Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-04-30T13:21:21.831Z Has data issue: false hasContentIssue false

Chapter 17 - Gastrointestinal stromal tumor (GIST)

Published online by Cambridge University Press:  19 October 2016

Markku Miettinen
Affiliation:
National Cancer Institute, Maryland
Get access
Type
Chapter
Information
Modern Soft Tissue Pathology
Tumors and Non-Neoplastic Conditions
, pp. 474 - 490
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hirota, S, Isozaki, K, Moriyama, Y, et al. Gain-of-function mutations of ckit in human gastrointestinal stromal tumors. Science 1998;279:577580.CrossRefGoogle ScholarPubMed
Mazur, M, Clark, HB. Gastric stromal tumors: reappraisal of histogenesis. Am J Surg Pathol 1983;7:507519.CrossRefGoogle ScholarPubMed
Lee, JR, Joshi, V, Griffin, JW Jr, Lasota, J, Miettinen, M. Gastrointestinal autonomic nerve tumor: immunohistochemical and molecular identity with gastrointestinal stromal tumor. Am J Surg Pathol 2001;25: 979987.Google Scholar
Nilsson, B, Bumming, P, Meis-Kindblom, JM, et al. Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era – a population-based study in western Sweden. Cancer 2005;103:821829.Google Scholar
Tryggvason, G, Gislason, HG, Magnusson, MK, Jonasson, JG. Gastrointestinal stromal tumors in Iceland, 1990–2003: the Icelandic GIST study, a population-based incidence and pathologic risk stratification study. Int J Cancer 2005;117:289293.Google Scholar
Steigen, SE, Eide, TJ. Trends in incidence and survival of mesenchymal neoplasm of the digestive tract within a defined population of northern Norway. APMIS 2006;114:192200.CrossRefGoogle ScholarPubMed
Kawanowa, K, Sakuma, Y, Sakurai, S, et al. High incidence of microscopic gastrointestinal stromal tumors in the stomach. Hum Pathol 2006;37:15271535.Google Scholar
Abraham, SC, Krasinskas, AM, Hofstetter, WL, Swisher, SG, Wu, TT. “Seedling” mesenchymal tumors (gastrointestinal stromal tumors and leiomyomas) are common incidental tumors of the gastroesophageal junction. Am J Surg Pathol 2007;31:16291635.Google Scholar
Agaimy, A, Wunsch, PH, Hofstaedter, F, et al. Minute gastric sclerosing stromal tumors (GIST tumorlets) are common in adults and frequently show KIT mutations. Am J Surg Pathol 2007;31:113120.Google Scholar
Miettinen, M, Lasota, J. Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 2006;23:7083.CrossRefGoogle ScholarPubMed
DeMatteo, RP, Lewis, JJ, Leung, D, et al. Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg 2000;231:5158.Google Scholar
Kindblom, LG, Remotti, HE, Aldenborg, F, Meis-Kindblom, JM. Gastrointestinal pacemaker cell tumor (GIPACT). Gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 1998;153:12591269.Google Scholar
Maeda, H, Yamagata, A, Nishikawa, S, et al. Requirement of c-kit for development of intestinal pacemaker system. Development 1992;116:369375.CrossRefGoogle ScholarPubMed
Huizinga, JD, Thuneberg, L, Klüppel, M, et al. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 1993;373: 347349.CrossRefGoogle Scholar
Torihashi, S, Nishi, K, Tokutomi, Y, et al. Blockade of kit signaling induces transdifferentiation of interstitial cells of Cajal to a smooth muscle phenotype. Gastroenterology 1999;117:140148.CrossRefGoogle ScholarPubMed
Sakurai, S, Fukusawa, T, Chong, JM, Tanaka, A, Fukuyama, M. Embryonic form of smooth muscle myosin heavy chain (SEmb/MCH-B) in gastrointestinal stromal tumor and interstitial cells of Cajal. Am J Pathol 1999;154:2328.Google Scholar
Robinson, TL, Sircar, K, Hewlett, BR, et al. Gastrointestinal stromal tumors may originate from a subset of CD34-positive interstitial cells of Cajal. Am J Pathol 2000;156:11571163.CrossRefGoogle ScholarPubMed
Corless, CL, Barnett, CM, Heinrich, MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer 2011;11:865878.Google Scholar
