Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T12:15:15.930Z Has data issue: false hasContentIssue false

Chapter 10 - Childhood fibroblastic and myofibroblastic proliferations of variable biologic potential

Published online by Cambridge University Press:  19 October 2016

Markku Miettinen
Affiliation:
National Cancer Institute, Maryland
Get access
Type
Chapter
Information
Modern Soft Tissue Pathology
Tumors and Non-Neoplastic Conditions
, pp. 277 - 298
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Gallager, RL, Helwig, EB. Neurothekeoma a benign cutaneous tumor of neural origin. Am J Clin Pathol 1980;74:759764.Google Scholar
Laskin, WB, Fetsch, JF, Miettinen, M. The neurothekeoma: immunohistochemical analysis distinguishes the true nerve sheath myxoma from its mimics. Hum Pathol 2000;31:12301241.Google Scholar
Barnhill, RL, Dickersin, GR, Nickeleit, V, et al. Studies on the cellular origin of neurothekeoma: clinical, light microscopic, immunohistochemical and ultrastructural observations. J Am Acad Dermatol 1991;25:8088.Google Scholar
Argenyi, ZB, Le Boit, PE, Santa Cruz, D, Swanson, PE, Kuzner, H. Nerve sheath myxoma (neurothekeoma) of the skin: light microscopic and immunohistochemical reappraisal of the cellular variant. J Cutan Pathol 1993;20:294303.Google Scholar
Fetsch, JF, Laskin, WB, Hallman, JR, Lupton, GP, Miettinen, M. Neurothekeoma: an analysis of 178 tumors with detailed immunohistochemical data and long-term patient follow-up information. Am J Surg Pathol 2007;31:11031114.Google Scholar
Hornick, JL, Fletcher, CDM. Cellular neurothekeoma: detailed characterization in a series of 133 cases. Am J Surg Pathol 2007;31:329340.Google Scholar
Page, RN, King, R, Mihm, MC Jr, Googe, PB. Microphthalmia transcription factor and NKI/C3 expression in cellular neurothekeoma. Mod Pathol 2004;17:230234.Google Scholar
Suarez, A, High, WA. Immunohistochemical analysis of KBA.62 in 18 neurothekeomas: a potential marker for differentiating neurothekeoma, but a marker that may lead to confusion with melanocytic tumors. J Cutan Pathol 2014;41:3641.CrossRefGoogle ScholarPubMed
Sheth, S, Li, X, Binder, S, Dry, SM. Differential gene expression profiles of neurothekeomas and nerve sheath myxomas by microarray analysis. Mod Pathol 2011;24:343354.Google Scholar
Jaffer, S, Ambrosini-Spaltro, A, Mancini, AM, Eusebi, V, Rosai, J. Neurothekeoma and plexiform fibrohistiocytic tumor: mere histologic resemblance or histogenetic relationship? Am J Surg Pathol 2009;33:905913.Google Scholar

Secondary Sources

Enzinger, FM, Zhang, R. Plexiform fibrohistiocytic tumor presenting in children and young adults: an analysis of 65 cases. Am J Surg Pathol 1988;12:818826.Google Scholar
Hollowood, K, Holley, MP, Fletcher, CDM. Plexiform fibrohistiocytic tumour: clinicopathological, immunohistochemical and ultrastructural analysis in favour of a myofibroblastic lesion. Histopathology 1991;19:503513.Google Scholar
Zelger, B, Weinlich, G, Steiner, H, Zelger, BG, Egarter-Vigl, E. Dermal and subcutaneous variants of plexiform fibrohistiocytic tumor. Am J Surg Pathol 1997;21:235241.Google Scholar
Remstein, ED, Arndt, CAS, Nascimento, AG. Plexiform fibrohistiocytic tumor: clinicopathologic analysis of 22 cases. Am J Surg Pathol 1999;23:662670.Google Scholar
Leclerc, S, Hamel-Teillac, D, Oger, P, Brousse, N, Fraitag, S. Plexiform fibrohistiocytic tumor: three unusual cases occurring in infancy. J Cutan Pathol 2005;32:572576.Google Scholar
