scholar
Antonescu, CR, Sung, YS, Chen, CL, et al. Novel ZC3H7B-BCOR, MEAF6-PHF1, and EPC1-PHF1 fusions in ossifying fibromyxoid tumors: molecular characterization shows genetic overlap with endometrial stromal sarcoma. Genes Chromosomes Cancer 2014;53:183193.Google Scholar
Tanaka, M, Kato, K, Gomi, K, et al. Perivascular epithelioid cell tumor with SFPQ/PSF-TFE3 gene fusion in a patient with advanced neuroblastoma. Am J Surg Pathol 2009;33:14161420.Google Scholar
Dahlén, A, Mertens, F, Mandahl, N, Panagopoulos, I. Molecular genetic characterization of the genomic ACTB-GLI fusion in pericytoma with t(7;12). Biochem Biophys Res Commun 2004;325:13181323.Google Scholar
Carter, JM, Sukov, WR, Montgomery, E, et al. TGFBR3 and MGEA5 rearrangements in pleomorphic hyalinizing angiectatic tumors and the spectrum of related neoplasms. Am J Surg Pathol 2014;38:11821992.Google Scholar
Thway, K, Nicholson, AG, Lawson, K, et al. Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion: a new tumor entity. Am J Surg Pathol 2011;35:17221732.Google Scholar
Barr, FG, Galili, N, Holick, J, et al. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet 1993;3:113117.Google Scholar
Davis, RJ, D’Cruz, CM, Lovell, MA, Biegel, JA, Barr, FG. Fusion of PAX7 to FKHR by the variant t(1;3)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 1994;54:28692872.Google Scholar
Barr, FG, Qualman, SJ, Macris, MH, et al. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res 2002;62:47044710.Google Scholar
Wachtel, M, Dettling, M, Koscielniak, E, et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004;64:55395545.Google Scholar
Mosquera, JM, Sboner, A, Zhang, L, et al. Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer 2013;52:538550.Google Scholar
Robinson, DR, Wu, YM, Kalyana-Sundaram, S, et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet 2013;45:180185.Google Scholar
Mohajeri, A, Tayebwa, J, Collin, A, et al. Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene, nonrandom secondary genomic imbalances, and a characteristic gene expression profile in solitary fibrous tumor. Genes Chromosomes Cancer 2013;52:873886.Google Scholar
Crew, AJ, Clark, J, Fisher, C, et al. Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J 1995;14:23332340.Google Scholar
Skytting, B, Nilsson, G, Brodin, B, et al. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst 1999;91:974975.Google Scholar
Storlazzi, CT, Mertens, F, Mandahl, N, et al. A novel fusion gene, SS18L1/SSX1, in synovial sarcoma. Genes Chromosomes Cancer 2003;37:195200.Google Scholar
West, RB, Rubin, BP, Miller, MA, et al. A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. Proc Natl Acad Sci USA 2006;103:690695.Google Scholar
Möller, E, Mandahl, N, Mertens, F, Panagopoulos, I. Molecular identification of COL6A3-CSF1 fusion transcripts in tenosynovial giant cell tumors. Genes Chromosomes Cancer 2008;47:2125.Google Scholar
Panagopoulos, I, Brandal, P, Gorunova, L, Bjerkehagen, B, Heim, S. Novel CSF1-S100A10 fusion gene and CSF1 transcript identified by RNA sequencing in tenosynovial giant cell tumors. Int J Oncol 2014;44:14251432.Google Scholar
Pfeifer, JD. Molecular Genetic Testing In Surgical Pathology. Philadelphia: Lippincott Williams & Wilkins; 2006.Google Scholar
Yeku, O, Frohman, MA. Rapid amplification of cDNA ends (RACE). Methods Mol Biol 2011;703:107122.Google Scholar
Ladanyi, M. The emerging molecular genetics of sarcoma translocation. Diagn Mol Pathol 1995;4:162173.Google Scholar
Rabbitts, TH. Chromosomal translocation master genes, mouse models and experimental therapeutics. Oncogene 2001;20:57635777.Google Scholar
Xia, SJ, Barr, FG. Chromosome translocations in sarcomas and the emergence of oncogenic transcription factors. Eur J Cancer 2005;41:25132527.Google Scholar
Slater, O, Shipley, J. Clinical relevance of molecular genetics to paediatric sarcomas. J Clin Pathol 2007;60:11871194.Google Scholar
Oda, Y, Tsuneyoshi, M. Recent advances in the molecular pathology of soft tissue sarcoma: implications for diagnosis, patient prognosis, and molecular target therapy in the future. Cancer Sci 2009;100:200208.Google Scholar
Peter, M, Gilbert, E, Delattre, O. A multiplex real-time pcr assay for the detection of gene fusions observed in solid tumors. Lab Invest 2001;81:905912.Google Scholar
Geurts van Kessel, A, de Bruijn, D, Hermsen, L, et al. Masked t(X;18)(p11;q11) in a biphasic synovial sarcoma revealed by FISH and RT-PCR. Genes Chromosomes Cancer 1998;23:198201.Google Scholar
Kaneko, Y, Kobayashi, H, Hanada, M, Satake, N, Maseki, N. EWS-ERG fusion transcript produced by chromosomal insertion in a Ewing sarcoma. Genes Chromosomes Cancer 1997;18:228231.Google Scholar
Lestou, VS, O’Connell, JX, Robichaud, M, et al. Cryptic t(X;18), ins(6;18), and SYT-SSX2 gene fusion in a case of intraneural monophasic synovial sarcoma. Cancer Genet Cytogenet 2002;138:153156.Google Scholar
O’Sullivan, MJ, Kyriakos, M, Zhu, X, et al. Malignant peripheral nerve sheath tumors with t(X;18): a pathologic and molecular genetic study. Mod Pathol 2000;13:12531263.Google Scholar
Ladanyi, M, Woodruff, JM, Scheithauer, BW, et al. Re: O’Sullivan MJ, Kyriakos M, Zhu X, Wick MR, Swanson PE, Dehner LP, Humphrey PA, Pfeifer JD: Malignant peripheral nerve sheath tumors with t(X;18): a pathologic and molecular genetic study. Mod Pathol 2000;13:13361346.Google Scholar
Tamborini, E, Agus, V, Perrone, F, et al. Lack of SYT-SSX fusion transcripts in malignant peripheral nerve sheath tumors on RT-PCR analysis of 34 archival cases. Lab Invest 2002;82:609618.Google Scholar
Fritsch, MK, Bridge, JA, Schuster, AE, Perlman, EJ, Argani, P. Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue. Pediatr Dev Pathol 2003;6:4353.Google Scholar
Stewénius, Y, Jin, Y, Ora, I, et al. High-resolution molecular cytogenetic analysis of Wilms tumors highlights diagnostic difficulties among small round cell kidney tumors. Genes Chromosomes Cancer 2008;47:845852.Google Scholar
Sainati, L, Scapinello, A, Montaldi, A, et al. A mesenchymal chondrosarcoma of a child with the reciprocal translocation (11;22)(q24;q12). Cancer Genet Cytogenet 1993;71:144147.Google Scholar
Li, H, Wang, J, Mor, G, Sklar, J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 2008;321:13571361.Google Scholar
Beck, AH, West, RB, van de Rijn, M. Gene expression profiling for the investigation of soft tissue sarcoma pathogenesis and the identification of diagnostic, prognostic, and predictive biomarkers.Virchows Arch 2010;456:141151.Google Scholar
Løvf, M, Thomassen, GO, Mertens, F, et al. Assessment of fusion gene status in sarcomas using a custom made fusion gene microarray. PLoS One 2013;8:e70649.Google Scholar
Skotheim, RI, Thomassen, GO, Eken, M, et al. A universal assay for detection of oncogenic fusion transcripts by oligo microarray analysis. Mol Cancer 2009;8:5.Google Scholar
Xiong, FF, Li, BS, Zhang, CX, et al. A pipeline with multiplex reverse transcription polymerase chain reaction and microarray for screening of chromosomal translocations in leukemia. Biomed Res Int 2013;2013:135086.Google Scholar
Wada, Y, Matsuura, M, Sugawara, M, et al. Development of detection method for novel fusion gene using GeneChip exon array. J Clin Bioinforma 2014;4:3.Google Scholar
Agerstam, H, Lilljebjörn, H, Lassen, C, et al. Fusion gene-mediated truncation of RUNX1 as a potential mechanism underlying disease progression in the 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 2007;46:635643.Google Scholar
Frith, AE, Hirbe, AC, Van Tine, BA. Novel pathways and molecular targets for the treatment of sarcoma. Curr Oncol Rep 2013;15:378385.Google Scholar
Aragon-Ching, JB, Maki, RG. Treatment of adult soft tissue sarcoma: old concepts, new insights, and potential for drug discovery. Cancer Invest 2012;30:300308.Google Scholar
Martín Liberal, J, Lagares-Tena, L, Sáinz-Jaspeado, M, et al. Targeted therapies in sarcomas: challenging the challenge. Sarcoma 2012;2012:626094.Google Scholar
Wlodarska, I, De Wolf-Peeters, C, Falini, B, et al. The cryptic inv(2)(p23q35) defines a new molecular genetic subtype of ALK-positive anaplastic large-cell lymphoma. Blood 1998;92:26882695.Google Scholar
Touriol, C, Greenland, C, Lamant, L, et al. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 2000;95:32043207.Google Scholar
Tort, F, Pinyol, M, Pulford, K, et al. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest 2001;81:419426.Google Scholar
Lamant, L, Gascoyne, RD, Duplantier, MM, et al. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer 2003;37:427432.Google Scholar
Morris, SW, Kirstein, MN, Valentine, MB, et al. Fusion of a kinase gene, ALK to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1994;263:12811284.Google Scholar
Hernández, L, Pinyol, M, Hernández, S, et al. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 1999;94:32653268.Google Scholar
Lamant, L, Dastugue, N, Pulford, K, Delsol, G, Mariamé, B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 1999;93:30883095.Google Scholar
Liang, X, Meech, SJ, Odom, LF, et al. Assessment of t(2;5)(p23;q35) translocation and variants in pediatric ALK+ anaplastic large cell lymphoma. Am J Clin Pathol 2004;121:496506.Google Scholar
Lin, E, Li, L, Guan, Y, et al. Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Mol Cancer Res 2009;7:14661476.Google Scholar
Lipson, D, Capelletti, M, Yelensky, R, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012;18:382384.Google Scholar
Chikatsu, N, Kojima, H, Suzukawa, K, et al. ALK+, CD30-, CD20- large B-cell lymphoma containing anaplastic lymphoma kinase (ALK) fused to clathrin heavy chain gene (CLTC). Mod Pathol 2003;16:828832.Google Scholar
Adam, P, Katzenberger, T, Seeberger, H, et al. A case of a diffuse large B-cell lymphoma of plasmablastic type associated with the t(2;5)(p23;q35) chromosome translocation. Am J Surg Pathol 2003;27:14731476.Google Scholar
Van Roosbroeck, K, Cools, J, Dierickx, D, et al. ALK-positive large B-cell lymphomas with cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica 2010;95:509513.Google Scholar
Takeuchi, K, Soda, M, Togashi, Y, et al. Identification of a novel fusion, SQSTM1-ALK, in ALK-positive large B-cell lymphoma. Haematologica 2011;96:464467.Google Scholar
Jazii, FR, Najafi, Z, Malekzadeh, R, et al. Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J Gastroenterol 2006;12:71047112.Google Scholar
Debelenko, LV, Raimondi, SC, Daw, N, et al. Renal cell carcinoma with novel VCL-ALK fusion: new representative of ALK-associated tumor spectrum. Mod Pathol 2011;24:430442.Google Scholar
Röttgers, S, Gombert, M, Teigler-Schlegel, A, et al. ALK fusion genes in children with atypical myeloproliferative leukemia. Leukemia 2010;24:11971200.Google Scholar
Takeuchi, K, Choi, YL, Togashi, Y, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 2009;15:31433149.Google Scholar
Togashi, Y, Soda, M, Sakata, S, et al. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One 2012;7:e31323.Google Scholar