Lasota, J, Miettinen, M. Clinical significance of KIT and PDGFRA mutations in gastrointestinal stromal tumours. Histopathology 2008;53:245266.Google Scholar
Sommer, G, Agosti, V, Ehlers, I, et al. Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase. Proc Natl Acad Sci USA 2003;100:67066711.Google Scholar
Rubin, BP, Antonescu, CR, Scott-Browne, JP, et al. A knock-in mouse model of gastrointestinal stromal tumor harboring kit K641E. Cancer Res 2005;65:66316639.Google Scholar
Nakai, N, Ishikawa, T, Nishitani, A, et al. A mouse model of a human multiple GIST family with KIT-Asp820Tyr mutation generated by a knock-in strategy. J Pathol 2008;214:302311.Google Scholar
Miettinen, M, Sarlomo-Rikala, M, Sobin, LH, Lasota, J. Esophageal stromal tumors: a clinicopathologic, immunohistochemical and molecular genetic study of seventeen cases and comparison with esophageal leiomyomas and leiomyosarcomas. Am J Surg Pathol 2000;23:121132.Google Scholar
Wong, NACS, Young, R, Malcomson, RDG, et al. Prognostic indicators for gastrointestinal stromal tumours: a clinicopathological and immunohistochemical study of 108 resected cases of the stomach. Histopathology 2003;43:118126.Google Scholar
Miettinen, M, Sobin, LH, Lasota, J. Gastrointestinal stromal tumors of the stomach: a clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow-up. Am J Surg Pathol 2005;29:5268.CrossRefGoogle ScholarPubMed
Miettinen, M, Kopczynski, J, Maklouf, HR, et al. Gastrointestinal stromal tumors, intramural leiomyomas and leiomyosarcomas in the duodenum: a clinicopathologic, immunohistochemical and molecular genetic study of 167 cases. Am J Surg Pathol 2003;27:625641.Google Scholar
Miettinen, M, Makhlouf, HR, Sobin, LH, Lasota, J. Gastrointestinal stromal tumors of the jejunum and ileum: a clinicopathologic, immunohistochemical and molecular genetic study of 906 cases prior to imatinib with long-term follow-up. Am J Surg Pathol 2006;30:477489.CrossRefGoogle Scholar
Min, K-W. Small intestinal stromal tumors with skeinoid fibers: clinicopathological, immunohistochemical, and ultra-structural investigations. Am J Surg Pathol 1992;16:145155.Google Scholar
Miettinen, M, Sarlomo-Rikala, M, Sobin, LH, Lasota, J. Gastrointestinal stromal tumors and leiomyosarcomas in the colon: a clinicopathologic, immunohistochemical and molecular genetic study of 44 cases. Am J Surg Pathol 2000;24:13391352.Google Scholar
Miettinen, M, Sobin, LH. Gastrointestinal stromal tumors in the appendix: a clinicopathologic and immunohistochemical study of four cases. Am J Surg Pathol 2001;25:14331437.Google Scholar
Miettinen, M, Furlong, M, Sarlomo-Rikala, M, et al. Gastrointestinal stromal tumors, intramural leiomyomas, and leiomyosarcomas in the rectum and anus: a clinicopathologic, immunohistochemical, and molecular genetic study of 144 cases. Am J Surg Pathol 2001;25:11211133.Google Scholar
Miettinen, M, Sobin, LH, Lasota, J. Gastrointestinal stromal tumors presenting as omental masses: a clinicopathologic analysis of 95 cases. Am J Surg Pathol 2009;33:12671275.Google Scholar
Reith, JD, Goldblum, JR, Lyles, RH, Weiss, SW. Extragastrointestinal (soft tissue) stromal tumors: an analysis of 48 cases with emphasis on histologic predictors of outcome. Mod Pathol 2000;13:577585.Google Scholar
Agaimy, A, Wünsch, PH. Gastrointestinal stromal tumours: a regular origin in the muscularis propria, but an extremely diverse gross presentation: a review of 200 cases to critically re-evaluate the concept of so-called extra-gastrointestinal stromal tumours. Langenbecks Arch Surg 2006;391:322329.Google Scholar
Janeway, KA, Kim, SY, Lodish, M, et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA 2011;108:314318.Google Scholar
Gill, AJ. Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia. Pathology 2012;44:285292.Google Scholar
