Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T14:00:22.274Z Has data issue: false hasContentIssue false

Chapter 3 - Immunohistochemistry of soft tissue tumors

Published online by Cambridge University Press:  19 October 2016

Markku Miettinen
Affiliation:
National Cancer Institute, Maryland
Get access
Type
Chapter
Information
Modern Soft Tissue Pathology
Tumors and Non-Neoplastic Conditions
, pp. 41 - 91
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Fisher, C. Immunohistochemistry in diagnosis of soft tissue tumors. Histopathology 2011;58:10011012.CrossRefGoogle Scholar
Hornick, JL. Novel uses of immunohistochemistry in the diagnosis and classification of soft tissue tumors. Mod Pathol 2014;27(Suppl 1):S47S63.CrossRefGoogle ScholarPubMed
Miettinen, M. Immunohistochemistry of soft-tissue tumours. Review with emphasis on 10 markers. Histopathology 2014;64:101118.Google Scholar
Ordonez, NG. Immunohistochemical endothelial markers: a review. Adv Anat Pathol 2012;19:281295.Google Scholar
Chu, PG, Weiss, LM. Keratin expression in human tissues and neoplasms. Histopathology 2002;40:403439.Google Scholar
Nagle, RB. Intermediate filaments: a review of the basic biology. Am J Surg Pathol 1988;12 Suppl 1:416.Google ScholarPubMed

Secondary Sources

Newman, PJ, Berndt, MC, Gorski, J, et al. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 1990;247:12191222.CrossRefGoogle ScholarPubMed
Ilan, N, Cheug, L, Pinter, E, Madri, JA. Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation. J Biol Chem 2000;275:2143521443.Google Scholar
Kuzu, I, Bicknell, R, Harris, AL, et al. Heterogeneity of vascular endothelial cells with relevance to diagnosis of vascular tumours. J Clin Pathol 1992;45:143148.CrossRefGoogle ScholarPubMed
McKenney, JK, Weiss, SW, Folpe, AL. CD31 expression in intratumoral macrophages: a potential diagnostic pitfall. Am J Surg Pathol 2001;25:11671173.CrossRefGoogle ScholarPubMed
de Young, BR, Wick, MR, Fitzgibbon, JF, Sirgi, KE, Swanson, PE. CD31: an immunospecific marker for endothelial differentiation in human neoplasms. Appl Immunohistochem 1993;1:97100.Google Scholar
Miettinen, M, Lindenmayer, AE, Chaubal, A. Endothelial cell markers CD31, CD34, and BNH9 antibody to H- and Y-antigens: evaluation of their specificity and sensitivity in the diagnosis of vascular tumors and comparison with von Willebrand’s factor. Mod Pathol 1994;7:8290.Google Scholar
de Young, BR, Frierson, HF Jr, Ly, MN, Smith, D, Swanson, PE. CD31 immunoreactivity in carcinomas and mesotheliomas. Am J Clin Pathol 1998;110:374377.Google Scholar
Lanza, F, Healy, L, Sutherland, DR. Structural and functional features of the CD34 antigen: an update. J Biol Regul Homeostat Agents 2001;15:113.Google ScholarPubMed
Sidney, LE, Branch, MJ, Dynphy, SE, Dua, HS, Hopkinson, A. Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells 2014;32:13801389.CrossRefGoogle ScholarPubMed
van de Rijn, M, Rouse, RV. CD34 – a review. Appl Immunohistochem 1994;2:7180.Google Scholar
Nickoloff, BJ. The human progenitor cell antigen (CD34) is localized on endothelial cells, dermal dendritic cells, and perifollicular cells in formalin-fixed normal skin, and on proliferating endothelial cells and stromal spindle-shaped cells in Kaposi’s sarcoma. Arch Dermatol 1991;127:523529.Google Scholar
Ramani, P, Bradley, NJ, Fletcher, CDM. QBEND/10, a new monoclonal antibody to endothelium: assessment of its diagnostic utility in paraffin sections. Histopathology 1990;17:237242.Google Scholar
Sankey, EA, More, L, Dhillon, AP. QBEnd/10. A new immunostain for the routine diagnosis of Kaposi’s sarcoma. J Pathol 1990;161:267271.Google Scholar
Traweek, ST, Kandalaft, PL, Mehta, P, Battifora, H. The human hematopoietic progenitor cell antigen (CD34) in vascular neoplasia. Am J Clin Pathol 1991;96:2531.CrossRefGoogle ScholarPubMed
Aiba, S, Tabata, N, Ishii, H, Ootani, H, Tagami, H. Dermatofibrosarcoma protuberans is a unique fibrohistiocytic tumor expressing CD34. Br J Dermatol 1992;127:7984.CrossRefGoogle ScholarPubMed
Abenoza, P, Lillemoe, T. CD34 and factor XIIIa in the differential diagnosis of dermatofibroma and dermatofibrosarcoma protuberans. Am J Dermatopathol 1993;15:429434.Google Scholar
Cohen, PR, Rapini, RP, Farhood, AI. Expression of the human hematopoietic progenitor cell antigen CD34 in vascular and spindle cell tumors. J Cutan Pathol 1993;20:1520.Google Scholar
Goldblum, JR. CD34 positivity in fibrosarcomas which arise in dermatofibrosarcoma protuberans. Arch Pathol Lab Med 1995;119:238241.Google Scholar
Westra, WH, Gerald, WL, Rosai, J. Solitary fibrous tumor. Consistent CD34 immunoreactivity and occurrence in the orbit. Am J Surg Pathol 1994;18:992998.Google Scholar
Hanau, CA, Miettinen, M. Solitary fibrous tumor. Histological and immunohistochemical spectrum of benign and malignant variants presenting at different sites. Hum Pathol 1995;26:440449.Google Scholar
Flint, A, Weiss, SW. CD34 and keratin expression distinguishes solitary fibrous tumor (fibrous mesothelioma) of pleura from desmoplastic mesothelioma. Hum Pathol 1995;26:428431.Google Scholar
Suster, S, Fisher, C. Immunoreactivity for the human hematopoietic progenitor cell antigen (CD34) in lipomatous tumors. Am J Surg Pathol 1997;21:195200.Google Scholar
Weiss, SW, Nickoloff, BJ. CD34 is expressed by a distinctive cell population in peripheral nerve, nerve sheath tumors, and related lesions. Am J Surg Pathol 1993;17:10391045.CrossRefGoogle ScholarPubMed
Chaubal, A, Paetau, A, Zoltick, P, Miettinen, M. CD34 immunoreactivity in nervous system tumors. Acta Neuropathol 1994;88:454458.CrossRefGoogle ScholarPubMed