Rikova, K, Guo, A, Zeng, Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007;131:11901203.Google Scholar
Ren, H, Tan, ZP, Zhu, X, et al. Identification of anaplastic lymphoma kinase as a potential therapeutic target in ovarian cancer. Cancer Res 2012;72:33123323.Google Scholar
Chan, JK, Lamant, L, Algar, E, et al. ALK+ histiocytosis: a novel type of systemic histiocytic proliferative disorder of early infancy. Blood 2008;112:29652968.Google Scholar
Yamamoto, Y, Tsuzuki, S, Tsuzuki, M, et al. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood 2010;116:42744283.Google Scholar
Bohlander, SK. ETV6: a versatile player in leukemogenesis. Semin Cancer Biol 2005;15:162174.Google Scholar
Eguchi, M, Eguchi-Ishimae, M, Tojo, A, et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 1999;93:13551363.Google Scholar
Tognon, C, Knezevich, SR, Huntsman, D, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002;2:367376.Google Scholar
Skálová, A, Vanecek, T, Sima, R, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol 2010;34:599608.Google Scholar
Leeman-Neill, RJ, Kelly, LM, Liu, P, et al. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer 2014;120:799807.Google Scholar
Bilodeau, EA, Weinreb, I, Antonescu, CR, et al. Clear cell odontogenic carcinomas show EWSR1 rearrangements: a novel finding and a biological link to salivary clear cell carcinomas. Am J Surg Pathol 2013;37:10011005.Google Scholar
Arbajian, E, Magnusson, L, Brosjö, O, et al. A benign vascular tumor with a new fusion gene: EWSR1-NFATC1 in hemangioma of the bone. Am J Surg Pathol 2013;37:613616.Google Scholar
Möller, E, Stenman, G, Mandahl, N, et al. POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J Pathol 2008;215:7886.Google Scholar
Antonescu, CR, Katabi, N, Zhang, L, et al. EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear-cell carcinoma of salivary gland. Genes Chromosomes Cancer 2011;50:559570.Google Scholar
Skálová, A, Weinreb, I, Hyrcza, M, et al. Clear cell myoepithelial carcinoma of salivary glands showing EWSR1 rearrangement: molecular analysis of 94 salivary gland carcinomas with prominent clear cell component. Am J Surg Pathol 2015;39:338348.Google Scholar
Panagopoulos, I, Thorsen, J, Gorunova, L, et al. RNA sequencing identifies fusion of the EWSR1 and YY1 genes in mesothelioma with t(14;22)(q32;q12). Genes Chromosomes Cancer 2013;52:733740.Google Scholar
Yamaguchi, S, Yamazaki, Y, Ishikawa, Y, et al. EWSR1 is fused to POU5F1 in a bone tumor with translocation t(6;22)(p21;q12). Genes Chromosomes Cancer 2005;43:217222.Google Scholar
Panagopoulos, I, Aman, P, Fioretos, T, et al. Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22). Genes Chromosomes Cancer 1994;11:256262.Google Scholar
Puls, F, Arbajian, E, Magnusson, L, et al. Myoepithelioma of bone with a novel FUS-POU5F1 fusion gene. Histopathology 2014;65:917922.Google Scholar
Geurts, JM, Schoenmakers, EF, Röijer, E, Stenman, G, Van de Ven, WJ. Expression of reciprocal hybrid transcripts of HMGIC and FHIT in a pleomorphic adenoma of the parotid gland. Cancer Res 1997;57:1317.Google Scholar
Rogalla, P, Lemke, I, Kazmierczak, B, Bullerdiek, J. An identical HMGIC-LPP fusion transcript is consistently expressed in pulmonary chondroid hamartomas with t(3;12)(q27-28;q14-15). Genes Chromosomes Cancer 2000;29:363366.Google Scholar
Strehl, S, Nebral, K, König, M, et al. ETV6-NCOA2: a novel fusion gene in acute leukemia associated with coexpression of T-lymphoid and myeloid markers and frequent NOTCH1 mutations. Clin Cancer Res 2008;14:977983.Google Scholar
Asp, J, Persson, F, Kost-Alimova, M, Stenman, G. CHCHD7-PLAG1 and TCEA1-PLAG1 gene fusions resulting from cryptic, intrachromosomal 8q rearrangements in pleomorphic salivary gland adenomas. Genes Chromosomes Cancer 2006;45:820828.Google Scholar
Davies, KD, Doebele, RC. Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 2013;19:40404045.Google Scholar
Ross, H, Argani, P. Xp11 translocation renal cell carcinoma. Pathology 2010;42:369373.Google Scholar
Oliveira, AM, Perez-Atayde, AR, Dal Cin, P, et al. Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene 2005;24:34193426.Google Scholar
Oliveira, AM, Chou, MM. USP6-induced neoplasms: the biologic spectrum of aneurysmal bone cyst and nodular fasciitis. Hum Pathol 2014;45:111.Google Scholar
Law, WJ, Cann, KL, Hicks, GG. TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Brief Funct Genomic Proteomic 2006;5:814.Google Scholar
Kovar, H. Kovar, H. Dr. Jekyll and Mr. Hyde: the two faces of the FUS/EWS/TAF15 protein family. Sarcoma 2011;2011:837474.Google Scholar
Turc-Carel, C, Philip, I, Berger, M-P, Philip, T, Lenoir, GM. Chromosomal translocations 11;22 in cell lines of Ewing’s sarcoma. N Engl J Med 1983;309:497498.Google Scholar
Tomlins, SA, Rhodes, DR, Perner, S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005;310:644648.Google Scholar
Wang, J, Cai, Y, Ren, C, Ittmann, M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 2006;66:83478351.Google Scholar
Tomlins, SA, Mehra, R, Rhodes, DR, et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 2006;66:33963400.Google Scholar
Kumar-Sinha, C, Tomlins, SA, Chinnaiyan, AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008;8:497511.Google Scholar
Truong, AH, Ben-David, Y. The role of Fli-1 in normal cell function and malignant transformation. Oncogene 2000;19:64826489.Google Scholar
Arvand, A, Denny, CT. Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene 2001;20:57475754.Google Scholar
Hai, T, Hartman, MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 2001;273:111.Google Scholar
Brown, AD, Lopez-Terrada, D, Denny, C, Lee, KA. Promoters containing ATF-binding sites are de-regulated in cells that express the EWS/ATF1 oncogene. Oncogene 1995;10:17491756.Google Scholar
Panagopoulos, I, Möller, E, Dahlén, A, et al. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 2007;46:181191.Google Scholar
Lee, SB, Haber, DA. Wilms tumor and the WT1 gene. Exp Cell Res 2001;264: 7499.Google Scholar
Kim, J, Lee, K, Pelletier, J. The desmoplastic small round cell tumor t(11;22) translocation produces EWS/WT1 isoforms with differing oncogenic properties. Oncogene 1998;16:19731979.Google Scholar
Reynolds, PA, Smolen, GA, Palmer, RE, et al. Identification of a DNA-binding site and transcriptional target for the EWS-WT1(+KTS) oncoprotein. Genes Dev 2003;17:20942107.Google Scholar
Ohkura, N, Hijikuro, M, Yamamoto, A, Miki, K. Molecular cloning of a novel thyroid/steroid receptor superfamily gene from cultured rat neuronal cells. Biochem Biophys Res Commun 1994;205:19591965.Google Scholar
Ohkura, N, Yaguchi, H, Tsukada, T, Yamaguchi, K. The EWS/NOR1 fusion gene product gains a novel activity affecting pre-mRNA splicing. J Biol Chem 2002;277:535543.Google Scholar
Gan, TI, Rowen, L, Nesbitt, R, et al. Genomic organization of human TCF12 gene and spliced mRNA variants producing isoforms of transcription factor HTF4. Cytogenet Genome Res 2002;98:245248.Google Scholar
Mencinger, M, Panagopoulos, I, Andreasson, P, et al. Characterization and chromosomal mapping of the human TFG gene involved in thyroid carcinoma. Genomics 1997;41:327331.Google Scholar
Greco, A, Mariani, C, Miranda, C, et al. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 1995;15:61186127.Google Scholar
Hunger, SP, Galili, N, Carroll, AJ, et al. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 1991;77:687693.Google Scholar
Kamps, MP, Murre, C, Sun, XH, Baltimore, D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 1990;60:547555.Google Scholar
Turc-Carel, C, Limon, J, Dal Cin, P, et al. Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet 1986;23:291299.Google Scholar
Åman, P, Ron, D, Mandahl, N, et al. Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer 1992;5:278285.Google Scholar
Kuroda, M, Ishida, T, Takanashi, M, et al. Oncogenic transformation and inhibition of adipocytic conversion of preadipocytes by TLS/FUS-CHOP type II chimeric protein. Am J Pathol 1997;151:735744.Google Scholar
Zinszner, H, Albalat, R, Ron, D. A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev 1994;8:25132526.Google Scholar
Ichikawa, H, Shimizu, K, Hayashi, Y, Ohki, M. An RNA-binding protein gene, TLS/FUS, is fused to erg in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res 1994;54:28652868.Google Scholar
Åman, P, Panagopoulos, I, Lassen, C, et al. Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics 1996;37:18.Google Scholar
Ron, D, Brasier, AR, McGehee, RE Jr, Habener, JF. Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP). J Clin Invest 1992;89:223233.Google Scholar
Ron, D, Habener, JF. CHOP a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant negative inhibitor of gene transcription. Genes Dev 1992;6:439453.Google Scholar
Adelmant, G, Gilbert, JD, Freytag, SO. Human translocation liposarcoma-CCAAT/enhancer binding protein (C/EBP) homologous protein (TLS-CHOP) oncoprotein prevents adipocyte differentiation by directly interfering with C/EBPbeta function. J Biol Chem 1998;273:1557415581.Google Scholar
Panagopoulos, I, Möller, E, Dahlén, A, et al. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 2007;46:181191.Google Scholar
Nucci, MR, Weremowicz, S, Neskey, DM, et al. Chromosomal translocation t(8;12) induces aberrant HMGIC expression in aggressive angiomyxoma of the vulva. Genes Chromosomes Cancer 2001;32:172176.Google Scholar
Micci, F, Panagopoulos, I, Bjerkehagen, B, Heim, S. Deregulation of HMGA2 in an aggressive angiomyxoma with t(11;12)(q23;q15). Virchows Arch 2006;448:838842.Google Scholar
Rabban, JT, Dal Cin, P, Oliva, E. HMGA2 rearrangement in a case of vulvar aggressive angiomyxoma. Int J Gynecol Pathol 2006;25:403407.Google Scholar
Rawlinson, NJ, West, WW, Nelson, M, Bridge, JA. Aggressive angiomyxoma with t(12;21) and HMGA2 rearrangement: report of a case and review of the literature. Cancer Genet Cytogenet 2008;181:119124.Google Scholar
Joyama, S, Ueda, T, Shimizu, K, et al. Chromosome rearrangement at 17q25 and Xp11.2 in alveolar soft-part sarcoma: a case report and review of the literature. Cancer 1999;86:12461250.Google Scholar
Ladanyi, M, Lui, MY, Antonescu, CR, et al. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 2001;20:4857.Google Scholar
Jin, Y, Möller, E, Nord, KH, et al. Fusion of the AHRR and NCOA2 genes through a recurrent translocation t(5;8)(p15;q13) in soft tissue angiofibroma results in upregulation of aryl hydrocarbon receptor target genes. Genes Chromosomes Cancer 2012;51:510520.Google Scholar
Arbajian, E, Magnusson, L, Mertens, F, et al. A novel GTF2I/NCOA2 fusion gene emphasizes the role of NCOA2 in soft tissue angiofibroma development. Genes Chromosomes Cancer 2013;52:330331.Google Scholar
Waters, BL, Panagopoulos, I, Allen, EF. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet Cytogenet 2000;121:109116.Google Scholar
Raddaoui, E, Donner, LR, Panagopoulos, I. Fusion of the FUS and ATF1 genes in a large deep-seated angiomatoid fibrous histiocytoma. Diagn Mol Pathol 2002;11:157162.Google Scholar