Miettinen, M, Wang, ZF, Sarlomo-Rikala, M, et al. Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am J Surg Pathol 2011;35:17121721.Google Scholar
Carney, JA. Gastric stromal sarcoma, pulmonary chondroma, and extra-adrenal paraganglioma (Carney triad): natural history, adrenocortical component, and possible familial occurrence. Mayo Clin Proc 1999;74:543552.Google Scholar
Carney, JA, Stratakis, CA. Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad. Am J Med Genet 2002;108:132139.Google Scholar
Italiano, A, Chen, CL, Sung, YS, et al. SDHA loss of function mutations in a subset of young adult wild-type gastrointestinal stromal tumors. BMC Cancer 2012;12:408.Google Scholar
Wagner, AJ, Remillard, SP, Zhang, YX, et al. Loss of expression of SDHA predicts SDHA mutations in gastrointestinal stromal tumors. Mod Pathol 2013;26:289294.Google Scholar
Miettinen, M, Killian, JK, Wang, ZF, et al. Immunohistochemical loss of succinate dehydrogenase subunit A (SDHA) in gastrointestinal stromal tumors (GISTs) signals SDHA germline mutation. Am J Surg Pathol 2013;37:234240.Google Scholar
Tarn, C, Rink, L, Merkel, E, et al. Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors. Proc Natl Acad Sci USA 2008;105:83878392.Google Scholar
Pantaleo, MA, Astolfi, A, Di Battista, M, et al. Insulin-like growth factor 1 receptor expression in wild-type GISTs: a potential novel therapeutic target. Int J Cancer 2009;125:29912994.Google Scholar
Lasota, J, Wang, Z, Kim, SY, Helman, L, Miettinen, M. Expression of the receptor for type i insulin-like growth factor (IGF1R) in gastrointestinal stromal tumors: an immunohistochemical study of 1078 cases with diagnostic and therapeutic implications. Am J Surg Pathol 2013;37:114119.Google Scholar
Pantaleo, MA, Astolfi, A, Urbini, M, et al. Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST. Eur J Hum Genet 2014;22:3239.CrossRefGoogle ScholarPubMed
Killian, JK, Miettinen, M, Walker, RL, et al. Recurrent epimutation of SDHC in gastrointestinal stromal tumors. Sci Transl Med 2014;6:268ra177.Google Scholar
Killian, JK, Kim, SY, Miettinen, M, et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov 2013;3:648657.Google Scholar
Andersson, J, Sihto, H, Meis-Kindblom, JM, et al. NF1-associated gastrointestinal stromal tumors have unique clinical, phenotypic, and genotypic characteristics. Am J Surg Pathol 2005;29:11701176.CrossRefGoogle ScholarPubMed
Miettinen, M, Fetsch, JF, Sobin, LH, Lasota, J. Gastrointestinal stromal tumors in patients with neurofibromatosis. 1: A clinicopathologic study of 45 patients with long-term follow-up. Am J Surg Pathol 2006;30:9096.Google Scholar
Kinoshita, K, Hirota, S, Isozaki, K, et al. Absence of c-kit gene mutations in gastrointestinal stromal tumours from neurofibromatosis type 1 patients. J Pathol 2004;202:8085.CrossRefGoogle ScholarPubMed
Maertens, O, Prenen, H, Debiec-Rychter, M, et al. Molecular pathogenesis of multiple gastrointestinal stromal tumors in NF1 patients. Hum Mol Genet 2006;15:10151023.Google Scholar
Sarlomo-Rikala, M, Kovatich, A, Barusevicius, A, Miettinen, M. CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod Pathol 1998;11:728734.Google Scholar
Hornick, JL, Fletcher, CD. The significance of KIT (CD117) in gastrointestinal stromal tumors. Int J Surg Pathol 2004;12:9397.Google Scholar
Espinosa, I, Lee, CH, Kim, MK, et al. A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am J Surg Pathol 2008;32(2):210218.Google Scholar
Miettinen, M, Wang, ZF, Lasota, J. DOG1 antibody in the differential diagnosis of gastrointestinal stromal tumors: a study of 1840 cases. Am J Surg Pathol 2009;33:14011408.CrossRefGoogle ScholarPubMed
Ou, WB, Zhu, MJ, Demetri, GD, Fletcher, CD, Fletcher, JA. Protein kinase C-theta regulates KIT expression and proliferation in gastrointestinal stromal tumors. Oncogene 2008;27:56245634.Google Scholar
Miettinen, M, Sarlomo-Rikala, M, Kovatich, AJ, Lasota, J. Calponin and h-caldesmon in soft tissue tumors: consistent h-caldesmon immunoreactivity in gastrointestinal stromal tumors indicates traits of smooth muscle differentiation. Mod Pathol 1999;12:11091118.Google Scholar
Casali, PG, Fumagalli, E, Gronchi, A. Adjuvant therapy of gastrointestinal stromal tumors (GISTs). Curr Treat Options Oncol 2012;13:277284.Google Scholar
Nishida, T, Hirota, S, Taniguchi, M, et al. Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat Genet 1998;19:323324.Google Scholar
Isozaki, K, Terris, B, Belghiti, J, et al. Germline-activating mutation in the kinase domain of KIT gene in familial gastrointestinal stromal tumors. Am J Pathol 2000;157:15811585.Google Scholar
Beghini, A, Tibiletti, MG, Roversi, G, et al. Germline mutation in the juxtamembrane domain of the KIT gene in a family with gastrointestinal stromal tumors and urticaria pigmentosa. Cancer 2001;92:657662.Google Scholar
Maeyama, H, Hidaka, E, Ota, H, et al. Familial gastrointestinal stromal tumor with hyperpigmentation: association with a germline mutation of the c-kit gene. Gastroenterology 2001;120:210215.Google Scholar
Chompret, A, Kannengiesser, C, Barrois, M, et al. PDGFRA germline mutation in a family with multiple cases of gastrointestinal stromal tumor. Gastroenterology 2004;126:318321.Google Scholar
Robson, ME, Glogowski, E, Sommer, G, et al. Pleomorphic characteristics of a germ-line KIT mutation in a large kindred with gastrointestinal stromal tumors, hyperpigmentation, and dysphagia. Clin Cancer Res 2004;10:12501254.Google Scholar
Hostein, I, Faur, N, Primois, C, et al. BRAF mutation status in gastrointestinal stromal tumors. Am J Clin Pathol 2010;133:141148.Google Scholar
Rossi, S, Gasparotto, D, Miceli, R, et al. KIT, PDGFRA, and BRAF mutational spectrum impacts on the natural history of imatinib-naive localized GIST: a population-based study. Am J Surg Pathol 2015;39:922930.Google Scholar
Falchook, GS, Trent, JC, Heinrich, MC, et al. BRAF mutant gastrointestinal stromal tumor: first report of regression with BRAF inhibitor dabrafenib (GSK2118436) and whole exomic sequencing for analysis of acquired resistance. Oncotarget 2013;4:310315.Google Scholar
Gunawan, B, Bergmann, F, Hoer, J, et al. Biological and clinical significance of cytogenetic abnormalities in low-risk and high-risk gastrointestinal stromal tumors. Hum Pathol 2002;33:316321.Google Scholar
El-Rifai, W, Sarlomo-Rikala, M, Miettinen, M, Knuutila, S, Andersson, LCA. DNA copy number losses in chromosome 14: an early change in gastrointestinal stromal tumors. Cancer Res 1996;56:32303233.Google Scholar
El-Rifai, W, Sarlomo-Rikala, M, Andersson, L, Knuutila, S, Miettinen, M. Prognostic significance of DNA copy number changes in benign and malignant GISTs. Cancer Res 2000;60:38993903.Google Scholar
van Mehren, M. The role of adjuvant and neoadjuvant therapy for gastrointestinal stromal tumors. Curr Opin Oncol 2008;20:428432.Google Scholar
Sciot, R, Debiec-Rychter, M. GIST under imatinib therapy. Semin Diagn Pathol 2006;23:8490.Google Scholar
Liegl, B, Hornick, JL, Antonescu, CR, Corless, CL, Fletcher, CD. Rhabdomyosarcomatous differentiation in gastrointestinal stromal tumors after tyrosine kinase inhibitor therapy: a novel form of tumor progression. Am J Surg Pathol 2009;33:218226.Google Scholar
Antonescu, CR, Romeo, S, Zhang, L, et al. Dedifferentiation in gastrointestinal stromal tumor to an anaplastic KIT-negative phenotype: a diagnostic pitfall: morphologic and molecular characterization of 8 cases occurring either de novo or after imatinib therapy. Am J Surg Pathol 2013;37:385392.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×