Moosavi, C, Jha, P, Fanburg-Smith, JC. An update on plexiform fibrohistiocytic tumor and addition of 66 new cases from the Armed Forces Institute of Pathology, in honor of Franz M. Enzinger, MD. Ann Diagn Pathol 2007;11:313319.Google Scholar
Redlich, GC, Montgomery, KD, Allgood, GA, Joste, NE. Plexiform fibrohistiocytic tumor with a clonal cytogenetic anomaly. Cancer Genet Cytogenet 1999;108:141143.CrossRefGoogle ScholarPubMed
Smith, S, Fletcher, CD, Smith, MA, Gusterson, BA. Cytogenetic analysis of a plexiform fibrohistiocytic tumor. Cancer Genet Cytogenet 1990;48:3134.Google Scholar
Enzinger, FM. Angiomatoid malignant fibrous histiocytoma: a distinct fibrohistiocytic tumor of children and young adults simulating a vascular neoplasm. Cancer 1979;44:21472157.Google Scholar
Costa, MJ, Weiss, SW. Angiomatoid malignant fibrous histiocytoma: a follow-up study of 108 cases with evaluation of possible histologic predictors of outcome. Am J Surg Pathol 1990;14:11261132.Google Scholar
Leu, HJ, Makek, M. Angiomatoid malignant fibrous histiocytoma. Virchows Arch A Pathol Anat Histopathol 1982;395:99107.Google Scholar
Fanburg-Smith, JF, Miettinen, M. Angiomatoid “malignant” fibrous histiocytoma: a clinicopathologic study of 158 cases and further exploration of the myoid phenotype. Hum Pathol 1999;30:13361343.Google Scholar
Pettinato, G, Manivel, JC, De Rosa, G, Petrella, G, Jaszcz, W. Angiomatoid malignant fibrous histiocytoma: cytologic, immunohistochemical, ultrastructural, and flow cytometric study of 20 cases. Mod Pathol 1990;3:479487.Google Scholar
Chen, G, Folpe, AL, Colby, TV, et al. Angiomatoid fibrous histiocytoma: unusual sites and unusual morphology. Mod Pathol 2011;24:15601570.Google Scholar
Thway, K, Nicholson, AG, Wallace, WA, et al. Endobronchial pulmonary angiomatoid fibrous histiocytoma: two cases with EWSR1-CREB1 and EWSR1-ATF1 fusions. Am J Surg Pathol 2012;36:883888.Google Scholar
Chow, LT, Allen, PW, Kumta, SM, et al. Angiomatoid malignant fibrous histiocytoma: report of an unusual case with highly aggressive clinical course. J Foot Ankle Surg 1998;37:235238.Google Scholar
Seo, IS, Frizerra, G, Coates, TD, Mirkin, LD, Cohen, MD. Angiomatoid malignant fibrous histiocytoma with extensive lymphadenopathy simulating Castleman’s disease. Pediatr Pathol 1986;6:233247.Google Scholar
Moura, RD, Wang, X, Lonzo, ML, et al. Reticular angiomatoid "malignant" fibrous histiocytoma–a case report with cytogenetics and molecular genetic analyses. Hum Pathol 2011;42:13591363.CrossRefGoogle ScholarPubMed
Schaefer, IM, Fletcher, CD. Myxoid variant of so-called angiomatoid "malignant fibrous histiocytoma": clinicopathologic characterization in a series of 21 cases. Am J Surg Pathol 2014;38:816823.Google Scholar
Fletcher, CDM. Angiomatoid “malignant fibrous histiocytoma”: an immunohistochemical study indicative of myoid differentiation. Hum Pathol 1991;22:563568.Google Scholar
Smith, MEF, Costa, MJ, Weiss, SW. Evaluation of CD68 and other histiocytic antigens in angiomatoid malignant fibrous histiocytoma. Am J Surg Pathol 1991;15:757763.Google Scholar
Hasegawa, T, Seki, K, Ono, K, Hirohashi, S. Angiomatoid (malignant) fibrous histiocytoma: a peculiar low-grade tumor showing immunophenotypic heterogeneity and ultrastructural variations. Pathol Int 2000;50:731738.CrossRefGoogle ScholarPubMed
Costa, MJ, McGlothlen, L, Pierce, M, Munn, R, Vogt, PJ. Angiomatoid features in fibrohistiocytic sarcomas. Immunohistochemical, ultrastructural, and clinical distinction from vascular neoplasms. Arch Pathol Lab Med 1995;119:10651071.Google Scholar
Antonescu, CR, Dal Cin, P, Nafa, K, et al. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2007;46:10511060.CrossRefGoogle ScholarPubMed
Hallor, KH, Merrtens, F, Jin, Y, et al. Fusion of the EWSR1 and ATF1 genes without expression of the MITF-M transcript in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2005;44:97102.Google Scholar
Hallor, KH, Micci, F, Meis-Kindblom, J, et al. Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett 2007;251:158163.Google Scholar
Waters, BL, Panagopoulos, I, Allen, EF. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet Cytogenet 2000;121:109116.Google Scholar
Coffin, CM, Watterson, J, Priest, JR, Dehner, LP. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor): a clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol 1995;19:859872.CrossRefGoogle ScholarPubMed
Coffin, CM, Dehner, LP, Meis-Kindblom, JM. Inflammatory myofibroblastic tumor, inflammatory fibrosarcoma, and related lesions: an historical review with differential diagnostic considerations. Semin Diagn Pathol 1998;15:102110.Google Scholar
Coffin, CM, Humphrey, PA, Dehner, LP. Extrapulmonary inflammatory myofibroblastic tumor: a clinical and pathological survey. Semin Diagn Pathol 1998;15:85101.Google Scholar
Neuhauser, TS, Derringer, GA, Thompson, LD, et al. Splenic inflammatory myofibroblastic tumor (inflammatory pseudotumor): a clinicopathologic and immunophenotypic study of 12 cases. Arch Pathol Lab Med 2001;125:379385.Google Scholar
Kutok, JL, Pinkus, GS, Dorfman, DM, Fletcher, CD. Inflammatory pseudotumor of lymph node and spleen: an entity biologically distinct from inflammatory myofibroblastic tumor. Hum Pathol 2001;32:13821387.Google Scholar
Chan, JKC. Inflammatory pseudotumor: a family of lesions of diverse nature and etiologies. Adv Anat Pathol 1996;3:156171.CrossRefGoogle Scholar
Ro, JY, el-Naggar, AK, Amin, MB, et al. Pseudosarcomatous fibromyxoid tumor of the urinary bladder and prostate: immunohistochemical, ultrastructural and DNA flow cytometric analyses of nine cases. Hum Pathol 1993;24:12031210.Google Scholar
Albores-Saavedra, J, Manivel, JC, Essenfeld, H, et al. Pseudosarcomatous myofibroblastic proliferations in the urinary bladder of children. Cancer 1990;66:12341241.Google Scholar
Hojo, H, Newton, WA Jr, Hamoudi, AB, et al. Pseudosarcomatous myofibroblastic tumor of the urinary bladder in children: a study of 11 cases with review of the literature. An intergroup rhabdomyosarcoma study. Am J Surg Pathol 1995;19:12241236.Google Scholar
Harik, LR, Merino, C, Coindre, JM, et al. Pseudosarcomatous myofibroblastic proliferations of the bladder: a clinicopathologic study of 42 cases. Am J Surg Pathol 2006;30:787794.CrossRefGoogle ScholarPubMed
Proppe, KH, Scully, RE, Rosai, J. Postoperative spindle cell nodules of genitourinary tract resembling sarcomas. Am J Surg Pathol 1984;8:101108.Google Scholar
Pettinato, G, Manivel, JC, De Rosa, N, Dehner, LP. Inflammatory myofibroblastic tumor (plasma cell granuloma): clinicopathologic study of 20 cases with immunohistochemical and ultrastructural observations. Am J Clin Pathol 1990;94:538546.Google Scholar
Yousem, SA, Shaw, H, Cieply, K. Involvement of 2p23 in pulmonary inflammatory pseudotumors. Hum Pathol 2001;32:428433.Google Scholar
Meis, JM, Enzinger, FM. Inflammatory fibrosarcoma of the mesentery and retroperitoneum: a tumor closely simulating inflammatory pseudotumor. Am J Surg Pathol 1991;15:11461156.Google Scholar
Meis-Kindblom, JM, Kjellstrom, C, Kindblom, LG. Inflammatory fibrosarcoma: update, reappraisal, and perspective on its place in the spectrum of inflammatory myofibroblastic tumors. Semin Diagn Pathol 1998;15:133143.Google Scholar
Alaggio, R, Cecchetto, G, Bisogno, G, et al. Inflammatory myofibroblastic tumors in childhood: a report from the Italian Cooperative Group studies.Cancer 2010;116:216226.Google Scholar
Coffin, CM, Hornick, JL, Fletcher, CDM. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK-expression in atypical and aggressive cases. Am J Surg Pathol 2007;31:509520.Google Scholar
Montgomery, EA, Shuster, DD, Burkart, AL, et al. Inflammatory myofibroblastic tumors of the urinary tract: a clinicopathologic study of 46 cases, including a malignant example inflammatory fibrosarcoma and a subset associated with high-grade urothelial carcinoma. Am J Surg Pathol 2006;30;15021512.Google Scholar
Rabban, JT, Zaloudek, CJ, Shekitka, KM, Tavassoli, FA. Inflammatory myofibroblastic tumor of the uterus: a clinicopathologic study of 6 cases emphasizing distinction from aggressive mesenchymal tumors. Am J Surg Pathol 2005;29:13481355.Google Scholar
Wenig, BM, Devaney, K, Bisceglia, M. Inflammatory myofibroblastic tumor of the larynx: a clinicopathologic study of eight cases simulating a malignant spindle cell neoplasm. Cancer 1995;76:22172229.Google Scholar
Burke, A, Li, L, Kling, E, et al. Cardiac inflammatory myofibroblastic tumor: a “benign” neoplasm that may result in syncope, myocardial infarction, and sudden death. Am J Surg Pathol 2007;31:11151122.Google Scholar
Jeon, YK, Chang, KH, Suh, YL, Jung, HW, Park, SH. Inflammatory myofibroblastic tumor of the central nervous system: clinicopathologic analysis of 10 cases. J Neuropathol Exp Neurol 2005;64:254259.Google Scholar
Ramachandra, S, Hollowood, K, Bisceglia, M, Fletcher, CDM. Inflammatory pseudotumor of soft tissues: a clinicopathological and immunohistochemical analysis of 18 cases. Histopathology 1995;27:313323.Google Scholar
Donner, LR, Trompler, RA, White, RR. Progression of inflammatory myofibroblastic tumor (inflammatory pseudotumor) of soft tissue into sarcoma after several recurrences. Hum Pathol 1996;27:10951098.Google Scholar
Butrynski, JE, D'Adamo, DR, Hornick, JL, et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor.N Engl J Med 2010;363:17271733.Google Scholar
Mossé, YP, Lim, MS, Voss, SD, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study. Lancet Oncol 2013;14:472480.Google Scholar
Chen, ST, Lee, JC. An inflammatory myofibroblastic tumor in liver with ALK and RANBP2 gene rearrangement: combination of distinct morphologic, immunohistochemical, and genetic features. Hum Pathol 2008;39:18541858.Google Scholar
Mariño-Enríquez, A, Wang, WL, Roy, A, et al. Epithelioid inflammatory myofibroblastic sarcoma: an aggressive intra-abdominal variant of inflammatory myofibroblastic tumor with nuclear membrane or perinuclear ALK. Am J Surg Pathol 2011;35:135144.Google Scholar
Chan, JKC, Cheuk, W, Shimizu, M. Anaplastic lymphoma kinase expression in inflammatory pseudotumors. Am J Surg Pathol 2001;25:761768.Google Scholar
Cook, JR, Dehner, LP, Collins, MH, et al. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. Am J Surg Pathol 2001;25:13641371.Google Scholar
Hisaoka, M, Hussong, JW, Brown, M, et al. Comparison of DNA ploidy, histologic and immunohistochemical findings with clinical outcome in inflammatory myofibroblastic tumors. Mod Pathol 1999;12:279286.Google Scholar
Yamamoto, H, Kohashi, K, Oda, Y, et al. Absence of human herpesvirus-8 and Epstein–Barr virus in inflammatory myofibroblastic tumor with anaplastic large cell lymphoma kinase fusion gene. Pathol Int 2006;56:584590.Google Scholar
Tavora, F, Shilo, K, Ozbudak, IH, et al. Absence of human herpesvirus-8 in pulmonary inflammatory myofibroblastic tumor: immunohistochemical and molecular analysis of 20 cases. Mod Pathol 2007;20:995999.Google Scholar
Saab, ST, Hornick, JL, Fletcher, CD, Olson, SJ, Coffin, CM. IgG4 plasma cells in inflammatory myofibroblastic tumor: inflammatory marker or pathogenic link? Mod Pathol 2011;24:606612.Google Scholar
Snyder, CS, Dell-Aquila, M, Haghighi, P, et al. Clonal changes in inflammatory pseudotumor of the lung. Cancer 1995;76:15451549.Google Scholar
Su, LD, Atayde-Perez, A, Sheldon, S, Fletcher, JA, Weiss, SW. Inflammatory myofibroblastic tumor: cytogenetic evidence supporting clonal origin. Mod Pathol 1998;11:364368.Google Scholar
Griffin, CA, Hawkins, AL, Dvorak, C, et al. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res 1999;59:27762780.Google Scholar
Lawrence, B, Perez-Atayde, A, Hibbard, MK, et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 2000;157:377384.Google Scholar
Bridge, JA, Kanamori, M, Ma, Z, et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol 2001;159:411415.Google Scholar
Debelenko, LV, Arthur, DC, Pack, SD, et al. Identification of CARS-ALK fusion in primary and metastatic lesions of an inflammatory myofibroblastic tumor. Lab Invest 2003;83:12551265.Google Scholar
Debiec-Rychter, M, Marynen, P, Hagemeijer, A, Pauwels, P. ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;38:187190.Google Scholar
Wang, X, Krishnan, C, Nguyen, EP, et al. Fusion of dynactin 1 to anaplastic lymphoma kinase in inflammatory myofibroblastic tumor. Hum Pathol 2012;43:20472052.Google Scholar
Sokai, A, Enaka, M, Sokai, R, et al. Pulmonary inflammatory myofibroblastic tumor harboring EML4-ALK fusion gene. Jpn J Clin Oncol 2014;44:9396.Google Scholar
Takeuchi, K, Soda, M, Togashi, Y, et al. Pulmonary inflammatory myofibroblastic tumor expressing a novel fusion, PPFIBP1-ALK: reappraisal of anti-ALK immunohistochemistry as a tool for novel ALK fusion identification. Clin Cancer Res 2011;17:33413348.Google Scholar
Ma, Z, Hill, DA, Collins, MH, et al. Fusion of ALK to the RAN-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;37:98105.Google Scholar
Panagopoulos, I, Nilsson, T, Domanski, HA, et al. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer 2006;118:11811186.Google Scholar
Sukov, WR, Cheville, JC, Carlson, AW, et al. utility of ALK-1 protein expression and ALK rearrangements in distinguishing inflammatory myofibrolastic tumor from malignant spindle cell lesions of the urinary bladder. Mod Pathol 2007;20:592603.Google Scholar
Davies, KD, Doebele, RC. Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 2013;19:40404045.Google Scholar
Balsaver, AM, Butler, JJ, Martin, RG. Congenital fibrosarcoma. Cancer 1967;20:16071616.Google Scholar
Chung, EB, Enzinger, FM. Infantile fibrosarcoma. Cancer 1976;38:729739.Google Scholar
Soule, EH, Pritchard, DJ. Fibrosarcoma in infants and and children: a review of 110 cases. Cancer 1977;40:17111721.Google Scholar
Iwasaki, H, Enjoji, M. Infantile and adult fibrosarcomas of the soft tissues. Acta Pathol Jpn 1979;29:377388.Google Scholar
Coffin, CM, Jaszcz, W, O’Shea, PA, Dehner, LP. So-called congenital-infantile fibrosarcoma: does it exist and what is it? Pediatr Pathol 1994;14:133150.Google Scholar
Kodet, R, Stejskal, J, Pilat, D, et al. Congenital-infantile fibrosarcoma: a clinicopathological study of five patients entered on the Prague children’s tumor registry. Pathol Res Pract 1996;192:845853.Google Scholar
Cofer, BR, Vescio, PJ, Wiener, ES. Infantile fibrosarcoma: complete excision is the appropriate treatment. Ann Surg Oncol 1996;3:159161.Google Scholar
Sulkowski, JP, Raval, MV, Browne, M. Margin status and multimodal therapy in infantile fibrosarcoma. Pediatr Surg Int 2013;29:771776.CrossRefGoogle ScholarPubMed
Kynaston, JA, Malcolm, AJ, Craft, AW, et al. Chemotherapy in the management of infantile fibrosarcoma. Med Pediatr Oncol 1993;21:488493.CrossRefGoogle ScholarPubMed
Steelman, C, Katzenstein, H, Parham, D, et al. Unusual presentation of congenital infantile fibrosarcoma in seven infants with molecular-genetic analysis. Fetal Pediatr Pathol 2011;30:329337.Google Scholar
Buccoliero, AM, Castiglione, F, Rossi Degl'Innocenti, D, et al. Congenital/infantile fibrosarcoma of the colon: morphologic, immunohistochemical, molecular, and ultrastructural features of a relatively rare tumor in an extraordinary localization. J Pediatr Hematol Oncol 2008;30:723727.Google Scholar
Nonaka, D, Sun, CCJ. Congenital fibrosarcoma with metastasis in a fetus. Pediatr Dev Pathol 2004;7:187191.Google Scholar
Dumont, C, Monforte, M, Flandrin, A, et al. Prenatal management of congenital infantile fibrosarcoma: unexpected outcome. Ultrasound Obstet Gynecol 2011;37:733735.Google Scholar
Salloum, E, Caillaud, JM, Flamant, F, Landman, J, Lemerle, J. Poor prognosis infantile fibrosarcoma with pathologic features of malignant fibrous histiocytoma after local recurrence. Med Pediatr Oncol 1990;18:295298.Google Scholar
Adam, LR, Davison, EV, Malcolm, AJ, Pearson, AD, Craft, AW. Cytogenetic analysis of a congenital fibrosarcoma. Cancer Genet Cytogenet 1991;52:3741.Google Scholar
Dal Cin, P, Brock, P, Casteels-Van Daele, M, et al. Cytogenetic characterization of congenital or infantile fibrosarcoma. Eur J Pediatr 1991;150:579581.Google Scholar
Sankary, S, Dickman, PS, Wiener, E, et al. Consistent numerical chromosome aberrations in congenital fibrosarcoma. Cancer Genet Cytogenet 1993;65:152156.Google Scholar
Bernstein, R, Zeltzer, PM, Lin, F, Carpenter, PM. Trisomy 11 and other nonrandom trisomies in congenital fibrosarcoma. Cancer Genet Cytogenet 1994;78:8286.Google Scholar
Knezevich, SR, McTadden, DE, Tao, W, Lim, JF, Sorensen, PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 1998;18:184187.Google Scholar
Knezevich, SR, Garnett, MJ, Pysher, TJ, et al. ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res 1998;58:50465048.Google Scholar
Rubin, BP, Chen, CJ, Morgan, TW, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 1998;153:14511458.Google Scholar
Argani, P, Fritsch, M, Kadkol, SS, et al. Detection of the ETV6-NTRK3 chimeric RNA of infantile fibrosarcoma/cellular congenital mesoblastic nephroma in paraffin-embedded tissue: application to challenging pediatric renal stromal tumors. Mod Pathol 2000;13:2936.Google Scholar
Bourgeois, JM, Knezevich, SR, Mathers, JA, Sorensen, PH. Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol 2000;24:937946.Google Scholar
Dubus, P, Coindre, JM, Groppi, A, et al. The detection of the Tel-TrkC chimeric transcripts is more specific than TrkC immunoreactivity for the diagnosis of congenital fibrosarcoma. J Pathol 2001;193:8894.Google Scholar
Sheng, WQ, Hisaoka, M, Okamoto, S, et al. Congenital-infantile fibrosarcoma: a clinicopathologic study of 10 cases and molecular detection of the ETV6-NTRK3 fusion transcripts using paraffin-embedded tissues. Am J Clin Pathol 2001;115:348355.Google Scholar
Tognon, C, Knezevich, SR, Huntsman, D, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002;2:367376.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×