Antonescu, CR, Dal Cin, P, Nafa, K, et al. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2007;46:10511060.Google Scholar
Hallor, KH, Micci, F, Meis-Kindblom, JM, et al. Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett 2007;251:158163.Google Scholar
Giacomini, CP, Sun, S, Varma, S, et al. Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types. PLoS Genet 2013;9:e1003464.Google Scholar
Huang, D, Sumegi, J, Dal Cin, P, et al. C11orf95-MKL2 is the resulting fusion oncogene of t(11;16)(q13;p13) in chondroid lipoma. Genes Chromosomes Cancer 2010;49:810818.Google Scholar
Tallini, G, Dorfman, H, Brys, P, et al. Correlation between clinicopathological features and karyotype in 100 cartilaginous and chordoid tumours: a report from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. J Pathol 2002;196:194203.CrossRefGoogle ScholarPubMed
Dahlén, A, Mertens, F, Rydholm, A, et al. Fusion, disruption, and expression of HMGA2 in bone and soft tissue chondromas. Mod Pathol 2003;16:11321140.CrossRefGoogle ScholarPubMed
Labelle, Y, Bussières, J, Courjal, F, Goldring, MB. The EWS/TEC fusion protein encoded by the t(9;22) chromosomal translocation in human chondrosarcomas is a highly potent transcriptional activator. Oncogene 1999;18:33033308.Google Scholar
Attwooll, C, Tariq, M, Harris, M, et al. Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2) translocation in an extraskeletal myxoid chondrosarcoma. Oncogene 1999;18:75997601.Google Scholar
Sjögren, H, Meis-Kindblom, J, Kindblom, LG, Åman, P, Stenman, G. Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma. Cancer Res 1999;59:50645067.Google Scholar
Sjögren, H, Wedell, B, Kindblom, JM, Kindblom, LG, Stenman, G. Fusion of the basic helix-loop-helix protein TCF12 to TEC in extraskeletal myxoid chondrosarcoma with translocation t(9;15)(q22;q21). Cancer Res 2000;60:68326835.Google Scholar
Morohoshi, F, Arai, K, Takahashi, EI, Tanigami, A, Ohki, M. Cloning and mapping of a human RBP56 gene encoding a putative RNA binding protein similar to FUS/TLS and EWS proteins. Genomics 1996;38:5157.Google Scholar
Hisaoka, M, Ishida, T, Imamura, T, Hashimoto, H. TFG is a novel fusion partner of NOR1 in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 2004;40:325328.Google Scholar
Broehm, CJ, Wu, J, Gullapalli, RR, Bocklage, T. Extraskeletal myxoid chondrosarcoma with a t(9;16)(q22;p11.2) resulting in a NR4A3-FUS fusion. Cancer Genet 2014;207:276280.Google Scholar
Wang, L, Motoi, T, Khanin, R, et al. Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosomes Cancer 2012;51:127139.CrossRefGoogle ScholarPubMed
Nyquist, KB, Panagopoulos, I, Thorsen, J, et al. Whole-transcriptome sequencing identifies novel IRF2BP2-CDX1 fusion gene brought about by translocation t(1;5)(q42;q32) in mesenchymal chondrosarcoma. PLoS One 2012;7:e49705.Google Scholar
Zucman, J, Delattre, O, Desmaze, C, et al. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet 1993;4:341345.Google Scholar
Panagopoulos, I, Mertens, F, Debiec-Rychter, M, et al. Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses. Int J Cancer 2002;99:560567.CrossRefGoogle ScholarPubMed
Speleman, F, Delattre, O, Peter, M, et al. Malignant melanoma of the soft parts (clear-cell sarcoma): conformation of EWS and ATF-1 gene fusion caused by a t(11;22) translocation. Mod Pathol 1997;10:496499.Google Scholar
Antonescu, CR, Tschernyavsky, SJ, Woodruff, JM, et al. Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J Mol Diagn 2002;4:4452.Google Scholar
Covinsky, M, Gong, S, Rajaram, V, Perry, A, Pfeifer, J. EWS-ATF1 fusion transcripts in gastrointestinal tumors previously diagnosed as malignant melanoma. Hum Pathol 2005;36:7481.Google Scholar
Antonescu, CR, Nafa, K, Segal, NH, Dal Cin, P, Ladanyi, M. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma–association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res 2006;12:53565362.CrossRefGoogle ScholarPubMed
Sciot, R, Samson, I, van den Berghe, H, Van Damme, B, Dal Cin, P. Collagenous fibroma (desmoplastic fibroblastoma): genetic link with fibroma of tendon sheath? Mod Pathol 1999;12:565568.Google Scholar
Macchia, G, Trombetta, D, Möller, E, et al. FOSL1 as a candidate target gene for 11q12 rearrangements in desmoplastic fibroblastoma. Lab Invest 2012;92:735743.Google Scholar
Simon, MP, Pedeutour, F, Sirvent, N, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet 1997;15:9598.Google Scholar
Shimizu, A, O’Brien, KP, Sjöblom, T, et al. The dermatofibrosarcoma protuberans-associated collagen type Iα1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res 1999;59:37193723.Google Scholar
Simon, MP, Navarro, M, Roux, D, Pouysségur, J. Structural and functional analysis of a chimeric protein COL1A1-PDGFB generated by the translocation t(17;22)(q22;q13.1) in dermatofibrosarcoma protuberans (DP). Oncogene 2001;20:29652975.Google Scholar
O’Brien, KP, Seroussi, E, Dal Cin, P, et al. Various regions within the alpha-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcoma protuberans and giant cell fibroblastomas. Genes Chromosomes Cancer 1998;23:187193.Google Scholar
Sirvent, N, Maire, G, Pedeutour, F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer 2003;37:119.Google Scholar
Bianchini, L, Maire, G, Guillot, B, et al. Complex t(5;8) involving the CSPG2 and PTK2B genes in a case of dermatofibrosarcoma protuberans without the COL1A1-PDGFB fusion. Virchows Arch 2008;452:689696.Google Scholar
Ladanyi, M, Gerald, WL. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res 1994;54:28372840.Google Scholar
Gerald, WL, Rosai, J, Ladanyi, M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad Sci USA 1995;14:10281032.Google Scholar
Gerald, WL, Ladanyi, M, de Alava, E, et al. Clinical, pathologic, and molecular spectrum of tumors associated with t(11;22)(p13;q12): desmoplastic small-round-cell tumor and its variants. J Clin Oncol 1998;16:30283036.Google Scholar
Gerald, WL, Haber, DA. The EWS-WT1 gene fusion in desmoplastic small round cell tumor. Semin Cancer Biol 2005;15:197205.Google Scholar
Ordi, J, de Alava, E, Torné, A, et al. Intraabdominal desmoplastic small round cell tumor with EWS/ERG fusion transcript. Am J Surg Pathol 1998;22:10261032.Google Scholar
Koontz, JI, Soreng, AL, Nucci, M, et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci 2001;98:63486353.Google Scholar
Micci, F, Panagopoulos, I, Bjerkehagen, B, Heim, S. Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcomas. Cancer Res 2006;66:107112.Google Scholar
Mertens, F, Tayebwa, J. Evolving techniques for gene fusion detection in soft tissue tumours. Histopathology 2014;64:151162.Google Scholar
Micci, F, Gorunova, L, Gatius, S, et al. MEAF6/PHF1 is a recurrent gene fusion in endometrial stromal sarcoma. Cancer Lett 2014;347:7578.Google Scholar
Dewaele, B, Przybyl, J, Quattrone, A, et al. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int J Cancer 2014;134:11121122.CrossRefGoogle ScholarPubMed
Lee, CH, Nucci, MR. Endometrial stromal sarcoma - the new genetic paradigm. Histopathology 2015;67:119.Google Scholar
Panagopoulos, I, Thorsen, J, Gorunova, L, et al. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer 2013;52:610618.Google Scholar
McPherson, A, Hormozdiari, F, Zayed, A, et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol 2011;7:e1001138Google Scholar
Aurias, A, Rimbaut, C, Buffe, D, Zucker, JM, Mazabraud, A. Translocation involving chromosome 22 in Ewing’s sarcoma: a cytogenetic study of four fresh tumors. Cancer Genet Cytogenet 1984;12:2125.Google Scholar
Whang-Peng, J, Triche, TJ, Knutsen, T, et al. Chromosome translocation in peripheral neuroepithelioma. N Engl J Med 1984;311:584585.Google Scholar
Delattre, O, Zucman, J, Plougastel, B, et al. Gene fusion with an ETS DNA binding domain caused by chromosome translocation in human tumors. Nature 1992;359:162165.Google Scholar
Zucman, J, Delattre, O, Desmaze, C, et al. Cloning and characterization of the Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Genes Chromosomes Cancer 1992;5:271277.Google Scholar
Zucman, J, Melot, T, Desmaze, C, et al. Combinatorial generation of variable fusion proteins in Ewing family of tumors. EMBO J 1993;12:44814487.Google Scholar
Sorensen, PH, Lessnick, SL, Lopez-Terrada, D, et al. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 1994;6:146151.CrossRefGoogle ScholarPubMed
Jeon, IS, Davis, JN, Braun, BS, et al. A variant Ewing’s sarcoma translocation t(7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 1995;10:12291234.Google Scholar
Kaneko, Y, Yoshida, K, Handa, M, et al. Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 1996;15:115121.Google Scholar
Peter, M, Couturier, J, Pacquement, H, et al. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 1997;14:11591164.Google Scholar
Mastrangelo, T, Modena, P, Tornielli, S, et al. A novel zinc finger gene is fused to EWS in small round cell tumor. Oncogene 2000;19:37993804.Google Scholar
Wang, L, Bhargava, R, Zheng, T, et al. Undifferentiated small round cell sarcomas with rare EWS gene fusions: identification of the novel EWS-SP3 fusion and of additional cases with the EWS-ETV1 and EWS-FEV fusions. J Mol Diagn 2007;9:498509.Google Scholar
Ng, TL, O’Sullivan, MJ, Pallen, CJ, et al. Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn 2007;9:459463.Google Scholar
Shing, DC, McMullan, DJ, Roberts, P, et al. FUS/ERG gene fusions in Ewing’s tumors. Cancer Res 2003;63:45684576.Google Scholar
Szuhai, K, Ijszenga, M, de Jong, D, et al. The NFATc2 gene is involved in a novel cloned translocation in a Ewing sarcoma variant that couples its function in immunology to oncology. Clin Cancer Res 2009;15:22592268.Google Scholar
Sumegi, J, Nishio, J, Nelson, M, et al. A novel t(4;22)(q31;q12) produces an EWSR1-SMARCA5 fusion in extraskeletal Ewing sarcoma/primitive neuroectodermal tumor. Mod Pathol 2011;24:333342.Google Scholar
Choi, EY, Thomas, DG, McHugh, JB, et al. Undifferentiated small round cell sarcoma with t(4;19)(q35;q13.1) CIC-DUX4 fusion: a novel highly aggressive soft tissue tumor with distinctive histopathology. Am J Surg Pathol 2013;37:13791386.Google Scholar
Italiano, A, Sung, YS, Zhang, L, et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer 2012;51:207218.Google Scholar
Pierron, G, Tirode, F, Lucchesi, C, et al. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet 2012;44:461466.Google Scholar
Sugita, S, Arai, Y, Tonooka, A, et al. A novel CIC-FOXO4 gene fusion in undifferentiated small round cell sarcoma: a genetically distinct variant of Ewing-like sarcoma. Am J Surg Pathol 2014;38:15711576.Google Scholar
Knezevich, SR, McFadden, DE, Tao, W, Lim, JF, Sorensen, PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 1998;18:184187.Google Scholar
Rubin, BP, Chen, CJ, Morgan, TW, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 1998;153:14511458.Google Scholar
Errani, C, Zhang, L, Sung, YS, et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer 2011;50:644653.Google Scholar
Tanas, MR, Sboner, A, Oliveira, AM, et al. Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Sci Transl Med 2011;3:98ra82.Google Scholar
Antonescu, CR, Le Loarer, F, Mosquera, JM, et al. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosomes Cancer 2013;52:775784.Google Scholar
Trombetta, D, Magnusson, L, von Steyern, FV, et al. Translocation t(7;19)(q22;q13) - a recurrent chromosome aberration in pseudomyogenic hemangioendothelioma? Cancer Genet 2011;204:211215.Google Scholar
Walther, C, Tayebwa, J, Lilljebjörn, H, et al. A novel SERPINE1-FOSB fusion gene results in transcriptional up-regulation of FOSB in pseudomyogenic haemangioendothelioma. J Pathol 2014;232:534540.Google Scholar
Antonescu, CR, Zhang, L, Nielsen, GP, et al. Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromosomes Cancer 2011;50:757764.CrossRefGoogle ScholarPubMed
Cools, J, Wlodarska, I, Somers, R, et al. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2002;34:354362.Google Scholar
Bridge, JA, Kanamori, M, Ma, Z, et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol 2001;159:411415.Google Scholar
Debiec-Rychter, M, Marynen, P, Hagemeijer, A, Pauwels, P. ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;38:187190.Google Scholar
Ma, Z, Hill, DA, Collins, MH, et al. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;37:98105.CrossRefGoogle Scholar
Panagopoulos, I, Nilsson, T, Domanski, HA, et al. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer 2006;118:11811186.Google Scholar
Lawrence, B, Perez-Atayde, A, Hibbard, MK, et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 2000;157:377384.Google Scholar
Takeuchi, K, Soda, M, Togashi, Y, et al. Pulmonary inflammatory myofibroblastic tumor expressing a novel fusion, PPFIBP1-ALK: reappraisal of anti-ALK immunohistochemistry as a tool for novel ALK fusion identification. Clin Cancer Res 2011;17:33413348.Google Scholar
Lovly, CM, Gupta, A, Lipson, D, et al. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov 2014;4:889895.Google Scholar
Antonescu, CR, Suurmeijer, AJ, Zhang, L, et al. Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am J Surg Pathol 2015;39:957967.Google Scholar
Kazmierczak, B, Pohnke, Y, Bullerdiek, J. Fusion transcripts between HMGIC gene and RTVL-H-related sequences in mesenchymal tumors without cytogenetic aberrations. Genomics 1996;38:223226.Google Scholar
Schoenmakers, EF, Huysmans, C, van de Ven, WJ. Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas. Cancer Res 1999;59:1923.Google Scholar
Kurose, K, Mine, N, Doi, D, et al. Novel gene fusion COX6C at 8q22–23 to HMGIC at 12q15 in a uterine leiomyoma. Genes Chromosomes Cancer 2000;27:303307.Google Scholar
Mine, N, Kurose, K, Konishi, H, et al. Fusion of a sequence from HEI10 (14q11) to the HMGIC gene at 12q15 in a uterine leiomyoma. Jpn J Cancer Res 2001;92:135139.Google Scholar
Moore, SD, Herrick, SR, Ince, TA, et al. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res 2004;64:55705577.Google Scholar
Velagaleti, GV, Tonk, VS, Hakim, NM, et al. Fusion of HMGA2 to COG5 in uterine leiomyoma. Cancer Genet Cytogenet 2010;202:1116.Google Scholar
Panagopoulos, I, Gorunova, L, Bjerkehagen, B, Heim, S. Novel KAT6B-KANSL1 fusion gene identified by RNA sequencing in retroperitoneal leiomyoma with t(10;17)(q22;q21). PLoS One 2015;10:e0117010.Google Scholar
Astrom, A, D’Amore, ES, Sainati, L, et al. Evidence of involvement of the PLAG1 gene in lipoblastomas. Int J Oncol 2000;16:11071110.Google Scholar
Gisselsson, D, Hibbard, MK, Dal Cin, P, et al. PLAG1 fusion oncogenes in lipoblastoma. Cancer Res 2000;60:48694872.Google Scholar
Sciot, R, De Wever, I, Debiec-Rychter, M. Lipoblastoma in a 23-year-old male: distinction from atypical lipomatous tumor using cytogenetic and fluorescence in-situ hybridization analysis. Virchows Arch 2003;442:468471.Google Scholar
Deen, M, Ebrahim, S, Schloff, D, Mohamed, AN. A novel PLAG1-RAD51L1 gene fusion resulting from a t(8;14)(q12;q24) in a case of lipoblastoma. Cancer Genet 2013;206:233237.Google Scholar
Petit, MM, Mols, R, Schoenmakers, EF, Mandahl, N, Van de Ven, WJ. LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family. Genomics 1996;36:118129.Google Scholar
Petit, MM, Schoenmakers, EF, Huysmans, C, et al. LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new family of LHFP-like genes. Genomics 1999;57:438441.Google Scholar
Kazmierczak, B, Dal Cin, P, Wanschura, S, , et al. Cloning and molecular characterization of part of a new gene fused to HMGIC in mesenchymal tumors. Am J Pathol 1998;152:431435.Google Scholar
Broberg, K, Zhang, M, Strömbeck, B, et al. Fusion of RDC1 with HMGA2 in lipomas as the result of chromosome aberrations involving 2q35–37 and 12q13–15. Int J Oncol 2002;21:321326.Google Scholar
Nilsson, M, Panagopoulos, I, Mertens, F, Mandahl, N. Fusion of the HMGA2 and NFIB genes in lipoma. Virchows Arch 2005;447:855858.Google Scholar
Bianchini, L, Birtwisle, L, Saâda, E, et al. Identification of PPAP2B as a novel recurrent translocation partner gene of HMGA2 in lipomas. Genes Chromosomes Cancer 2013;52:580590.Google Scholar
Panagopoulos, I, Höglund, M, Mertens, F, et al. Fusion of EWS and CHOP genes in myxoid liposarcoma. Oncogene 1996;12:489494.Google Scholar
Crozat, A, Aman, P, Mandahl, N, Ron, D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 1993;363:640644.Google Scholar
Rabbitts, TH, Forster, A, Larson, R, Nathan, P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 1993;4:175180.Google Scholar
Dal Cin, P, Sciot, R, Panagopoulos, I, et al. Additional evidence of a variant translocation t(12;22) with EWS/CHOP fusion in myxoid liposarcoma: clinicopathological features. J Pathol 1997;182:437441.Google Scholar
Taylor, BS, DeCarolis, PL, Angeles, CV, et al. Frequent alterations and epigenetic silencing of differentiation pathway genes in structurally rearranged liposarcomas. Cancer Discov 2011;1:587597.Google Scholar
Storlazzi, CT, Mertens, F, Nascimento, A, et al. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet 2003;12:23492358.Google Scholar
Reid, R, de Silva, MV, Paterson, L, Ryan, E, Fisher, C. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11). Am J Surg Pathol 2003;27:12291236.Google Scholar
Panagopoulos, I, Storlazzi, CT, Fletcher, CD, et al. The chimeric FUS/CREB3L2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer 2004;40:218228.Google Scholar
Mertens, F, Fletcher, CD, Antonescu, CR, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest 2005;85:408415.Google Scholar
Guillou, L, Benhattar, J, Gengler, C, et al. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol 2007;31:13871402.Google Scholar
Brandal, P, Panagopoulos, I, Bjerkehagen, B, et al. Detection of a t(1;22)(q23;q12) translocation leading to an EWSR1-PBX1 fusion gene in a myoepithelioma. Genes Chromosomes Cancer 2008;47:558564.Google Scholar
Antonescu, CR, Zhang, L, Chang, NE, et al. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer 2010;49:11141124.Google Scholar
Brandal, P, Panagopoulos, I, Bjerkehagen, B, Heim, S. t(19;22)(q13;q12) Translocation leading to the novel fusion gene EWSR1-ZNF444 in soft tissue myoepithelial carcinoma. Genes Chromosomes Cancer 2009;48:10511056.Google Scholar
Antonescu, CR, Zhang, L, Shao, SY, et al. Frequent PLAG1 gene rearrangements in skin and soft tissue myoepithelioma with ductal differentiation. Genes Chromosomes Cancer 2013;52:675682.Google Scholar
Huang, SC, Chen, HW, Zhang, L, et al. Novel FUS-KLF17 and EWSR1-KLF17 fusions in myoepithelial tumors. Genes Chromosomes Cancer 2015;54:267275.Google Scholar
Erickson-Johnson, MR, Chou, MM, Evers, BR, et al. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Invest 2011;91:14271433.Google Scholar
Gebre-Medhin, S, Nord, KH, Möller, E, et al. Recurrent rearrangement of the PHF1 gene in ossifying fibromyxoid tumors. Am J Pathol 2012;181:10691077.Google Scholar
Endo, M, Kohashi, K, Yamamoto, H, et al. Ossifying fibromyxoid tumor presenting EP400-PHF1 fusion gene. Hum Pathol 2013;44:26032608.Google Scholar
Antonescu, CR, Sung, YS, Chen, CL, et al. Novel ZC3H7B-BCOR, MEAF6-PHF1, and EPC1-PHF1 fusions in ossifying fibromyxoid tumors: molecular characterization shows genetic overlap with endometrial stromal sarcoma. Genes Chromosomes Cancer 2014;53:183193.Google Scholar
Tanaka, M, Kato, K, Gomi, K, et al. Perivascular epithelioid cell tumor with SFPQ/PSF-TFE3 gene fusion in a patient with advanced neuroblastoma. Am J Surg Pathol 2009;33:14161420.Google Scholar
Dahlén, A, Mertens, F, Mandahl, N, Panagopoulos, I. Molecular genetic characterization of the genomic ACTB-GLI fusion in pericytoma with t(7;12). Biochem Biophys Res Commun 2004;325:13181323.Google Scholar
Carter, JM, Sukov, WR, Montgomery, E, et al. TGFBR3 and MGEA5 rearrangements in pleomorphic hyalinizing angiectatic tumors and the spectrum of related neoplasms. Am J Surg Pathol 2014;38:11821992.Google Scholar
Thway, K, Nicholson, AG, Lawson, K, et al. Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion: a new tumor entity. Am J Surg Pathol 2011;35:17221732.Google Scholar
Barr, FG, Galili, N, Holick, J, et al. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet 1993;3:113117.Google Scholar
Davis, RJ, D’Cruz, CM, Lovell, MA, Biegel, JA, Barr, FG. Fusion of PAX7 to FKHR by the variant t(1;3)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 1994;54:28692872.Google Scholar
Barr, FG, Qualman, SJ, Macris, MH, et al. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res 2002;62:47044710.Google Scholar
Wachtel, M, Dettling, M, Koscielniak, E, et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004;64:55395545.Google Scholar
Mosquera, JM, Sboner, A, Zhang, L, et al. Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer 2013;52:538550.Google Scholar
Robinson, DR, Wu, YM, Kalyana-Sundaram, S, et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet 2013;45:180185.Google Scholar
Mohajeri, A, Tayebwa, J, Collin, A, et al. Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene, nonrandom secondary genomic imbalances, and a characteristic gene expression profile in solitary fibrous tumor. Genes Chromosomes Cancer 2013;52:873886.Google Scholar
Crew, AJ, Clark, J, Fisher, C, et al. Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J 1995;14:23332340.Google Scholar
Skytting, B, Nilsson, G, Brodin, B, et al. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst 1999;91:974975.Google Scholar
Storlazzi, CT, Mertens, F, Mandahl, N, et al. A novel fusion gene, SS18L1/SSX1, in synovial sarcoma. Genes Chromosomes Cancer 2003;37:195200.Google Scholar
West, RB, Rubin, BP, Miller, MA, et al. A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. Proc Natl Acad Sci USA 2006;103:690695.Google Scholar
Möller, E, Mandahl, N, Mertens, F, Panagopoulos, I. Molecular identification of COL6A3-CSF1 fusion transcripts in tenosynovial giant cell tumors. Genes Chromosomes Cancer 2008;47:2125.Google Scholar
Panagopoulos, I, Brandal, P, Gorunova, L, Bjerkehagen, B, Heim, S. Novel CSF1-S100A10 fusion gene and CSF1 transcript identified by RNA sequencing in tenosynovial giant cell tumors. Int J Oncol 2014;44:14251432.Google Scholar