Miettinen, M, Sobin, LH, Sarlomo-Rikala, M. Immunohistochemical spectrum of GISTs at different sites and their differential diagnosis with other tumors with a reference to CD117 (KIT). Mod Pathol 2000;13:11341142.Google Scholar
Rizeq, MN, van de Rijn, M, Hendrickson, MR, Rouse, RV. A comparative immunohistochemical study of uterine smooth muscle neoplasms with emphasis on the epithelioid variant. Hum Pathol 1994;25:671677.Google Scholar
Ruggeri, ZM. Structure and function of von Willebrand factor. Thromb Haemost 1999;82:576584.Google Scholar
Burgdorf, WHC, Mukai, K, Rosai, J. Immunohistochemical identification of factor VIII-related antigen in endothelial cells of cutaneous lesions of alleged vascular nature. Am J Clin Pathol 1981;75:167171.Google Scholar
Leader, M, Collins, M, Patel, J, Henry, K. Staining for Factor VIII related antigen and Ulex europaeus agglutinin I (UEA I) in 230 tumors. An assessment of their specificity for angiosarcoma and Kaposi’s sarcoma. Histopathology 1986;10:11531162.CrossRefGoogle ScholarPubMed
Breiteneder-Geleff, S, Soleiman, A, Kowalski, H, et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 1999;154:385394.Google Scholar
Kahn, HJ, Bailey, D, Marks, A. Monoclonal antibody D2–40, a new marker for lymphatic endothelium, reacts with Kaposi sarcoma and a subset of angiosarcomas. Mod Pathol 2002;15:434440.Google Scholar
Gomaa, AH, Yaar, M, Bhawan, J. Cutaneous immunoreactivity of D2–40 antibody beyond the lymphatics. Am J Dermatopathol 2007;29:1821.Google Scholar
Ordonez, NG. Podoplanin: a novel diagnostic immunohistochemical marker. Adv Anat Pathol 2006;13:8388.Google Scholar
Kalof, AN, Cooper, K. D2-40 immunohistochemistry – so far! Adv Anat Pathol 2009;16:6264.Google Scholar
Chu, AY, Litzky, LA, Pasha, TL, Acs, G, Zhang, PJ. Utility of D2–40, a novel mesothelial marker, in the diagnosis of malignant mesothelioma. Mod Pathol 2005;18:105110.Google Scholar
Hinterberger, M, Reinecke, T, Storz, M, et al. D2–40 and calretinin: a tissue microarray analysis of 341 malignant mesotheliomas with emphasis on sarcomatoid differentiation. Mod Pathol 2007;20:248255.Google Scholar
Lau, SK, Chu, PG, Weiss, LM. D2–40 immunohistochemistry in the differential diagnosis of seminoma and embryonal carcinoma: a comparative immunohistochemical study with KIT (CD117) and CD30. Mod Pathol 2007;20:320325.Google Scholar
Huse, JT, Pasha, TL, Zhang, PJ. D2–40 functions as an effective chondroid marker distinguishing true chondroid tumors from chordoma. Acta Neuropathol 2007;113:8794.Google Scholar
Liang, H, Wu, H, Giorgadze, TA, et al. Podoplanin is a highly sensitive and specific marker to distinguish primary skin adnexal carcinomas from adenocarcinomas metastatic to skin. Am J Surg Pathol 2007;31:304310.CrossRefGoogle ScholarPubMed
Shibahara, J, Kashima, T, Kikuchi, Y, Kunita, A, Fukyyama, M. Podoplanin is expressed in subsets of tumors of the central nervous system. Virchows Arch 2006;448:493499.Google Scholar
Jokinen, CH, Dadras, SS, Goldblum, JR, et al. Diagnostic implications of podoplanin expression in peripheral nerve sheath tumors. Am J Clin Pathol 2008;129:886893.CrossRefGoogle Scholar
Browning, L, Bailey, D, Parker, A. D2–40 is a sensitive and specific marker in differentiating primary adrenal cortical tumours from both metastatic clear cell renal carcinoma and pheochromocytoma. J Clin Pathol 2008;61:293296.Google Scholar
Partanen, TA, Arola, J, Saaristo, A, et al. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J 2000;14:20872096.Google Scholar
Jussila, L, Valtola, R, Partanen, TA, et al. Lymphatic endothelium and Kaposi’s sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3. Cancer Res 1998;58:15991604.Google Scholar
Partanen, TA, Alitalo, K, Miettinen, M. Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 1999;86:24062412.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Miettinen, M, Wang, ZF, Paetau, A, et al. ERG transcription factor as an immunohistochemical marker for vascular endothelial tumors and prostatic carcinoma. Am J Surg Pathol 2011;35:432441.Google Scholar
Miettinen, M, Wang, Z, Sarlomo-Rikala, M, et al. ERG expression in epithelioid sarcoma: a diagnostic pitfall. Am J Surg Pathol 2013;37:15801585.CrossRefGoogle ScholarPubMed
Stockman, DL, Hornick, JL, Deavers, MT, et al. ERG and FLI1 protein expression in epithelioid sarcoma. Mod Pathol 2014;27:496501.Google Scholar
Shon, W, Folpe, AL, Fritchie, KJ. ERG expression in chondrogenic bone and soft tissue tumours. J Clin Pathol 2015;68:125129.Google Scholar
Wang, WL, Patel, NR, Caragea, M, et al. Expression of ERG, an Ets family transcription factor, identifies ERG-rearranged Ewing sarcoma. Mod Pathol 2012;25:13781383.Google Scholar
Rossi, S, Orvieto, E, Furlanetto, A, et al. Utility of the immunohistochemical detection of FLI-1 expression in round cell and vascular neoplasms using a monoclonal antibody. Mod Pathol 2004;17:547552.Google Scholar
Folpe, AL, Chand, EM, Goldblum, JR, Weiss, SW. Expression of Fli-1, a nuclear transcription factor, distinguishes vascular neoplasms from potential mimics. Am J Surg Pathol 2001;25:10611066.Google Scholar
Vandekerckhove, J, Weber, K. At least six different actins are expressed in higher mammals: an analysis based on the amino acid sequence of the amino terminal tryptic peptide. J Mol Biol 1978;126:783802.Google Scholar
Small, JV. Structure-function relationships in smooth muscle. The missing links. Bioessays 1995;17:785792.CrossRefGoogle ScholarPubMed
Tsukada, T, McNutt, MA, Ross, R, Gown, AM. HHF35, a muscle actin-specific monoclonal antibody. II. Reactivity in normal, reactive and neoplastic human tissues. Am J Pathol 1987;127:389402.Google Scholar
Miettinen, M. Antibody specific for muscle actin in the diagnosis and classification of soft tissue tumors. Am J Pathol 1988;130:205215.Google ScholarPubMed
Montgomery, EA, Meis, JM. Nodular fasciitis. Its morphologic spectrum and immunohistochemical profile. Am J Surg Pathol 1991;15:942948.Google Scholar
Rangdaeng, S, Truong, LD. Comparative immunohistochemical staining for desmin and muscle-specific actin: a study of 576 cases. Am J Clin Pathol 1991;96:3245.Google Scholar
Schurch, W, Skalli, O, Seemayer, TA, Gabbiani, G. Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin. I. Smooth muscle tumors. Am J Pathol 1987;128:91103.Google Scholar
Schurch, W, Skalli, O, Lagace, R, Seemayer, TA, Gabbiani, G. Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin. III. Hemangiopericytomas and glomus tumors. Am J Pathol 1990;136:771786.Google Scholar
Roholl, PJM, Elbers, HRJ, Prinsen, I, et al. Distribution of actin isoforms in sarcomas: an immunohistochemical study. Hum Pathol 1990;21:12691274.CrossRefGoogle ScholarPubMed
Skalli, O, Gabbiani, G, Babai, F, et al. Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin. II. Rhabdomyosarcomas. Am J Pathol 1988;130:515531.Google Scholar
Savera, AT, Sloman, A, Huvos, AG, Klimstra, DS. Myoepithelial carcinoma of the salivary glands: a clinicopathologic study of 25 patients. Am J Surg Pathol 2000;24:761774.Google Scholar
Perez-Montiel, MD, Plaza, JA, Domininguez-Malagon, H, Suster, S. Differential expression of smooth muscle myosin, smooth muscle actin, h-caldesmon and calponin in the differential diagnosis of myofibroblastic and smooth muscle lesions of skin and soft tissue. Am J Dermatopathol 2006;28:105111.Google Scholar
Robin, YM, Penel, N, Pérot, G, et al. Transgelin is a novel marker of smooth muscle differentiation that improves diagnostic accuracy of leiomyosarcomas: a comparative immunohistochemical reappraisal of myogenic markers in 900 soft tissue tumors. Mod Pathol. 2013;26:502510.Google Scholar
Franke, WW, Schmid, E, Schiller, DL, et al. Differentiation-related patterns of expression of proteins of intermediate-size filaments in tissues and cultured cells. Cold Spring Harb Symp Quant Biol 1982;46 (Pt 1):431453.Google Scholar
Frank, ED, Warren, L. Aortic smooth muscle cells contain vimentin instead of desmin. Proc Natl Acad Sci USA 1981;78:20202024.Google Scholar
Toccanier-Pelte, MF, Skalli, O, Kapanci, Y, Gabbiani, G. Characterization of stromal cells with myoid features in lymph nodes and spleen in normal and pathologic conditions. Am J Pathol 1987;129:109118.Google ScholarPubMed
van Muijen, GNP, Ruiter, DJ, Warnaar, SO. Coexpression of intermediate filament polypeptides in human fetal and adult tissues. Lab Invest 1987;57:359369.Google Scholar
Hurlimann, J. Desmin and neural markers in mesothelial cells and mesotheliomas. Hum Pathol 1994;25:753757.CrossRefGoogle ScholarPubMed
Ferrandez-Izquierdo, A, Navarro-Fos, S, Gonzalez-Devesa, M, Gil-Benso, R, Llombart-Bosch, A. Immunocytochemical typification of mesothelial cells in effusions: in vivo and in vitro models. Diagn Cytopathol 1994;10:256262.Google Scholar
Fletcher, CDM, Tsang, WYW, Fisher, C, Lee, KC, Chan, JKC. Angiomyofibroblastoma of the vulva. A benign neoplasm distinct from aggressive angiomyxoma. Am J Surg Pathol 1992;16:373382.Google Scholar
Fetsch, JF, Laskin, WB, Lefkowitz, M, Kindblom, LG, Meis-Kindblom, JM. Aggressive angiomyxoma: a clinicopathologic study of 29 female patients. Cancer 1996;78:7990.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Gibas, Z, Miettinen, M, Limon, J, et al. Cytogenetic and immunohistochemical profile of myxoid liposarcoma. Am J Clin Pathol 1995;103:2026.Google Scholar
Fletcher, CD. Angiomatoid “malignant fibrous histiocytoma”: an immunohistochemical study indicative of myoid differentiation. Hum Pathol 1991;22:563568.Google Scholar
Fanburg-Smith, JC, Miettinen, M. Angiomatoid “malignant” fibrous histiocytoma: a clinicopathologic study of 158 cases and further exploration of the myoid phenotype. Hum Pathol 1999;30:13361343.Google Scholar
Persson, S, Willems, JS, Kindblom, LG, Angervall, L. Alveolar soft part sarcoma. An immunohistochemical, cytologic and electron-microscopic study and a quantitative DNA analysis. Virchows Arch A Pathol Anat Histopathol 1988;412:499513.Google Scholar
Miettinen, M, Ekfors, T. Alveolar soft part sarcoma. Immunohistochemical evidence for muscle cell differentiation. Am J Clin Pathol 1990;93:3238.Google Scholar
Gerald, WL, Miller, HK, Battifora, H, et al. Intra-abdominal desmoplastic small, round cell tumor: report of 19 cases of a distinctive type of high-grade polyphenotypic malignancy affecting young individuals. Am J Surg Pathol 1991;15:499513.Google Scholar
Parham, DM, Dias, P, Kelly, DR, Rutledge, JC, Houghton, PJ. Desmin-positivity in primitive neuroectodermal tumors of childhood. Am J Surg Pathol 1992;16:483492.CrossRefGoogle ScholarPubMed
Thorner, P. Intra-abdominal polyphenotypic tumor. Pediatr Pathol Lab Med 1996;16:161169.Google ScholarPubMed
Truong, LD, Rangdaeng, S, Cagle, P, et al. The diagnostic utility of desmin: a study of 584 cases and review of the literature. Am J Clin Pathol 1990;93:305314.Google Scholar
Mayall, FG, Goddard, H, Gibbs, AR. Intermediate filament expression in mesotheliomas: leiomyoid mesotheliomas are not uncommon. Histopathology 1992;21:453457.Google Scholar
Folpe, AL, Patterson, K, Gown, AM. Antibodies to desmin identify the blastemal component of nephroblastoma. Mod Pathol 1997;10:896900.Google ScholarPubMed
Folpe, AL, Weiss, SW, Fletcher, CD, Gown, AM. Tenosynovial giant cell tumors: evidence of a desmin-positive dendritic cell subpopulation. Mod Pathol 1998;11:939944.Google Scholar
Takahashi, K, Hiwada, K, Kokubu, T. Isolation and characterization of a 34,000 dalton calmodulin- and F-actin binding protein from chicken gizzard smooth muscle. Biochem Biophys Res Commun 1986;141:2026.Google Scholar
Sobue, K, Sellers, JR. Caldesmon, a novel regulatory protein in smooth muscle and nonmuscle actomyosin systems. J Biol Chem 1990;266:1211512118.Google Scholar
Lazard, D, Sastre, X, Frid, MG, et al. Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue. Proc Natl Acad Sci USA 1993;90:9991003.Google Scholar
Watanabe, K, Kusakabe, T, Hoshi, N, Saito, A, Suzuki, T. h-Caldesmon in leiomyosarcoma and tumors with smooth muscle cell-like differentiation: its specific expression in the smooth muscle cell tumor. Hum Pathol 1999;30:392396.Google Scholar
Miettinen, M, Sarlomo-Rikala, M, Kovatich, AJ, Lasota, J. Calponin and h-caldesmon in soft tissue tumors: consistent h-caldesmon immunoreactivity in gastrointestinal stromal tumors indicates traits of smooth muscle differentiation. Mod Pathol 1999;12:756762.Google Scholar
Ceballos, KM, Nielsen, GP, Selig, MK, O’Connell, JX. Is anti-h-caldesmon useful for distinguishing smooth muscle and myofibroblastic tumors?: an immunohistochemical study. Am J Clin Pathol 2001;14:746753.Google Scholar
Hisaoka, M, Wei-Qi, S, Jian, W, Morio, T, Hashimoto, H. Specific but variable expression of h-caldesmon in leiomyosarcomas: an immunohistochemical reassessment of a novel myogenic marker. Appl Immunohistochem Mo1 Morphol 2001;9:302308.CrossRefGoogle ScholarPubMed
Gimona, M, Herzog, M, Vandekerckhove, J, Small, JV. Smooth muscle specific expression of calponin. FEBS Lett 1990;274:159162.Google Scholar
Weintraub, H. The MyoD family and myogenesis: redundancy, networks and thresholds. Cell 1993;75:12411244.Google Scholar
Dias, P, Dilling, M, Hougton, P. The molecular basis of skeletal muscle differentiation. Semin Diagn Pathol 1994;11:314.Google Scholar
Rudnicki, MA, Jaenisch, R. The MyoD family of transcription factors and skeletal myogenesis. Bioessays 1995;17:203209.Google Scholar
Parham, DM, Dias, P, Bertorini, T, et al. Immunohistochemical analysis of the distribution of MyoD1 in muscle biopsies of primary myopathies and neurogenic atrophy. Acta Neuropathol 1994;87:605611.Google Scholar
Dias, P, Parham, DM, Shapiro, DN, Tapscott, SJ, Houghton, PJ. Monoclonal antibodies to the myogenic regulatory protein MyoD1 epitope mapping and diagnostic utility. Cancer Res 1992;52:64316439.Google Scholar
Tallini, G, Parham, DM, Dias, P, et al. Myogenic regulatory protein expression in adult soft tissue sarcomas: a sensitive and specific marker of skeletal muscle differentiation. Am J Pathol 1994;144:693701.Google Scholar
Wang, NP, Marx, J, McNutt, MA, Gown, AM. Expression of myogenic regulatory proteins (myogenin and MyoD1) in small blue round cell tumors of childhood. Am J Pathol 1995;147:17991810.Google Scholar
Cui, S, Hano, H, Harada, T, et al. Evaluation of new monoclonal anti-MyoD1 and anti-myogenin antibodies for the diagnosis of rhabdomyosarcoma. Pathol Int 1999;49:6268.Google Scholar
Kumar, S, Perlman, E, Harris, CA, Raffeld, M, Tsokos, M. Myogenin is a specific marker for rhabdomyosarcoma: an immunohistochemical study in paraffin-embedded tissues. Mod Pathol 2000;13:988993.Google Scholar
Dias, P, Chen, B, Dilday, B, et al. Strong immunostaining for myogenin in rhabdomyosarcoma is significantly associated with tumors of the alveolar subclass. Am J Pathol 2000:156: 399408.Google Scholar
Wang, NP, Bacchi, CE, Jiang, JJ, McNutt, MA, Gown, AM. Does alveolar soft-part sarcoma exhibit skeletal muscle differentiation? An immunocytochemical and biochemical study of myogenic regulatory protein expression. Mod Pathol 1996;9:496506.Google Scholar
Gomez, JA, Amin, MB, Ro, JY, et al. Immunohistochemical profile of myogenin and Myo D1 does not support skeletal muscle lineage in alveolar soft part sarcoma. A study of 19 tumors. Arch Pathol Lab Med 1999;123:503507.Google Scholar
Mukai, K, Rosai, J, Hallaway, BE. Localization of myoglobin in normal and neoplastic human skeletal muscle cells using an immunoperoxidase method. Am J Surg Pathol 1979;3:373376.Google Scholar
Corson, JM, Pinkus, GS. Intracellular myoglobin – a specific marker for skeletal muscle differentiation in soft tissue sarcomas. Am J Pathol 1980;103:384389.Google Scholar
Brooks, JJ. Immunohistochemistry of soft tissue tumors: myoglobin as a tumor marker for rhabdomyosarcoma. Cancer 1982;50:17571763.Google Scholar
Eusebi, V, Bondi, A, Rosai, J. Immunohistochemical localization of myoglobin in nonmuscular cells. Am J Surg Pathol 1984;8:5155.Google Scholar
Wiedenmann, B, Franke, WW. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38000 characteristic of presynaptic vesicles. Cell 1985;41:10171028.Google Scholar
Thomas, L, Hartung, K, Langosch, D, et al. Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science 1988;242:10501052.CrossRefGoogle ScholarPubMed
Wiedenmann, B, Franke, WW, Kuhn, C, Moll, R, Gould, VE. Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 1986;83:35003504.Google Scholar
Wiedenmann, B, Huttner, WB. Synaptophysin and chromogranins/secretogranins: widespread constituents of distinct types of neuroendocrine vesicles and new tools in tumor diagnosis. Virchows Arch B Cell Pathol Incl Mol Pathol 1989;58:95121.Google Scholar
Miettinen, M, Rapola, J. Synaptophysin: an immunohistochemical marker for childhood neuroblastoma. Acta Pathol Microbiol Scand A 1987;95:167170.Google Scholar
Hachitanda, Y, Tsuneyoshi, M, Enjoji, M. Expression of pan-neuroendocrine proteins in 53 neuroblastic tumors. Arch Pathol Lab Med 1989;113:381384.Google Scholar
Schwechheimer, K, Wiedenmann, B, Franke, WW. Synaptophysin: a reliable marker for medulloblastomas. Virchows Arch A Pathol Anat Histopathol 1987;411:5359.Google Scholar
Frierson, HF, Ross, GW, Mills, SE, Frankfurter, A. Olfactory neuroblastoma: additional immunohistochemical characterization. Am J Clin Pathol 1990;94:547553.Google Scholar
Cavazzana, AO, Ninfo, V, Roberts, J, Triche, TJ. Peripheral neuroepithelioma: a light microscopic, immunocytochemical, and ultrastructural study. Mod Pathol 1992;5:7178.Google Scholar
Ladanyi, M, Heinemann, FS, Huvos, AG, et al. Neural differentiation in small round cell tumors of bone and soft tissue with the translocation t(11l22)(q24;q12): an immunohistochemical study of 11 cases. Hum Pathol 1990;21:12451251.Google Scholar
Amann, G, Zoubek, A, Salzer-Kuntschik, M, Windhager, R, Kovar, H. Relation of neurological marker expression and EWS gene fusion types in MIC2/CD99-positive tumors of the Ewing family. Hum Pathol 1999;30:10581064.Google Scholar
Parham, DM, Hijazi, Y, Steinberg, SM, et al. Neuroectodermal differentiation in Ewing’s sarcoma family of tumors does not predict tumor behavior. Hum Pathol 1999;30:911918.Google Scholar
Gould, VE, Wiedenmann, B, Lee, I, et al. Synaptophysin expression in neuroendocrine neoplasms as determined by immunocytochemistry. Am J Pathol 1987;126:243257.Google Scholar
Miettinen, M. Synaptophysin and neurofilament proteins as markers for neuroendocrine tumors. Arch Pathol Lab Med 1987;111:813818.Google Scholar
Johnson, TL, Zarbo, RJ, Lloyd, RV, Crissman, JD. Paragangliomas of the head and neck: immunohistochemical neuroendocrine and intermediate filament typing. Mod Pathol 1988;1:216223.Google Scholar
Goh, YW, Spagnolo, DV, Platten, M, et al. Extraskeletal myxoid chondrosarcoma: a light microscopic, immunohistochemical, ultrastructural, and immunoultrastructural study indicating neuroendocrine differentiation. Histopathology 2001;39:514524.Google Scholar
Banerjee, SS, Menasce, LP, Eyden, BP, Brain, AN. Malignant melanoma showing ganglioneuroblastic differentiation: report of a unique case. Am J Surg Pathol 1999;23:582588.Google Scholar
O’Connor, DT, Mahata, SK, Taupenot, L, et al. Chromogranin A in human disease. Adv Exp Med Biol 2000;482:377388.Google Scholar
Lloyd, RV. Immunohistochemical localization of chromogranin in normal and neoplastic endocrine tissues. Pathol Annu 1987;22(Part 2):6990.Google Scholar
Molenaar, WM, Baker, DL, Pleasure, D, Lee, VMY, Trojanowski, JQ. The neuroendocrine and neural profiles of neuroblastomas, ganglioneuroblastomas, and ganglioneuromas. Am J Pathol 1990;136:375382.Google Scholar
Christensen, WN, Strong, EW, Bains, MS, Woodruff, JM. Neuroendocrine differentiation in the glandular peripheral nerve sheath tumor: pathologic distinction from the biphasic synovial sarcoma with glands. Am J Surg Pathol 1988;12:417426.Google Scholar
Pagani, A, Fischer-Colbrie, R, Sanfilippo, B, et al. Secretogranin II expression in Ewing’s sarcomas and primitive neuroectodermal tumors. Diagn Mol Pathol 1992;1:165172.Google Scholar
Lee, MK, Cleveland, DW. Neuronal intermediate filaments. Annu Rev Neurosci 1996;19:187217.Google Scholar
Dahl, D. Immunohistochemical differences between neurofilaments in perikarya, dendrites and axons: immunofluorescence study with antisera raised to neurofilament polypeptides (200K, 150K, 70K) isolated by anion exchange chromatography. Exp Cell Res 1983;149:397408.Google Scholar
Gould, VE, Moll, R, Moll, I, Lee, I, Franke, WW. Neuroendocrine (Merkel) cells of the skin: hyperplasias, dysplasias, and neoplasms. Lab Invest 1985;52:334353.Google Scholar
Mukai, M, Torikata, C, Iri, H, et al. Expression of neurofilament triplet proteins in human neural tumors: an immunohistochemical study of paraganglioma, ganglioneuroma, ganglioneuroblastoma and neuroblastoma. Am J Pathol 1986;122: 2835.Google Scholar
Miettinen, M, Lehto, VP, Virtanen, I. Immunofluorescence microscopic evaluation of the intermediate filament expression of the adrenal cortex and medulla and their tumors. Am J Pathol 1985;118:360366.Google Scholar
Miettinen, M, Lehto, VP, Dahl, D, Virtanen, I. Varying expression of cytokeratin and neurofilaments in neuroendocrine tumors of human gastrointestinal tract. Lab Invest 1985;52:429436.Google Scholar
Lehto, VP, Miettinen, M, Virtanen, I. A dual expression of cytokeratin and neurofilaments in bronchial carcinoid cells. Int J Cancer 1985;35:421425.Google Scholar
Moll, R, Lee, I, Gould, VE, et al. Immunocytochemical analysis of Ewing’s tumors. Patterns of expression of intermediate filaments and desmosomal proteins indicate cell-type heterogeneity and pluripotential differentiation. Am J Pathol 1987;27:288304.Google Scholar
Gerharz, CD, Moll, R, Meister, P, Knuth, A, Gabbert, H. Cytoskeletal heterogeneity of an epithelioid sarcoma with expression of vimentin, cytokeratins, and neurofilaments. Am J Surg Pathol 1990;14:274283.Google Scholar
Folpe, AL, Gown, AM. Poorly differentiated synovial sarcoma: immunohistochemical distinction from primitive neuroectodermal tumors and high grade malignant peripheral nerve sheath tumors. Am J Surg Pathol 1998;22:673682.Google Scholar
Miettinen, M, Rapola, J. Immunohistochemical spectrum of rhabdomyosarcoma and rhabdomyosarcoma-like tumors: expression of cytokeratin and the 68 kD neurofilament protein. Am J Surg Pathol 1989;13:120132.CrossRefGoogle ScholarPubMed
Thomas, JO, Nijjar, J, Turley, H, Micklem, H, Gatter, KC. NB84: a new monoclonal antibody for the recognition of neuroblastoma in routinely processed material. J Pathol 1991;163:6975.Google Scholar
Miettinen, M, Chatten, J, Paetau, A, Stevenson, AJ. Monoclonal antibody NB84 in the differential diagnosis of neuroblastoma and other small round cell tumors. Am J Surg Pathol 1998;22:327332.Google Scholar
Folpe, AL, Patterson, K, Gown, AM. Antineuroblastoma antibody NB-84 also identifies a significant subset of other small blue round cell tumors. Appl Imunohistochem 1997;5:239245.Google Scholar
Wiedenmann, B, Franke, WW. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38000 characteristic of presynaptic vesicles. Cell 1985;41:10171028.Google Scholar
Thomas, L, Hartung, K, Langosch, D, et al. Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science 1988;242:10501052.CrossRefGoogle ScholarPubMed
Wiedenmann, B, Franke, WW, Kuhn, C, Moll, R, Gould, VE. Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 1986;83:35003504.Google Scholar
Wiedenmann, B, Huttner, WB. Synaptophysin and chromogranins/secretogranins: widespread constituents of distinct types of neuroendocrine vesicles and new tools in tumor diagnosis. Virchows Arch B Cell Pathol Incl Mol Pathol 1989;58:95121.Google Scholar
Miettinen, M, Rapola, J. Synaptophysin: an immunohistochemical marker for childhood neuroblastoma. Acta Pathol Microbiol Scand A 1987;95:167170.Google Scholar
Hachitanda, Y, Tsuneyoshi, M, Enjoji, M. Expression of pan-neuroendocrine proteins in 53 neuroblastic tumors. Arch Pathol Lab Med 1989;113:381384.Google Scholar
Schwechheimer, K, Wiedenmann, B, Franke, WW. Synaptophysin: a reliable marker for medulloblastomas. Virchows Arch A Pathol Anat Histopathol 1987;411:5359.Google Scholar
Frierson, HF, Ross, GW, Mills, SE, Frankfurter, A. Olfactory neuroblastoma: additional immunohistochemical characterization. Am J Clin Pathol 1990;94:547553.Google Scholar
Cavazzana, AO, Ninfo, V, Roberts, J, Triche, TJ. Peripheral neuroepithelioma: a light microscopic, immunocytochemical, and ultrastructural study. Mod Pathol 1992;5:7178.Google Scholar
Ladanyi, M, Heinemann, FS, Huvos, AG, et al. Neural differentiation in small round cell tumors of bone and soft tissue with the translocation t(11l22)(q24;q12): an immunohistochemical study of 11 cases. Hum Pathol 1990;21:12451251.Google Scholar
Amann, G, Zoubek, A, Salzer-Kuntschik, M, Windhager, R, Kovar, H. Relation of neurological marker expression and EWS gene fusion types in MIC2/CD99-positive tumors of the Ewing family. Hum Pathol 1999;30:10581064.Google Scholar
Parham, DM, Hijazi, Y, Steinberg, SM, et al. Neuroectodermal differentiation in Ewing’s sarcoma family of tumors does not predict tumor behavior. Hum Pathol 1999;30:911918.Google Scholar
Gould, VE, Wiedenmann, B, Lee, I, et al. Synaptophysin expression in neuroendocrine neoplasms as determined by immunocytochemistry. Am J Pathol 1987;126:243257.Google Scholar
Miettinen, M. Synaptophysin and neurofilament proteins as markers for neuroendocrine tumors. Arch Pathol Lab Med 1987;111:813818.Google Scholar
Johnson, TL, Zarbo, RJ, Lloyd, RV, Crissman, JD. Paragangliomas of the head and neck: immunohistochemical neuroendocrine and intermediate filament typing. Mod Pathol 1988;1:216223.Google Scholar
Goh, YW, Spagnolo, DV, Platten, M, et al. Extraskeletal myxoid chondrosarcoma: a light microscopic, immunohistochemical, ultrastructural, and immunoultrastructural study indicating neuroendocrine differentiation. Histopathology 2001;39:514524.Google Scholar
Banerjee, SS, Menasce, LP, Eyden, BP, Brain, AN. Malignant melanoma showing ganglioneuroblastic differentiation: report of a unique case. Am J Surg Pathol 1999;23:582588.Google Scholar
O’Connor, DT, Mahata, SK, Taupenot, L, et al. Chromogranin A in human disease. Adv Exp Med Biol 2000;482:377388.Google Scholar
Lloyd, RV. Immunohistochemical localization of chromogranin in normal and neoplastic endocrine tissues. Pathol Annu 1987;22(Part 2):6990.Google Scholar
Molenaar, WM, Baker, DL, Pleasure, D, Lee, VMY, Trojanowski, JQ. The neuroendocrine and neural profiles of neuroblastomas, ganglioneuroblastomas, and ganglioneuromas. Am J Pathol 1990;136:375382.Google Scholar
Christensen, WN, Strong, EW, Bains, MS, Woodruff, JM. Neuroendocrine differentiation in the glandular peripheral nerve sheath tumor: pathologic distinction from the biphasic synovial sarcoma with glands. Am J Surg Pathol 1988;12:417426.Google Scholar
Pagani, A, Fischer-Colbrie, R, Sanfilippo, B, et al. Secretogranin II expression in Ewing’s sarcomas and primitive neuroectodermal tumors. Diagn Mol Pathol 1992;1:165172.Google Scholar
Lee, MK, Cleveland, DW. Neuronal intermediate filaments. Annu Rev Neurosci 1996;19:187217.Google Scholar
Dahl, D. Immunohistochemical differences between neurofilaments in perikarya, dendrites and axons: immunofluorescence study with antisera raised to neurofilament polypeptides (200K, 150K, 70K) isolated by anion exchange chromatography. Exp Cell Res 1983;149:397408.Google Scholar
Gould, VE, Moll, R, Moll, I, Lee, I, Franke, WW. Neuroendocrine (Merkel) cells of the skin: hyperplasias, dysplasias, and neoplasms. Lab Invest 1985;52:334353.Google Scholar
Mukai, M, Torikata, C, Iri, H, et al. Expression of neurofilament triplet proteins in human neural tumors: an immunohistochemical study of paraganglioma, ganglioneuroma, ganglioneuroblastoma and neuroblastoma. Am J Pathol 1986;122: 2835.Google Scholar
Miettinen, M, Lehto, VP, Virtanen, I. Immunofluorescence microscopic evaluation of the intermediate filament expression of the adrenal cortex and medulla and their tumors. Am J Pathol 1985;118:360366.Google Scholar
Miettinen, M, Lehto, VP, Dahl, D, Virtanen, I. Varying expression of cytokeratin and neurofilaments in neuroendocrine tumors of human gastrointestinal tract. Lab Invest 1985;52:429436.Google Scholar
Lehto, VP, Miettinen, M, Virtanen, I. A dual expression of cytokeratin and neurofilaments in bronchial carcinoid cells. Int J Cancer 1985;35:421425.Google Scholar
Moll, R, Lee, I, Gould, VE, et al. Immunocytochemical analysis of Ewing’s tumors. Patterns of expression of intermediate filaments and desmosomal proteins indicate cell-type heterogeneity and pluripotential differentiation. Am J Pathol 1987;27:288304.Google Scholar
Gerharz, CD, Moll, R, Meister, P, Knuth, A, Gabbert, H. Cytoskeletal heterogeneity of an epithelioid sarcoma with expression of vimentin, cytokeratins, and neurofilaments. Am J Surg Pathol 1990;14:274283.Google Scholar
Folpe, AL, Gown, AM. Poorly differentiated synovial sarcoma: immunohistochemical distinction from primitive neuroectodermal tumors and high grade malignant peripheral nerve sheath tumors. Am J Surg Pathol 1998;22:673682.Google Scholar
Miettinen, M, Rapola, J. Immunohistochemical spectrum of rhabdomyosarcoma and rhabdomyosarcoma-like tumors: expression of cytokeratin and the 68 kD neurofilament protein. Am J Surg Pathol 1989;13:120132.CrossRefGoogle ScholarPubMed
Thomas, JO, Nijjar, J, Turley, H, Micklem, H, Gatter, KC. NB84: a new monoclonal antibody for the recognition of neuroblastoma in routinely processed material. J Pathol 1991;163:6975.Google Scholar
Miettinen, M, Chatten, J, Paetau, A, Stevenson, AJ. Monoclonal antibody NB84 in the differential diagnosis of neuroblastoma and other small round cell tumors. Am J Surg Pathol 1998;22:327332.Google Scholar
Folpe, AL, Patterson, K, Gown, AM. Antineuroblastoma antibody NB-84 also identifies a significant subset of other small blue round cell tumors. Appl Imunohistochem 1997;5:239245.Google Scholar
Moore, BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 1965;19:739744.CrossRefGoogle ScholarPubMed
Donato, R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 2001;33:638668.Google Scholar
Takahashi, K, Isobe, T, Ohtsuki, Y, et al. Immunhistochemical study on the distribution of alpha and beta subunits of the S-100 protein in human neoplasms and normal tissues. Virchows Arch B Cell Pathol Incl Mol Pathol 1984;45:385396.Google Scholar
Nakajima, T, Watanabe, S, Sato, Y, et al. An immunoperoxidase study of S-100 protein distribution in normal and neoplastic tissues. Am J Surg Pathol 1982;6:715727.Google Scholar
Stefansson, K, Wollmann, R, Jerkovic, M. S100 protein in soft tissue tumors derived from Schwann cells and melanocytes. Am J Pathol 1982;106:261268.Google Scholar
Kahn, HJ, Marks, A, Thom, H, Baumal, R. Role of antibody to S100 protein in diagnostic pathology. Am J Clin Pathol 1983;79:341347.Google Scholar
Cochran, AJ, Lu, HF, Li, PX, Saxton, R, Wen, DR. S-100 protein remains a practical marker for melanocytic and other tumours. Melanoma Res 1993;3:325330.Google Scholar
Weiss, SW, Langloss, JM, Enzinger, FM. Value of S-100 protein in the diagnosis of soft tissue tumors with particular reference to benign and malignant Schwann cell tumors. Lab Invest 1983;49:299308.Google Scholar
Swanson, PE, Wick, MR. Clear cell sarcoma: an immunohistochemical analysis of six cases and comparison with other epithelioid neoplasms of soft tissue. Arch Pathol Lab Med 1989;113:5560.Google Scholar
Daimaru, Y, Hashimoto, H, Enjoji, M. Malignant peripheral nerve sheath tumors (malignant schwannomas): an immunohistochemical study of 29 cases. Am J Surg Pathol 1985;9:434444.Google Scholar
Wick, MR, Swanson, PE, Scheithauer, BW, Manivel, JC. Malignant peripheral nerve sheath tumors: an immunohistochemical study of 62 cases. Am J Clin Pathol 1987:87:425433.Google Scholar
Kliewer, KE, Wen, DR, Cancilla, PA, Cochran, AJ. Paragangliomas. Assessment of prognosis by histologic, immunohistochemical, and ultrastructural techniques. Hum Pathol 1989;20:2939.Google Scholar
Achilles, E, Padberg, BC, Holl, K, Klöppel, G, Schröder, S. Immunocytochemistry of paragangliomas – value of staining for S-100 protein and glial fibrillary acid protein in diagnosis and prognosis. Histopathology 1991;18:453458.CrossRefGoogle ScholarPubMed
Nakamura, Y, Becker, LE, Marks, A. S-100 protein in tumors of cartilage and bone. Cancer 1983;52:18201824.Google Scholar
Okajima, K, Honda, I, Kitagawa, T. Immunohistochemical distribution of S-100 protein in tumors and tumor like lesions of bone and cartilage. Cancer 1988;61:792799.Google Scholar
Nakamura, Y, Becker, LE, Marks, A. S100 protein in human chordoma and human and rabbit notochord. Arch Pathol 1983;107:118120.Google Scholar
Hashimoto, H, Daimaru, Y, Enjoji, M. S-100 protein distribution in liposarcoma. An immunoperoxidase study with special reference to the distinction of liposarcoma from myxoid malignant fibrous histiocytoma. Virchows Arch A Pathol Anat Histopathol 1984;405:110.Google Scholar
dei Tos, A, Wadden, C, Fletcher, CDM. S-100 protein staining in liposarcoma. Its diagnostic utility in the high-grade myxoid (round-cell) variant. Appl Immunohistochem 1996;4:95101.Google Scholar
Enzinger, FM, Weiss, SW, Liang, CY. Ossifying fibromyxoid tumor of soft parts. A clinicopathological analysis of 59 cases. Am J Surg Pathol 1989;13:817827.Google Scholar
Guillou, L, Wadden, C, Kraus, MD, Dei Tos, AP, Fletcher, CDM. S-100 protein reactivity in synovial sarcomas: a potentially frequent diagnostic pitfall. Immunohistochemical analysis of 100 cases. Appl Immunohistochem 1996;4:167175.Google Scholar
Coindre, JM, de Mascarel, A, Trojani, M, de Mascarel, I, Pages, A. Immunohistochemical study of rhabdomyosarcoma: unexpected staining with S100 protein and cytokeratin. J Pathol 1988;155:127132.Google Scholar
Drier, JK, Swanson, PE, Cherwitz, DL, Wick, MR. S100 protein immunoreactivity in poorly differentiated carcinomas. Immunohistochemical comparison with malignant melanoma. Arch Pathol Lab Med 1987;111:447452.Google Scholar
Herrera, GA, Turbat-Herrera, EA, Lott, RL. S-100 protein expression by primary and metastatic carcinomas. Am J Clin Pathol 1988;89:168176.Google Scholar
Cocchia, D, Michetti, F, Donato, R. Immunochemical and immunocytochemical localization of S-100 antigen in normal human skin. Nature 1981;294:8587.Google Scholar
Takahashi, K, Yamaguchi, H, Ishizeki, J, Nakajima, T, Nakazato, Y. Immunohistochemical and immunoelectron microscopic localization of S-100 protein in the interdigitating reticulum cells of the human lymph node. Virchows Arch B Cell Pathol Incl Mol Pathol 1981;37:125135.Google Scholar
Aoyama, K, Terashima, K, Imai, Y, et al. Sinus histiocytosis with massive lymphadenopathy. A histogenetic analysis of histiocytes found in the fourth Japanese case. Acta Pathol Jpn 1984;34:375388.Google Scholar
Eisen, RN, Rosai, J. Immunohistochemical characterization of sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease). Semin Diagn Pathol 1990;7:7482.Google Scholar
Nonaka, D, Chiriboga, L, Rubin, BP. Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol 2008;32:12911298.Google Scholar
Heerema, MG, Suurmeijer, AJ. Sox10 immunohistochemistry allows the pathologist to differentiate between prototypical granular cell tumors and other granular cell lesions. Histopathology 2012;61:997999.Google Scholar
Karamchandani, JR, Nielsen, TO, van de Rijn, M, West, RB. Sox10 and S100 in the diagnosis of soft-tissue neoplasms. Appl Immunohistochem Mol Morphol 2012;20:445450.Google Scholar
Naujokas, A, Charli-Joseph, Y, Ruben, BS, et al. SOX-10 expression in cutaneous myoepitheliomas and mixed tumors. J Cutan Pathol 2014;41:353363.Google Scholar
Miettinen, M, McCue, PA, Sarlomo-Rikala, M, et al. Sox10–a marker for not only schwannian and melanocytic neoplasms but also myoepithelial cell tumors of soft tissue: a systematic analysis of 5134 tumors. Am J Surg Pathol 2015;39:826835.Google Scholar
Nonaka, D, Chiriboga, L, Rubin, BP. Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol 2008;32:12911298.Google Scholar
Heerema, MG, Suurmeijer, AJ. Sox10 immunohistochemistry allows the pathologist to differentiate between prototypical granular cell tumors and other granular cell lesions. Histopathology 2012;61:997999.Google Scholar
Karamchandani, JR, Nielsen, TO, van de Rijn, M, West, RB. Sox10 and S100 in the diagnosis of soft-tissue neoplasms. Appl Immunohistochem Mol Morphol 2012;20:445450.Google Scholar
Naujokas, A, Charli-Joseph, Y, Ruben, BS, et al. SOX-10 expression in cutaneous myoepitheliomas and mixed tumors. J Cutan Pathol 2014;41:353363.Google Scholar
Miettinen, M, McCue, PA, Sarlomo-Rikala, M, et al. Sox10–a marker for not only schwannian and melanocytic neoplasms but also myoepithelial cell tumors of soft tissue: a systematic analysis of 5134 tumors. Am J Surg Pathol 2015;39:826835.Google Scholar
Gown, AM, Vogel, AM, Hoak, D, Gough, F, McNutt, MA. Monoclonal antibodies specific for melanocytic tumors distinguish subpopulations of melanocytes. Am J Pathol 1985;123:195203.Google Scholar
Bacchi, CE, Bonetti, F, Pea, M, Martignoni, G, Gown, AM. HMB-45: a review. Appl Immunohistochem 1996;4:7385.Google Scholar
Wick, MR, Swanson, PE, Rocamora, A. Recognition of malignant melanoma by monoclonal antibody HMB-45. An immunohistochemical study of 200 paraffin-embedded cutaneous tumors. J Cutan Pathol 1988;15:201207.Google Scholar
Ordonez, NG, Ji, XL, Hickey, RC. Comparison of HMB-45 monoclonal antibody and S100 protein in the immunohistochemical diagnosis of melanoma. Am J Clin Pathol 1988;90:385390.Google Scholar
Kaufmann, O, Koch, S, Burghardt, J, Audring, H, Dietel, M. Tyrosinase, Melan-A and KBA62 as markers for the immunohistochemical identification of metastatic amelanotic melanomas. Mod Pathol 1998;11:740746.Google Scholar
Miettinen, M, Fernandez, M, Franssila, K, et al. Microphthalmia transcription factor in the immunohistochemical diagnosis of metastatic melanoma. Comparison with four other melanoma markers. Am J Surg Pathol 2001;25:205211.Google Scholar
Longacre, TA, Egbert, BM, Rouse, RV. Desmoplastic and spindle-cell malignant melanoma. An immunohistochemical study. Am J Surg Pathol 1996;20:14891500.Google Scholar
Fetsch, JF, Michal, M, Miettinen, M. Pigmented (melanotic) neurofibroma: a clinicopathologic and immunohistochemical analysis of 19 lesions from 17 patients. Am J Surg Pathol 2000;24:331343.Google Scholar
Pea, M, Bonetti, F, Zamboni, G, et al. Melanocyte marker HMB-45 is regularly expressed in angiomyolipoma of the kidney. Pathology 1991;23:185188.Google Scholar
Ashfaq, R, Weinberg, A, Albores-Saavedra, J. Renal angiomyolipomas and HMB-45 reactivity. Cancer 1993;71:30913097.Google Scholar
Chan, JK, Tsang, WY, Pau, M, et al. Lymphangiomyomatosis and angiomyolipoma: closely related entities characterized by hamartomatous proliferation of HMB-45 positive smooth muscle. Histopathology 1993;22:445455.Google Scholar
Bonetti, F, Pea, M, Martignoni, G, et al. Clear cell (“sugar”) tumor of the lung is a lesion strictly related to angiomyolipoma: the concept of a family of lesions characterized by the presence of the perivascular epithelioid cells (PEC). Pathology 1994;26:230236.Google Scholar
Kwon, BS. Pigmentation genes: the tyrosinase gene family and the Pmel 17 family. J Invest Dermatol 1993;100 (2 Suppl):134S140S.Google Scholar
Chen, YT, