Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-04-30T18:30:42.534Z Has data issue: false hasContentIssue false

Chapter 38 - Medical oncology of soft tissue sarcomas

Published online by Cambridge University Press:  19 October 2016

Markku Miettinen
Affiliation:
National Cancer Institute, Maryland
Get access
Type
Chapter
Information
Modern Soft Tissue Pathology
Tumors and Non-Neoplastic Conditions
, pp. 1024 - 1035
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gold, JS, Van Der Zwan, SM, Gönen, M, et al. Outcome of metastatic GIST in the era before tyrosine kinase inhibitors. Ann Surg Oncol 2007;14(1):134142.CrossRefGoogle ScholarPubMed
Verweij, J, Casali, PG, Zalcberg, J, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 2004;364(9440):11271134.Google Scholar
Demetri, GD, van Oosterom, AT, Garrett, CR, et al. 2006 Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 2006;368(9544):13291338.Google Scholar
Demetri, GD, Reichardt, P, Kang, YK, et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013;381(9863):295302.Google Scholar
Heinrich, MC, Corless, CL, Demetri, GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003;21(23):43424349.CrossRefGoogle ScholarPubMed
Heinrich, MC, Marino-Enriquez, A, Presnell, A, et al. Sorafenib inhibits many kinase mutations associated with drug-resistant gastrointestinal stromal tumors. Mol Cancer Ther 2012;11(8):17701780.Google Scholar
Eilber, FC, Rosen, G, Forscher, C, et al. Surgical resection and intraperitoneal chemotherapy for recurrent abdominal sarcomas. Ann Surg Oncol 1999;6(7):645650.CrossRefGoogle ScholarPubMed
Corless, CL, Schroeder, A, Griffith, D, et al. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol 2005;23(23):53575364.CrossRefGoogle ScholarPubMed
Shankar, S, van Sonnenberg, E, Desai, J, et al. Gastrointestinal stromal tumor: new nodule-within-a-mass pattern of recurrence after partial response to imatinib mesylate. Radiology 2005; 235(3):892898.Google Scholar
Antonescu, CR, Besmer, P, Guo, T, et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 2005;11(11):41824190.Google Scholar
Heinrich, MC, Maki, RG, Corless, CL, et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol 2008;26(33):53525359.CrossRefGoogle ScholarPubMed
von Mehren, M, Randall, RL, Benjamin, RS, et al. Gastrointestinal stromal tumors, version 2.2014. J Natl Comp Canc Netw 2014;12(6):853862.CrossRefGoogle ScholarPubMed
Wardelmann, E, Merkelbach-Bruse, S, Pauls, K, et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res 2006;12(6):17431749.CrossRefGoogle ScholarPubMed
Wardelmann, E, Thomas, N, Merkelbach-Bruse, S, et al. Acquired resistance to imatinib in gastrointestinal stromal tumours caused by multiple KIT mutations. Lancet Oncol 2005;6(4):249251.Google Scholar
DeMatteo, RP, Maki, RG, Singer, S, et al. Results of tyrosine kinase inhibitor therapy followed by surgical resection for metastatic gastrointestinal stromal tumor. Ann Surg 2007;245(3):347352.Google Scholar
DeMatteo, RP, Ballman, KV, Antonescu, CR, et al. Long-term results of adjuvant imatinib mesylate in localized, high-risk, primary gastrointestinal stromal tumor: ACOSOG Z9000 intergroup phase 2 trial. Ann Surg 2013;258(3):422429.Google Scholar
DeMatteo, RP, Ballman, KV, Antonescu, CR, et al. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 2009;373(9669):10971104.Google Scholar
Joensuu, H, Erikson, M, Sundby Hall, K, et al. One vs three years of adjuvant imatinib for operable gastrointestinal stromal tumor: a randomized trial. JAMA 2012;307(12):12651272.Google Scholar
Schöffski, P, Reichardt, P, Blay, J-Y, et al. A phase I-II study of everolimus (RAD001) in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors. Ann Oncol 2010;21(10):19901998.CrossRefGoogle ScholarPubMed
Wagner, AJ, Chugh, R, Rosen, LS, et al. A phase I study of the HSP90 inhibitor retaspimycin hydrochloride (IPI-504) in patients with gastrointestinal stromal tumors or soft-tissue sarcomas. Clin Cancer Res 2013;19(21):60206029.Google Scholar
Fletcher, CDM, Bridge, JA, Hogendoorn, PCW, Mertens, F (eds). WHO Classification of Tumours of Soft Tissue and Bone, 4th edn. Lyon: IARC; 2013.Google Scholar
Brennan, MF, Antonescu, CR, Maki, RG. Management of Soft Tissue Sarcomas. New York: Springer; 2013.CrossRefGoogle Scholar
Woll, PJ, Reichardt, P, Le Cesne, A, et al. Adjuvant chemotherapy with doxorubicin, ifosfamide, and lenograstim for resected soft-tissue sarcoma (EORTC 62931): a multicentre randomised controlled trial. Lancet Oncol 2012;13(10):10451054.CrossRefGoogle ScholarPubMed
Pervaiz, N, Colterjohn, N, Farrokhyar, F, et al. A systematic meta-analysis of randomized controlled trials of adjuvant chemotherapy for localized resectable soft-tissue sarcoma. Cancer 2008;113(3):573581.CrossRefGoogle ScholarPubMed
Hensley, ML, Wathen, JK, Maki, RG, et al. Adjuvant therapy for high-grade, uterus-limited leiomyosarcoma: results of a phase 2 trial (SARC 005). Cancer 2013;119(8):15551561.Google Scholar
Kattan, MW, Leung, DH, Brennan, M. Postoperative nomogram for 12-year sarcoma-specific death. J Clin Oncol 2002;20(3):791796.Google Scholar
Zivanovic, O, Jacks, LM, Iasonos, A, et al. A nomogram to predict postresection 5-year overall survival for patients with uterine leiomyosarcoma. Cancer 2012;118(3):660669.Google Scholar
Gronchi, A, Miceli, R, Shurell, E, et al. Outcome prediction in primary resected retroperitoneal soft tissue sarcoma: histology-specific overall survival and disease-free survival nomograms built on major sarcoma center data sets. J Clin Oncol 2013;31(13):16491655.Google Scholar
Eggermont, AM, ten Hagen, TL. Tumor necrosis factor-based isolated limb perfusion for soft tissue sarcoma and melanoma: ten years of successful antivascular therapy. Curr Oncol Rep 2003;5(2):7980.Google Scholar
Bonvalot, S, Laplanche, A, Lejeune, F, et al. Limb salvage with isolated perfusion for soft tissue sarcoma: could less TNF-alpha be better? Ann Oncol 2005;16(7):10611068.CrossRefGoogle ScholarPubMed
Issels, RD, Lindner, LH, Verweij, J, et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 2010;11(6):561570.CrossRefGoogle ScholarPubMed
DeLaney, TF, Spiro, IJ, Suit, HD, et al. Neoadjuvant chemotherapy and radiotherapy for large extremity soft-tissue sarcomas. Int J Radiat Oncol Biol Phys 2003;56(4):11171127.Google Scholar
Kraybill, WG, Harris, J, Spiro, IJ, et al. Phase II study of neoadjuvant chemotherapy and radiation therapy in the management of high-risk, high-grade, soft tissue sarcomas of the extremities and body wall: Radiation Therapy Oncology Group Trial 9514. J Clin Oncol 2006;24(4):619625.Google Scholar
O’Sullivan, B, Davis, AM, Turcotte, R, et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: a randomised trial. Lancet 2002;359(9325):22352241.Google Scholar
O’Bryan, RM, Luce, JK, Talley, RW, et al. Phase II evaluation of adriamycin in human neoplasia. Cancer 1973;32(1):18.Google Scholar
Lorigan, P, Verweij, J, Papai, Z, et al. Phase III trial of two investigational schedules of ifosfamide compared with standard-dose doxorubicin in advanced or metastatic soft tissue sarcoma: a European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group Study. J Clin Oncol 2007;25(21):31443150.Google Scholar
Judson, I, Radford, JA, Harris, M, et al. Randomised phase II trial of pegylated liposomal doxorubicin (DOXIL/CAELYX) versus doxorubicin in the treatment of advanced or metastatic soft tissue sarcoma: a study by the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer 2001;37(7):870877.Google Scholar
Nielsen, OS, Judson, I, van Hoesel, Q, et al. Effect of high-dose ifosfamide in advanced soft tissue sarcomas: a multicentre phase II study of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer 2000;36(1):6167.Google Scholar
Judson, I, Verweij, J, Gelderblom, H, et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. Lancet Oncol 2014;15(4):415423.Google Scholar
García-Del-Muro, X, López-Pousa, A, Maurel, J, et al. Randomized phase II study comparing gemcitabine plus dacarbazine versus dacarbazine alone in patients with previously treated soft tissue sarcoma. J Clin Oncol 2011;29: 25282533.CrossRefGoogle ScholarPubMed
Maki, RG, Wathen, JK, Patel, SR, et al. Randomized phase II study of gemcitabine and docetaxel compared with gemcitabine alone in patients with metastatic soft tissue sarcomas. J Clin Oncol 2007;25(19):27552763.CrossRefGoogle ScholarPubMed
van der Graaf, WT, Blay, J-Y, Chawla, SP, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2012;379(9829):18791886.Google Scholar
Demetri, GD, Chawla, SP, von Mehren, M, et al. Efficacy and safety of trabectedin in patients with advanced or metastatic liposarcoma or leiomyosarcoma after failure of prior anthracyclines and ifosfamide: results of a randomized phase II study of two different schedules. J Clin Oncol 2009;27(25):41884196.Google Scholar
Grosso, F, Jones, RL, Demetri, GD, et al. Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: a retrospective study. Lancet Oncol 2007;8(7):595602.Google Scholar
Seynaeve, C, Verweij, J. High-dose chemotherapy in adult sarcomas: no standard yet. Semin Oncol 1999;26(1):119133.Google Scholar
Deyrup, AT, Weiss, SW. Grading of soft tissue sarcomas: the challenge of providing precise information in an imprecise world. Histopathology 2006;48(1):4250.Google Scholar
Fong, Y, Coit, DG, Woodruff, JM, Brennan, MF. Lymph node metastasis from soft tissue sarcoma in adults: analysis of data from a prospective database of 1772 sarcoma patients. Ann Surg 1993;217(1):7277.Google Scholar
Casper, ES, Waltzman, RJ, Schwartz, GK, et al. Phase II trial of paclitaxel in patients with soft-tissue sarcoma. Cancer Invest 1998;16(7):442446.Google Scholar
Fury, MG, Antonescu, CR, Van Zee, KJ, Brennan, MF, Maki, RG. A 14-year retrospective review of angiosarcoma: clinical characteristics, prognostic factors, and treatment outcomes with surgery and chemotherapy. Cancer J 2005;11(3):241247.Google Scholar
Italiano, A, Cioffi, A, Penel, N, et al. Comparison of doxorubicin and weekly paclitaxel efficacy in metastatic angiosarcomas. Cancer 2012;118(13):33303336.Google Scholar
Maki, RG, D’Adamo, DR, Keohan, ML, et al. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J Clin Oncol 2009;28(19):31333140.Google Scholar
Agulnik, M, Yarber, JL, Okuno, SH, et al. An open-label, multicenter, phase II study of bevacizumab for the treatment of angiosarcoma and epithelioid hemangioendotheliomas. Ann Oncol 2013;24(1):257263.Google Scholar
Hensley, ML, Maki, RG, Venkatraman, E, et al. Gemcitabine and docetaxel in patients with unresectable leiomyosarcoma: results of a phase II trial. J Clin Oncol 2002;20(12):28242831.Google Scholar
Pautier, P, Floquet, A, Penel, N, et al. Randomized multicenter and stratified phase II study of gemcitabine alone versus gemcitabine and docetaxel in patients with metastatic or relapsed leiomyosarcomas. Oncologist 2012;17(9):12131220.Google Scholar
Keen, CE, Philip, G. Progestogen-induced regression in low-grade endometrial stromal sarcoma. Case report and literature review. Br J Obstet Gynaecol 1989;96(12):14351439.Google Scholar
Wade, K, Quinn, MA, Hammond, I, Williams, K, Cauchi, M. Uterine sarcoma: steroid receptors and response to hormonal therapy. Gynecol Oncol 1990;39(3):364367.Google Scholar
Goorin, AM, Schwartzentruber, DJ, Devidas, M, et al. Presurgical chemotherapy compared with immediate surgery and adjuvant chemotherapy for nonmetastatic osteosarcoma: Pediatric Oncology Group Study POG-8651. J Clin Oncol 2003;21(8):15741580.Google Scholar
Womer, RB, West, DC, Krailo, MD, et al. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma. J Clin Oncol 2012;30(33):41484154.Google Scholar
Bane, BL, Evans, HL, Ro, JY, et al. Extraskeletal osteosarcoma: a clinicopathologic review of 26 cases. Cancer 1990;65(12):27622770.Google Scholar
Crist, WM, Anderson, JR, Meza, JL, et al. Intergroup rhabdomyosarcoma study-IV: results for patients with nonmetastatic disease. J Clin Oncol 2001;19(12):30913102.Google Scholar
Spear, MA, Jennings, LC, Mankin, HJ, et al. Individualizing management of aggressive fibromatoses. Int J Radiat Oncol Biol Phys 1998;40(3):637645.Google Scholar
Ballo, MT, Zagars, GK, Pollack, A. Radiation therapy in the management of desmoid tumors. Int J Radiat Oncol Biol Phys 1998;42(5):10071014.Google Scholar
Lev, D, Kotilingam, D, Wei, C, et al. Optimizing treatment of desmoid tumors. J Clin Oncol 2007;25(13):17851791.Google Scholar
Gronchi, A, Colombo, C, Le Péchoux, C, et al. Sporadic desmoid-type fibromatosis: a stepwise approach to a non-metastasising neoplasm. Ann Oncol 2014;25(3):578583.Google Scholar
Deyrup, AT, Tretiakova, M, Montag, AG. Estrogen receptor-beta expression in extraabdominal fibromatoses: an analysis of 40 cases. Cancer 2006;106(1):208213.Google Scholar
Bonvalot, S, Ternès, N, Fiore, M, et al. Spontaneous regression of primary abdominal wall desmoid tumors: more common than previously thought. Ann Surg Oncol 2013;20(13):40964102.Google Scholar
Patel, SR, Evans, HL, Benjamin, RS. Combination chemotherapy in adult desmoid tumors. Cancer 1993;72(11):32443247.Google Scholar
Patel, SR, Benjamin, RS. Desmoid tumors respond to chemotherapy: defying the dogma in oncology. J Clin Oncol 2006;24(1):1112.Google Scholar
Weiss, AJ, Horowitz, S, Lackman, RD. Therapy of desmoid tumors and fibromatosis using vinorelbine. Am J Clin Oncol 1999;22(2):193195.Google Scholar
Gounder, MM, Lefkowitz, RA, Keohan, ML, et al. Activity of sorafenib against desmoid tumor/deep fibromatosis. Clin Cancer Res 2011;17(12):40824090.Google Scholar
Alman, BA, Li, C, Pajerski, ME, Diaz-Cano, S, Wolfe, HJ. Increased beta-catenin protein and somatic APC mutations in sporadic aggressive fibromatoses (desmoid tumors). Am J Pathol 1997;151(2):329334.Google Scholar
Tejpar, S, Nollet, F, Li, C, et al. Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene 1999;18(47):66156620.Google Scholar
Jungbluth, AA, Antonescu, CR, Busam, KJ, et al. Monophasic and biphasic synovial sarcomas abundantly express cancer/testis antigen NY-ESO-1 but not MAGE-A1 or CT7. Int J Cancer 2001;94:252256.Google Scholar
Robbins, PF, Morgan, RA, Feldman, SA, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011;29(7):917924.Google Scholar
Bertrand, JY, Chi, NC, Santoso, B, et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 2010;464(7285):108111.Google Scholar
Wu, SY, Lopez-Bernstein, G, Calin, GA, Sood, AK. RNAi therapies: drugging the undruggable. Sci Transl Med 2014;6(240):240ps7.CrossRefGoogle ScholarPubMed
Welch, EM, Barton, ER, Zhuo, J, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007;447(7140):8791.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×