Pfeifer, JD. Molecular Genetic Testing In Surgical Pathology. Philadelphia: Lippincott Williams & Wilkins; 2006.Google Scholar
Yeku, O, Frohman, MA. Rapid amplification of cDNA ends (RACE). Methods Mol Biol 2011;703:107122.Google Scholar
Ladanyi, M. The emerging molecular genetics of sarcoma translocation. Diagn Mol Pathol 1995;4:162173.Google Scholar
Rabbitts, TH. Chromosomal translocation master genes, mouse models and experimental therapeutics. Oncogene 2001;20:57635777.Google Scholar
Xia, SJ, Barr, FG. Chromosome translocations in sarcomas and the emergence of oncogenic transcription factors. Eur J Cancer 2005;41:25132527.Google Scholar
Slater, O, Shipley, J. Clinical relevance of molecular genetics to paediatric sarcomas. J Clin Pathol 2007;60:11871194.Google Scholar
Oda, Y, Tsuneyoshi, M. Recent advances in the molecular pathology of soft tissue sarcoma: implications for diagnosis, patient prognosis, and molecular target therapy in the future. Cancer Sci 2009;100:200208.Google Scholar
Peter, M, Gilbert, E, Delattre, O. A multiplex real-time pcr assay for the detection of gene fusions observed in solid tumors. Lab Invest 2001;81:905912.Google Scholar
Geurts van Kessel, A, de Bruijn, D, Hermsen, L, et al. Masked t(X;18)(p11;q11) in a biphasic synovial sarcoma revealed by FISH and RT-PCR. Genes Chromosomes Cancer 1998;23:198201.Google Scholar
Kaneko, Y, Kobayashi, H, Hanada, M, Satake, N, Maseki, N. EWS-ERG fusion transcript produced by chromosomal insertion in a Ewing sarcoma. Genes Chromosomes Cancer 1997;18:228231.Google Scholar
Lestou, VS, O’Connell, JX, Robichaud, M, et al. Cryptic t(X;18), ins(6;18), and SYT-SSX2 gene fusion in a case of intraneural monophasic synovial sarcoma. Cancer Genet Cytogenet 2002;138:153156.Google Scholar
O’Sullivan, MJ, Kyriakos, M, Zhu, X, et al. Malignant peripheral nerve sheath tumors with t(X;18): a pathologic and molecular genetic study. Mod Pathol 2000;13:12531263.Google Scholar
Ladanyi, M, Woodruff, JM, Scheithauer, BW, et al. Re: O’Sullivan MJ, Kyriakos M, Zhu X, Wick MR, Swanson PE, Dehner LP, Humphrey PA, Pfeifer JD: Malignant peripheral nerve sheath tumors with t(X;18): a pathologic and molecular genetic study. Mod Pathol 2000;13:13361346.Google Scholar
Tamborini, E, Agus, V, Perrone, F, et al. Lack of SYT-SSX fusion transcripts in malignant peripheral nerve sheath tumors on RT-PCR analysis of 34 archival cases. Lab Invest 2002;82:609618.Google Scholar
Fritsch, MK, Bridge, JA, Schuster, AE, Perlman, EJ, Argani, P. Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue. Pediatr Dev Pathol 2003;6:4353.Google Scholar
Stewénius, Y, Jin, Y, Ora, I, et al. High-resolution molecular cytogenetic analysis of Wilms tumors highlights diagnostic difficulties among small round cell kidney tumors. Genes Chromosomes Cancer 2008;47:845852.Google Scholar
Sainati, L, Scapinello, A, Montaldi, A, et al. A mesenchymal chondrosarcoma of a child with the reciprocal translocation (11;22)(q24;q12). Cancer Genet Cytogenet 1993;71:144147.Google Scholar
Li, H, Wang, J, Mor, G, Sklar, J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 2008;321:13571361.Google Scholar
Beck, AH, West, RB, van de Rijn, M. Gene expression profiling for the investigation of soft tissue sarcoma pathogenesis and the identification of diagnostic, prognostic, and predictive biomarkers.Virchows Arch 2010;456:141151.Google Scholar
Løvf, M, Thomassen, GO, Mertens, F, et al. Assessment of fusion gene status in sarcomas using a custom made fusion gene microarray. PLoS One 2013;8:e70649.Google Scholar
Skotheim, RI, Thomassen, GO, Eken, M, et al. A universal assay for detection of oncogenic fusion transcripts by oligo microarray analysis. Mol Cancer 2009;8:5.Google Scholar
Xiong, FF, Li, BS, Zhang, CX, et al. A pipeline with multiplex reverse transcription polymerase chain reaction and microarray for screening of chromosomal translocations in leukemia. Biomed Res Int 2013;2013:135086.Google Scholar
Wada, Y, Matsuura, M, Sugawara, M, et al. Development of detection method for novel fusion gene using GeneChip exon array. J Clin Bioinforma 2014;4:3.Google Scholar
Agerstam, H, Lilljebjörn, H, Lassen, C, et al. Fusion gene-mediated truncation of RUNX1 as a potential mechanism underlying disease progression in the 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 2007;46:635643.Google Scholar
Frith, AE, Hirbe, AC, Van Tine, BA. Novel pathways and molecular targets for the treatment of sarcoma. Curr Oncol Rep 2013;15:378385.Google Scholar
Aragon-Ching, JB, Maki, RG. Treatment of adult soft tissue sarcoma: old concepts, new insights, and potential for drug discovery. Cancer Invest 2012;30:300308.Google Scholar
Martín Liberal, J, Lagares-Tena, L, Sáinz-Jaspeado, M, et al. Targeted therapies in sarcomas: challenging the challenge. Sarcoma 2012;2012:626094.Google Scholar
Wlodarska, I, De Wolf-Peeters, C, Falini, B, et al. The cryptic inv(2)(p23q35) defines a new molecular genetic subtype of ALK-positive anaplastic large-cell lymphoma. Blood 1998;92:26882695.Google Scholar
Touriol, C, Greenland, C, Lamant, L, et al. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 2000;95:32043207.Google Scholar
Tort, F, Pinyol, M, Pulford, K, et al. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest 2001;81:419426.Google Scholar
Lamant, L, Gascoyne, RD, Duplantier, MM, et al. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer 2003;37:427432.Google Scholar
Morris, SW, Kirstein, MN, Valentine, MB, et al. Fusion of a kinase gene, ALK to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1994;263:12811284.Google Scholar
Hernández, L, Pinyol, M, Hernández, S, et al. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 1999;94:32653268.Google Scholar
Lamant, L, Dastugue, N, Pulford, K, Delsol, G, Mariamé, B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 1999;93:30883095.Google Scholar
Liang, X, Meech, SJ, Odom, LF, et al. Assessment of t(2;5)(p23;q35) translocation and variants in pediatric ALK+ anaplastic large cell lymphoma. Am J Clin Pathol 2004;121:496506.Google Scholar
Lin, E, Li, L, Guan, Y, et al. Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Mol Cancer Res 2009;7:14661476.Google Scholar
Lipson, D, Capelletti, M, Yelensky, R, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012;18:382384.Google Scholar
Chikatsu, N, Kojima, H, Suzukawa, K, et al. ALK+, CD30-, CD20- large B-cell lymphoma containing anaplastic lymphoma kinase (ALK) fused to clathrin heavy chain gene (CLTC). Mod Pathol 2003;16:828832.Google Scholar
Adam, P, Katzenberger, T, Seeberger, H, et al. A case of a diffuse large B-cell lymphoma of plasmablastic type associated with the t(2;5)(p23;q35) chromosome translocation. Am J Surg Pathol 2003;27:14731476.Google Scholar
Van Roosbroeck, K, Cools, J, Dierickx, D, et al. ALK-positive large B-cell lymphomas with cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica 2010;95:509513.Google Scholar
Takeuchi, K, Soda, M, Togashi, Y, et al. Identification of a novel fusion, SQSTM1-ALK, in ALK-positive large B-cell lymphoma. Haematologica 2011;96:464467.Google Scholar
Jazii, FR, Najafi, Z, Malekzadeh, R, et al. Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J Gastroenterol 2006;12:71047112.Google Scholar
Debelenko, LV, Raimondi, SC, Daw, N, et al. Renal cell carcinoma with novel VCL-ALK fusion: new representative of ALK-associated tumor spectrum. Mod Pathol 2011;24:430442.Google Scholar
Röttgers, S, Gombert, M, Teigler-Schlegel, A, et al. ALK fusion genes in children with atypical myeloproliferative leukemia. Leukemia 2010;24:11971200.Google Scholar
Takeuchi, K, Choi, YL, Togashi, Y, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 2009;15:31433149.Google Scholar
Togashi, Y, Soda, M, Sakata, S, et al. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One 2012;7:e31323.Google Scholar
Rikova, K, Guo, A, Zeng, Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007;131:11901203.Google Scholar
Ren, H, Tan, ZP, Zhu, X, et al. Identification of anaplastic lymphoma kinase as a potential therapeutic target in ovarian cancer. Cancer Res 2012;72:33123323.Google Scholar
Chan, JK, Lamant, L, Algar, E, et al. ALK+ histiocytosis: a novel type of systemic histiocytic proliferative disorder of early infancy. Blood 2008;112:29652968.Google Scholar
Yamamoto, Y, Tsuzuki, S, Tsuzuki, M, et al. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood 2010;116:42744283.Google Scholar
Bohlander, SK. ETV6: a versatile player in leukemogenesis. Semin Cancer Biol 2005;15:162174.Google Scholar
Eguchi, M, Eguchi-Ishimae, M, Tojo, A, et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 1999;93:13551363.Google Scholar
Tognon, C, Knezevich, SR, Huntsman, D, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002;2:367376.Google Scholar
Skálová, A, Vanecek, T, Sima, R, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol 2010;34:599608.Google Scholar
Leeman-Neill, RJ, Kelly, LM, Liu, P, et al. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer 2014;120:799807.Google Scholar
Bilodeau, EA, Weinreb, I, Antonescu, CR, et al. Clear cell odontogenic carcinomas show EWSR1 rearrangements: a novel finding and a biological link to salivary clear cell carcinomas. Am J Surg Pathol 2013;37:10011005.Google Scholar
Arbajian, E, Magnusson, L, Brosjö, O, et al. A benign vascular tumor with a new fusion gene: EWSR1-NFATC1 in hemangioma of the bone. Am J Surg Pathol 2013;37:613616.Google Scholar
Möller, E, Stenman, G, Mandahl, N, et al. POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J Pathol 2008;215:7886.Google Scholar
Antonescu, CR, Katabi, N, Zhang, L, et al. EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear-cell carcinoma of salivary gland. Genes Chromosomes Cancer 2011;50:559570.Google Scholar
Skálová, A, Weinreb, I, Hyrcza, M, et al. Clear cell myoepithelial carcinoma of salivary glands showing EWSR1 rearrangement: molecular analysis of 94 salivary gland carcinomas with prominent clear cell component. Am J Surg Pathol 2015;39:338348.Google Scholar
Panagopoulos, I, Thorsen, J, Gorunova, L, et al. RNA sequencing identifies fusion of the EWSR1 and YY1 genes in mesothelioma with t(14;22)(q32;q12). Genes Chromosomes Cancer 2013;52:733740.Google Scholar
Yamaguchi, S, Yamazaki, Y, Ishikawa, Y, et al. EWSR1 is fused to POU5F1 in a bone tumor with translocation t(6;22)(p21;q12). Genes Chromosomes Cancer 2005;43:217222.Google Scholar
Panagopoulos, I, Aman, P, Fioretos, T, et al. Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22). Genes Chromosomes Cancer 1994;11:256262.Google Scholar
Puls, F, Arbajian, E, Magnusson, L, et al. Myoepithelioma of bone with a novel FUS-POU5F1 fusion gene. Histopathology 2014;65:917922.Google Scholar
Geurts, JM, Schoenmakers, EF, Röijer, E, Stenman, G, Van de Ven, WJ. Expression of reciprocal hybrid transcripts of HMGIC and FHIT in a pleomorphic adenoma of the parotid gland. Cancer Res 1997;57:1317.Google Scholar
Rogalla, P, Lemke, I, Kazmierczak, B, Bullerdiek, J. An identical HMGIC-LPP fusion transcript is consistently expressed in pulmonary chondroid hamartomas with t(3;12)(q27-28;q14-15). Genes Chromosomes Cancer 2000;29:363366.Google Scholar
Strehl, S, Nebral, K, König, M, et al. ETV6-NCOA2: a novel fusion gene in acute leukemia associated with coexpression of T-lymphoid and myeloid markers and frequent NOTCH1 mutations. Clin Cancer Res 2008;14:977983.Google Scholar
Asp, J, Persson, F, Kost-Alimova, M, Stenman, G. CHCHD7-PLAG1 and TCEA1-PLAG1 gene fusions resulting from cryptic, intrachromosomal 8q rearrangements in pleomorphic salivary gland adenomas. Genes Chromosomes Cancer 2006;45:820828.Google Scholar
Davies, KD, Doebele, RC. Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 2013;19:40404045.Google Scholar
Ross, H, Argani, P. Xp11 translocation renal cell carcinoma. Pathology 2010;42:369373.Google Scholar
Oliveira, AM, Perez-Atayde, AR, Dal Cin, P, et al. Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene 2005;24:34193426.Google Scholar
Oliveira, AM, Chou, MM. USP6-induced neoplasms: the biologic spectrum of aneurysmal bone cyst and nodular fasciitis. Hum Pathol 2014;45:111.Google Scholar
Law, WJ, Cann, KL, Hicks, GG. TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Brief Funct Genomic Proteomic 2006;5:814.Google Scholar
Kovar, H. Kovar, H. Dr. Jekyll and Mr. Hyde: the two faces of the FUS/EWS/TAF15 protein family. Sarcoma 2011;2011:837474.Google Scholar
Turc-Carel, C, Philip, I, Berger, M-P, Philip, T, Lenoir, GM. Chromosomal translocations 11;22 in cell lines of Ewing’s sarcoma. N Engl J Med 1983;309:497498.Google Scholar
Tomlins, SA, Rhodes, DR, Perner, S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005;310:644648.Google Scholar
Wang, J, Cai, Y, Ren, C, Ittmann, M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 2006;66:83478351.Google Scholar
Tomlins, SA, Mehra, R, Rhodes, DR, et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 2006;66:33963400.Google Scholar
Kumar-Sinha, C, Tomlins, SA, Chinnaiyan, AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008;8:497511.Google Scholar
Truong, AH, Ben-David, Y. The role of Fli-1 in normal cell function and malignant transformation. Oncogene 2000;19:64826489.Google Scholar
Arvand, A, Denny, CT. Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene 2001;20:57475754.Google Scholar
Hai, T, Hartman, MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 2001;273:111.Google Scholar
Brown, AD, Lopez-Terrada, D, Denny, C, Lee, KA. Promoters containing ATF-binding sites are de-regulated in cells that express the EWS/ATF1 oncogene. Oncogene 1995;10:17491756.Google Scholar
Panagopoulos, I, Möller, E, Dahlén, A, et al. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 2007;46:181191.Google Scholar
Lee, SB, Haber, DA. Wilms tumor and the WT1 gene. Exp Cell Res 2001;264: 7499.Google Scholar
Kim, J, Lee, K, Pelletier, J. The desmoplastic small round cell tumor t(11;22) translocation produces EWS/WT1 isoforms with differing oncogenic properties. Oncogene 1998;16:19731979.Google Scholar
Reynolds, PA, Smolen, GA, Palmer, RE, et al. Identification of a DNA-binding site and transcriptional target for the EWS-WT1(+KTS) oncoprotein. Genes Dev 2003;17:20942107.Google Scholar
Ohkura, N, Hijikuro, M, Yamamoto, A, Miki, K. Molecular cloning of a novel thyroid/steroid receptor superfamily gene from cultured rat neuronal cells. Biochem Biophys Res Commun 1994;205:19591965.Google Scholar
Ohkura, N, Yaguchi, H, Tsukada, T, Yamaguchi, K. The EWS/NOR1 fusion gene product gains a novel activity affecting pre-mRNA splicing. J Biol Chem 2002;277:535543.Google Scholar
Gan, TI, Rowen, L, Nesbitt, R, et al. Genomic organization of human TCF12 gene and spliced mRNA variants producing isoforms of transcription factor HTF4. Cytogenet Genome Res 2002;98:245248.Google Scholar
Mencinger, M, Panagopoulos, I, Andreasson, P, et al. Characterization and chromosomal mapping of the human TFG gene involved in thyroid carcinoma. Genomics 1997;41:327331.Google Scholar
Greco, A, Mariani, C, Miranda, C, et al. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 1995;15:61186127.Google Scholar
Hunger, SP, Galili, N, Carroll, AJ, et al. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 1991;77:687693.Google Scholar
Kamps, MP, Murre, C, Sun, XH, Baltimore, D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 1990;60:547555.Google Scholar
Turc-Carel, C, Limon, J, Dal Cin, P, et al. Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet 1986;23:291299.Google Scholar
Åman, P, Ron, D, Mandahl, N, et al. Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer 1992;5:278285.Google Scholar
Kuroda, M, Ishida, T, Takanashi, M, et al. Oncogenic transformation and inhibition of adipocytic conversion of preadipocytes by TLS/FUS-CHOP type II chimeric protein. Am J Pathol 1997;151:735744.Google Scholar
Zinszner, H, Albalat, R, Ron, D. A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev 1994;8:25132526.Google Scholar
Ichikawa, H, Shimizu, K, Hayashi, Y, Ohki, M. An RNA-binding protein gene, TLS/FUS, is fused to erg in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res 1994;54:28652868.Google Scholar
Åman, P, Panagopoulos, I, Lassen, C, et al. Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics 1996;37:18.Google Scholar
Ron, D, Brasier, AR, McGehee, RE Jr, Habener, JF. Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP). J Clin Invest 1992;89:223233.Google Scholar
Ron, D, Habener, JF. CHOP a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant negative inhibitor of gene transcription. Genes Dev 1992;6:439453.Google Scholar
Adelmant, G, Gilbert, JD, Freytag, SO. Human translocation liposarcoma-CCAAT/enhancer binding protein (C/EBP) homologous protein (TLS-CHOP) oncoprotein prevents adipocyte differentiation by directly interfering with C/EBPbeta function. J Biol Chem 1998;273:1557415581.Google Scholar
Panagopoulos, I, Möller, E, Dahlén, A, et al. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer 2007;46:181191.Google Scholar
Barr, FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 2001;20:57365746.Google Scholar
Tremblay, P, Gruss, P. Pax: genes for mice and men. Pharmacol Ther 1994;61:205226.Google Scholar
Underhill, DA. Genetic and biochemical diversity in the Pax gene family. Biochem Cell Biol 2000;78:629638.Google Scholar
Chi, N, Epstein, JA. Getting your Pax straight: Pax proteins in development and disease. Trends Genet 2002;18:4147.Google Scholar
Buckingham, M, Relaix, F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 2007;23:645673.Google Scholar
Epstein, DJ, Vekemans, M, Gros, P. Splotch (Sp-2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 1991;67:767774.Google Scholar
Baldwin, CT, Hoth, CF, Amos, JA, da-Silva, EO, Milunsky, A. An exonic mutation in the HuP2 paired domain gene causes Waardenburg’s syndrome. Nature 1992;355:637638.Google Scholar
Tassabehji, M, Read, AP, Newton, VE, et al. Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Nat Genet 1993;3:2630.Google Scholar
Asher, JH Jr, Sommer, A, Morell, R, Friedman, TB. Missense mutation in the paired domain of PAX3 causes craniofacial-deafness-hand syndrome. Hum Mutat 1996;7:3035.Google Scholar
Kaufmann, E, Knochel, W. Five years on the wings of fork head. Mech Dev 1996;57:320.Google Scholar
Katoh, M, Katoh, M. Human FOX gene family [review]. Int J Oncol 2004;25:14951500.Google Scholar
Durham, SK, Suwanichkul, A, Scheimann, AO, et al. FKHR binds the insulin response element in the insulin-like growth factor binding protein-1 promoter. Endocrinology 1999;140:31403146.Google Scholar
Guo, S, Rena, G, Cichy, S, et al. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem 1999;274:1718417192.Google Scholar
Brunet, A, Bonni, A, Zigmond, MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857868.Google Scholar
Accili, D, Arden, KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004;117:421426.Google Scholar
Hillion, J, Le Coniat, M, Jonveaux, P, Berger, R, Bernard, OA. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood 1997;90:37143719.Google Scholar
Parry, P, Wei, Y, Evans, G. Cloning and characterization of the t(X;11) breakpoint from a leukemic cell line identify a new member of the forkhead gene family. Genes Chromosomes Cancer 1994;11:7984.Google Scholar
Barr, FG, Nauta, LE, Davis, RJ, et al. In vivo amplification of the PAX3-FKHR and PAX7-FKHR fusion genes in alveolar rhabdomyosarcoma. Hum Mol Genet 1996;5:1521.Google Scholar
Davis, RJ, Barr, FG. Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA 1997;94:80478051.Google Scholar
Weber-Hall, S, McManus, A, Anderson, J, et al. Novel formation and amplification of the PAX7-FKHR fusion gene in a case of alveolar rhabdomyosarcoma. Genes Chromosomes Cancer 1996;17:713.Google Scholar
Fitzgerald, JC, Scherr, AM, Barr, FG. Structural analysis of PAX 7 rearrangements in alveolar rhabdomyosarcoma. Cancer Genet Cytogenet 2000;117:3740.Google Scholar
del Peso, L, González, VM, Hernández, R, Barr, FG, Núñez, G. Regulation of the forkhead transcription factor FKHR, but not the PAX3-FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene 1999;18:73287333.Google Scholar
Fredericks, WJ, Galili, N, Mukhopadhyay, S, et al. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol 1995;15:15221535.Google Scholar
Scheidler, S, Fredericks, WJ, Rauscher, FJ III, Barr, FG, Vogt, PK. The hybrid PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma transforms fibroblasts in culture. Proc Natl Acad Sci USA 1996;93:98059809.Google Scholar
Lam, PY, Sublett, JE, Hollenbach, AD, Roussel, MF. The oncogenic potential of the Pax3-FKHR fusion protein requires the Pax3 homeodomain recognition helix but not the Pax3 paired-box DNA binding domain. Mol Cell Biol 1999;19:594601.Google Scholar
Xia, SJ, Barr, FG. Analysis of the transforming and growth suppressive activities of the PAX3-FKHR oncoprotein. Oncogene 2004;23:68646871.Google Scholar
Deneen, B, Denny, CT. Loss of p16 pathways stabilizes EWS/FLI1 expression and complements EWS/FLI1 mediated transformation. Oncogene 2001;20:67316741.Google Scholar
Ren, YX, Finckenstein, FG, Abdueva, DA, et al. Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res 2008;68:65876597.Google Scholar
Keller, C, Arenkiel, BR, Coffin, CM, et al.. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 2004;18:26142626.Google Scholar
Begum, S, Emami, N, Cheung, A, et al. Cell-type-specific regulation of distinct sets of gene targets by Pax3 and Pax3/FKHR. Oncogene 2005;24:18601872.Google Scholar
Marshall, AD, Grosveld, GC. Alveolar rhabdomyosarcoma-The molecular drivers of PAX3/7-FOXO1-induced tumorigenesis. Skelet Muscle 2012;2:25.Google Scholar
Wachtel, M, Dettling, M, Koscielniak, E, et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 2004;64:55395545.Google Scholar
Jankowski, K, Kucia, M, Wysoczynski, M, et al. Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res 2003;63:79267935.Google Scholar
Nabarro, S, Himoudi, N, Papanastasiou, A, et al. Coordinated oncogenic transformation and inhibition of host immune responses by the PAX3-FKHR fusion oncoprotein. J Exp Med 2005;202:13991410.Google Scholar
Reichek, JL, Duan, F, Smith, LM, et al. Genomic and clinical analysis of amplification of the 13q31 chromosomal region in alveolar rhabdomyosarcoma: a report from the Children's Oncology Group. Clin Cancer Res 2011;17:14631473.Google Scholar
Heimann, P, el Housni, H, Ogur, G, et al. Fusion of a novel gene, RCC17, to the TFE3 gene in t(X;17)(p11.2;q25.3)-bearing papillary renal cell carcinomas. Cancer Res 2001;61:41304135.Google Scholar
Alexandru, G, Graumann, J, Smith, GT, et al. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell 2008;134:804816.Google Scholar
Martina, JA, Diab, HI, Li, H, Puertollano, R. Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis. Cell Mol Life Sci 2014;71:24832497.Google Scholar
Sidhar, SK, Clark, J, Gill, S, et al. The t(X;1)(p11.2;q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene. Hum Mol Genet 1996;5:13331338.Google Scholar
Clark, J, Lu, YJ, Sidhar, SK, et al. Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene 1997;15:22332239.Google Scholar
Argani, P, Lui, MY, Couturier, J, et al. A novel CLTC-TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23). Oncogene 2003;22:53745378.Google Scholar
Davis, IJ, Hsi, BL, Arroyo, JD, et al. Cloning of an alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proc Natl Acad Sci USA 2003;100:60516056.Google Scholar
Argani, P, Antonescu, CR, Illei, PB, et al. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol 2001;159:179192.Google Scholar
Tsuda, M, Davis, IJ, Argani, P, et al. TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res 2007;67:919929.Google Scholar
Mitton, B, Federman, N. Alveolar soft part sarcoma: molecular pathogenesis and implications for novel targeted therapies. Sarcoma 2012;2012:428789.Google Scholar
Cawthon, RM, Weiss, R, Xu, GF, et al. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 1990;62:193201.Google Scholar
Wallace, MR, Marchuk, DA, Anderson, LB, et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 1990;249:181186.Google Scholar
Xu, GF, Lin, B, Tanaka, K, et al. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 1990;63:835841.Google Scholar
Martin, GA, Viskochil, D, Bollag, G, et al. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 1990;63:843849.Google Scholar
Bollag, G, Clapp, DW, Shih, S, et al. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet 1996;12:144148.Google Scholar
Hiatt, KK, Ingram, DA, Zhang, Y, Bollag, G, Clapp, DW. Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf12/2 cells. J Biol Chem 2001;276:72407245.Google Scholar
Dilworth, JT, Kraniak, JM, Wojtkowiak, JW, et al. Molecular targets for emerging anti-tumor therapies for neurofibromatosis type 1. Biochem Pharmacol 2006;72:14851492.Google Scholar
Parada, LF, Kwon, CH, Zhu, Y. Modeling neurofibromatosis type 1 tumors in the mouse for therapeutic intervention. Cold Spring Harb Symp Quant Biol 2005;70:173176.Google Scholar
Tong, J, Hannan, F, Zhu, Y, Bernards, A, Zhong, Y. Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat Neurosci 2002;5:9596.Google Scholar
Brown, JA, Gianino, SM, Gutmann, DH. Defective cAMP generation underlies the sensitivity of CNS neurons to neurofibromatosis-1 heterozygosity. J Neurosci 2010;30:55795589.Google Scholar
Cichowski, J, Shih, TS, Schmitt, E, et al. Mouse models of tumor development in neurofibromatosis type 1. Science 1999;286:21722176.Google Scholar
Lin, AL, Gutmann, DH. Advances in the treatment of neurofibromatosis-associated tumours. Nat Rev Clin Oncol 2013;10:616624.Google Scholar
Gottfried, ON, Viskochil, DH, Fults, DW, Couldwell, WT. Molecular, genetic, and cellular pathogenesis of neurofibromas and surgical implications. Neurosurgery 2006;58:116.Google Scholar
Le, LQ, Parada, LF. Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene 2007;26:46094616.Google Scholar
Robertson, KA, Nalepa, G, Yang, FC, et al. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol 2012;13:12181224.Google Scholar
Fahsold, R, Hoffmeyer, S, Mischung, C, et al. Minor lesion mutational spectrum of the entire NF1 gene does not explain its high mutability but points to a functional domain upstream of the GAP-related domain. Am J Hum Genet 2000;66:790818.Google Scholar
Dorschner, MO, Sybert, VP, Weaver, M, Pletcher, BA, Stephens, K. NF1 microdeletion breakpoints are clustered at flanking repetitive sequences. Hum Mol Genet 2000;9:3546.Google Scholar
Venturin, M, Guarnieri, P, Natacci, F, et al. Mental retardation and cardiovascular malformations in NF1 microdeleted patients point to candidate genes in 17q11.2. J Med Genet 2004;41:3541.Google Scholar
Skuse, GR, Kosciolek, BA, Rowley, PT. Molecular genetic analysis of tumors in von Recklinghausen neurofibromatosis: loss of heterozygosity for chromosome 17. Genes Chromosomes Cancer 1989;1:3641.Google Scholar
Xu, W, Mulligan, LM, Ponder, MA, et al. Loss of NF1 alleles in phaeochromocytomas from patients with type I neurofibromatosis. Genes Chromosomes Cancer 1992;4:337342.Google Scholar
Legius, E, Marchuk, DA, Collins, FS, Glover, TW. Somatic deletion of the neurofibromatosis type 1 gene in neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nat Genet 1993;3:122126.Google Scholar
Colman, SD, Williams, CA, Wallace, RW. Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the NF1 gene. Nat Genet 1995;11:9092.Google Scholar
Kluwe, L, Friedrich, RE, Mautner, VF. Allelic loss of the NF1 gene in NF1-associated plexiform neurofibromas. Cancer Genet Cytogenet 1999;113:6569.Google Scholar
Gutzmer, R, Herbst, RA, Mommert, S, et al. Allelic loss at the neurofibromatosis type 1 (NF1) gene locus is frequent in desmoplastic neurotropic melanoma. Hum Genet 2000;107:357361.Google Scholar
Kluwe, L, Hagel, C, Tatagiba, M, et al. Loss of NF1 alleles distinguish sporadic from NF1-associated pilocytic astrocytomas. J Neuropathol Exp Neurol 2001;60:917920.Google Scholar
Viskochil, DH. Gene structure and function. In Neurofibromatosis Type 1: From Genotype to Phenotype. Uphadhyaya, M, Cooper, DN (eds.) Oxford: BIOS Scientific Publishers; 1998: 3956.Google Scholar
Messiaen, LM, Callens, T, Mortier, G, et al. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 2000;15:541555.Google Scholar
Nemethova, M, Bolcekova, A, Ilencikova, D, et al. Thirty-nine novel neurofibromatosis 1 (NF1) gene mutations identified in Slovak patients. Ann Hum Genet 2013;77:364379.Google Scholar
Maruoka, R, Takenouchi, T, Torii, C, et al. The use of next-generation sequencing in molecular diagnosis of neurofibromatosis type 1: a validation study. Genet Test Mol Biomarkers 2014;18:722735.Google Scholar
Sherr, CJ. Cancer cell cycles. Science 1996;274:16721677.Google Scholar
Classon, M, Salama, S, Gorka, C, et al. Combinatorial roles for pRB, p107, and p130 in E2F-mediated cell cycle control. Proc Natl Acad Sci USA 2000;97:1082010825.Google Scholar
Ruas, M, Peters, G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1998;1378:F115F177.Google Scholar
Orlow, I, Drobnjak, M, Zhang, ZF, et al. Alterations of INK4A and INK4B genes in adult soft tissue sarcomas: effect on survival. J Natl Cancer Inst 1999;91:7379.Google Scholar
Merlo, A, Herman, JG, Mao, L, et al. 5-prime CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1995;1:686692.Google Scholar
Kawaguchi, K, Oda, Y, Saito, T, et al. Mechanisms of inactivation of the p16INK4a gene in leiomyosarcoma of soft tissue: decreased p16 expression correlates with promotor methylation and poor prognosis. J Pathol 2003;201:487495.Google Scholar
Schneider-Stock, R, Boltze, C, Lasota, J, et al. Loss of p16 protein defines high-risk patients with gastrointestinal stromal tumors: a tissue microarray study. Clin Cancer Res 2005;11:638645.Google Scholar
Obana, K, Yang, HW, Piao, HY, et al. Aberrations of p16INK4A, p14ARF, and p15INK4B genes in pediatric solid tumors. Int J Oncol 2003;23:11511157.Google Scholar
Linardic, CM, Naini, S, Herndon, JE 2nd, et al. The PAX3-FKHR fusion gene of rhabdomyosarcoma cooperates with loss of p16INK4A to promote bypass of cellular senescence. Cancer Res 2007;67: 66916699.Google Scholar
Naini, S, Etheridge, KT, Adam, SJ, et al. Defining the cooperative genetic changes that temporally drive alveolar rhabdomyosarcoma. Cancer Res 2008;68:95839588.Google Scholar
Hannon, GJ, Beach, D. p15(INK4B) is a potential effector of TGF-beta-induced cell cycle arrest. Nature 1994;371:257261.Google Scholar
Nabori, T, Miura, K, Wu, DJ, et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994;368:753756.Google Scholar
Serrano, M, Lee, H, Chin, L, et al. Role of the INK4a locus in tumor supression and cell mortality. Cell 1996;85:2737.Google Scholar
Kamijo, T, Zindy, F, Roussel, MF, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997;91:649659.Google Scholar
Krimpenfort, P, Ijpenberg, A, Song, JY, et al. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 2007;448:943946.Google Scholar
Cordon-Cardo, C. Mutation of cell cycle regulators: Biological and clinical implications for human neoplasia. Am J Pathol 1995;147:545560.Google Scholar
Dickson, MA, Tap, WD, Keohan, ML, et al. Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol 2013;31:20242028.Google Scholar
Sherr, CJ. Cancer cell cycles. Science 1996;274:16721677.Google Scholar
Classon, M, Salama, S, Gorka, C, et al. Combinatorial roles for pRB, p107, and p130 in E2F-mediated cell cycle control. Proc Natl Acad Sci USA 2000;97:1082010825.Google Scholar
Ruas, M, Peters, G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1998;1378:F115F177.Google Scholar
Orlow, I, Drobnjak, M, Zhang, ZF, et al. Alterations of INK4A and INK4B genes in adult soft tissue sarcomas: effect on survival. J Natl Cancer Inst 1999;91:7379.Google Scholar
Merlo, A, Herman, JG, Mao, L, et al. 5-prime CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1995;1:686692.Google Scholar
Kawaguchi, K, Oda, Y, Saito, T, et al. Mechanisms of inactivation of the p16INK4a gene in leiomyosarcoma of soft tissue: decreased p16 expression correlates with promotor methylation and poor prognosis. J Pathol 2003;201:487495.Google Scholar
Schneider-Stock, R, Boltze, C, Lasota, J, et al. Loss of p16 protein defines high-risk patients with gastrointestinal stromal tumors: a tissue microarray study. Clin Cancer Res 2005;11:638645.Google Scholar
Obana, K, Yang, HW, Piao, HY, et al. Aberrations of p16INK4A, p14ARF, and p15INK4B genes in pediatric solid tumors. Int J Oncol 2003;23:11511157.Google Scholar
Linardic, CM, Naini, S, Herndon, JE 2nd, et al. The PAX3-FKHR fusion gene of rhabdomyosarcoma cooperates with loss of p16INK4A to promote bypass of cellular senescence. Cancer Res 2007;67: 66916699.Google Scholar
Naini, S, Etheridge, KT, Adam, SJ, et al. Defining the cooperative genetic changes that temporally drive alveolar rhabdomyosarcoma. Cancer Res 2008;68:95839588.Google Scholar
Hannon, GJ, Beach, D. p15(INK4B) is a potential effector of TGF-beta-induced cell cycle arrest. Nature 1994;371:257261.Google Scholar
Nabori, T, Miura, K, Wu, DJ, et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994;368:753756.Google Scholar
Serrano, M, Lee, H, Chin, L, et al. Role of the INK4a locus in tumor supression and cell mortality. Cell 1996;85:2737.Google Scholar
Kamijo, T, Zindy, F, Roussel, MF, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997;91:649659.Google Scholar
Krimpenfort, P, Ijpenberg, A, Song, JY, et al. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 2007;448:943946.Google Scholar
Cordon-Cardo, C. Mutation of cell cycle regulators: Biological and clinical implications for human neoplasia. Am J Pathol 1995;147:545560.Google Scholar
Dickson, MA, Tap, WD, Keohan, ML, et al. Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol 2013;31:20242028.Google Scholar
Isobe, M, Emanuel, BS, Givol, D, Oren, M, Croce, CM. Localization of gene for human p53 antigen to band 17p13. Nature 1986;320:8485.Google Scholar
Lane, DP, Crawford, LV. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979;278:261263.Google Scholar
Linzer, DI, Levine, AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 1979;17:4352.Google Scholar
Bourdon, JC, Fernandes, K, Murray-Zmijewski, F, et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev 2005;19:21222137.Google Scholar
Laptenko, O, Prives, C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 2006;13:951961.Google Scholar
Kho, PS, Wang, Z, Zhuang, L, et al. p53-regulated transcriptional program associated with genotoxic stress-induced apoptosis. J Biol Chem 2004;279:2118321192.Google Scholar
Spurgers, KB, Gold, DL, Coombes, KR, et al. Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression. J Biol Chem 2006;281:2513425142.Google Scholar
Finlay, CA, Hinds, PW, Levine, AJ. The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989;57:10831093.Google Scholar
Eliyahu, D, Michalovitz, D, Eliyahu, S, Pinhasi-Kimhi, O, Oren, M. Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA 1989;86:87638767.Google Scholar
Clarke, AR, Purdie, CA, Harrison, DJ, et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993;362:849852.Google Scholar
Lowe, SW, Schmitt, EM, Smith, SW, Osborne, BA, Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993;362:847849.Google Scholar
Lowe, SW, Ruley, HE, Jacks, T, Housman, DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993;74:957967.Google Scholar
Lavigueur, A, Maltby, V, Mock, D, et al. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol Cell Biol 1989;9:39823991.Google Scholar
Donehower, LA, Harvey, M, Slagle, BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992;356:215221.Google Scholar
Harvey, M, McArthur, MJ, Montgomery, CA Jr, et al. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat Genet 1993;5:225229.Google Scholar
Jacks, T, Remington, L, Williams, BO, et al. Tumor spectrum analysis in p53-deficient mice. Curr Biol 1994;4:17.Google Scholar
Oren, M. Regulation of the p53 tumor suppressor protein. J Biol Chem 1999;274:3603136034.Google Scholar
Levine, AJ. p53, the cellular gatekeeper for growth and devision. Cell 1997;88:323331.Google Scholar
Hollstein, M, Shomer, B, Greenblatt, M, et al. Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res 1996;24:141146.Google Scholar
Baker, SJ, Fearon, ER, Nigro, JM, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 1989;244:217221.Google Scholar
Nigro, JM, Baker, SJ, Preisinger, AC, et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989;342:705708.Google Scholar
Li, FP, Fraumeni, JF. Rhabdomyosarcoma in children; epidemiologic study and identification of a cancer family syndrome. J Natl Cancer Inst 1969;43:13651373.Google Scholar
Li, FP, Fraumeni, JF. Soft tissue sarcomas, breast cancer and other neoplasms: a familial syndrome? Ann Int Med 1969;71:747752.Google Scholar
Malkin, D, Li, FP, Strong, LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990;250:12331238.Google Scholar
Varley, JM, Evans, DGR, Birch, JM. Li-Fraumeni syndrome – a molecular and clinical review. Br J Cancer 1997;76:114.Google Scholar
Varley, JM, Thorncroft, M, McGown, G, et al. A detailed study of loss of heterozygosity on chromosome 17 in tumours from Li-Fraumeni patients carrying a mutation to the TP53 gene. Oncogene 1997;14:865871.Google Scholar
Bell, DW, Varley, JM, Szydlo, TE, et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 1999;286:25282531.Google Scholar
Vahteristo, P, Tamminen, A, Karvinen, P, et al. p53, CHK2 and CHK1 genes in Finnish families with Li–Fraumeni syndrome: further evidence of CHK2 in inherited cancer predisposition. Cancer Res 2001;61:57185722.Google Scholar
Matsuoka, S, Huang, M, Elledge, SJ. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 1998;282:18931897.Google Scholar
Blasina, A, de Weyer, IV, Laus, MC, et al. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr Biol 1999;14:110.Google Scholar
Chaturvedi, P, Eng, WK, Zhu, Y, et al. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 1999;18:40474054.Google Scholar
Brown, AL, Lee, C-H, Schwarz, JK, et al. A human Cda1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc Natl Acad Sci USA 1999;96:37453750.Google Scholar
Chehab, NH, Malikzay, A, Appel, M, Halazonetis, TD. Chk2/hCds1 functions as a DNA damage checkpoint in G-1 by stabilizing p53. Genes Dev 2000;14:278288.Google Scholar
Bartkova, J, Horejsí, Z, Koed, K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005;434:864870.Google Scholar
Neilsen, PM, Pishas, KI, Callen, DF, Thomas, DM. Targeting the p53 pathway in Ewing sarcoma. Sarcoma 2011;2011:746939.Google Scholar
Ito, M, Barys, L, O'Reilly, T, et al. Comprehensive mapping of p53 pathway alterations reveals an apparent role for both SNP309 and MDM2 amplification in sarcomagenesis. Clin Cancer Res 2011;17:416426.Google Scholar
Taylor, BS, Barretina, J, Maki, RG, et al. Advances in sarcoma genomics and new therapeutic targets. Nat Rev Cancer 2011;11:541557.Google Scholar
Zhan, C, Lu, W. Peptide activators of the p53 tumor suppressor. Curr Pharm Des 2011;17:603609.Google Scholar
Ban, J, Bennani-Baiti, IM, Kauer, M, et al. EWS-FLI1 suppresses NOTCH-activated p53 in Ewing's sarcoma. Cancer Res 2008;68:71007109.Google Scholar
Li, Y, Tanaka, K, Fan, X, et al. Inhibition of the transcriptional function of p53 by EWS-Fli1 chimeric protein in Ewing Family Tumors. Cancer Lett 2010;294:5765.Google Scholar
D'Arcy, P, Maruwge, W, Ryan, BA, Brodin, B. The oncoprotein SS18-SSX1 promotes p53 ubiquitination and degradation by enhancing HDM2 stability. Mol Cancer Res 2008;6:127138.Google Scholar
Baresova, P, Musilova, J, Pitha, PM, Lubyova, B. p53 tumor suppressor protein stability and transcriptional activity are targeted by Kaposi's sarcoma-associated herpesvirus-encoded viral interferon regulatory factor 3. Mol Cell Biol 2014;34:386399.Google Scholar
van der Ent, W, Jochemsen, AG, Teunisse, AF, et al. Ewing sarcoma inhibition by disruption of EWSR1-FLI1 transcriptional activity and reactivation of p53. J Pathol 2014;233:415424.Google Scholar
Brooks, CL, Gu, W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 2003;15:164171.Google Scholar
Tang, Y, Zhao, W, Chen, Y, Zhao, Y, Gu, W. Acetylation is indispensable for p53 activation. Cell 2008;133:612626.Google Scholar
Scoumanne, A, Chen, X. Protein methylation: a new mechanism of p53 tumor suppressor regulation. Histol Histopathol 2008;23:11431149.Google Scholar
Lal, A, Kim, HH, Abdelmohsen, K, et al. p16(INK4a) translation suppressed by miR-24. PLoS One 2008;3:e1864.Google Scholar
Pierson, J, Hostager, B, Fan, R, Vibhakar, R. Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol 2008;90:17.Google Scholar
Johnson, CD, Esquela-Kerscher, A, Stefani, G, et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007;67:77137722.Google Scholar
Sun, F, Fu, H, Liu, Q, et al. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 2008;582:15641568.Google Scholar
Wu, J, Qian, J, Li, C, et al. miR-129 regulates cell proliferation by downregulating Cdk6 expression. Cell Cycle 2010;9:18091818.Google Scholar
Esquela-Kerscher, A, Slack, FJ. Oncomirs: microRNAs with a role in cancer. Nat Rev Cancer 2006;6:259269.Google Scholar
Lynam-Lennon, N, Maher, SG, Reynolds, JV. The roles of microRNA in cancer and apoptosis. Biol Rev Camb Philos Soc 2009;84:5571.Google Scholar
Sherr, CJ. Cancer cell cycles. Science 1996;274:16721677.Google Scholar
Classon, M, Salama, S, Gorka, C, et al. Combinatorial roles for pRB, p107, and p130 in E2F-mediated cell cycle control. Proc Natl Acad Sci USA 2000;97:1082010825.Google Scholar
Ruas, M, Peters, G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1998;1378:F115F177.Google Scholar
Orlow, I, Drobnjak, M, Zhang, ZF, et al. Alterations of INK4A and INK4B genes in adult soft tissue sarcomas: effect on survival. J Natl Cancer Inst 1999;91:7379.Google Scholar
Merlo, A, Herman, JG, Mao, L, et al. 5-prime CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1995;1:686692.Google Scholar
Kawaguchi, K, Oda, Y, Saito, T, et al. Mechanisms of inactivation of the p16INK4a gene in leiomyosarcoma of soft tissue: decreased p16 expression correlates with promotor methylation and poor prognosis. J Pathol 2003;201:487495.Google Scholar
Schneider-Stock, R, Boltze, C, Lasota, J, et al. Loss of p16 protein defines high-risk patients with gastrointestinal stromal tumors: a tissue microarray study. Clin Cancer Res 2005;11:638645.Google Scholar
Obana, K, Yang, HW, Piao, HY, et al. Aberrations of p16INK4A, p14ARF, and p15INK4B genes in pediatric solid tumors. Int J Oncol 2003;23:11511157.Google Scholar
Linardic, CM, Naini, S, Herndon, JE 2nd, et al. The PAX3-FKHR fusion gene of rhabdomyosarcoma cooperates with loss of p16INK4A to promote bypass of cellular senescence. Cancer Res 2007;67: 66916699.Google Scholar
Naini, S, Etheridge, KT, Adam, SJ, et al. Defining the cooperative genetic changes that temporally drive alveolar rhabdomyosarcoma. Cancer Res 2008;68:95839588.Google Scholar
Hannon, GJ, Beach, D. p15(INK4B) is a potential effector of TGF-beta-induced cell cycle arrest. Nature 1994;371:257261.Google Scholar
Nabori, T, Miura, K, Wu, DJ, et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994;368:753756.Google Scholar
Serrano, M, Lee, H, Chin, L, et al. Role of the INK4a locus in tumor supression and cell mortality. Cell 1996;85:2737.Google Scholar
Kamijo, T, Zindy, F, Roussel, MF, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997;91:649659.Google Scholar
Krimpenfort, P, Ijpenberg, A, Song, JY, et al. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 2007;448:943946.Google Scholar
Cordon-Cardo, C. Mutation of cell cycle regulators: Biological and clinical implications for human neoplasia. Am J Pathol 1995;147:545560.Google Scholar
Dickson, MA, Tap, WD, Keohan, ML, et al. Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol 2013;31:20242028.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×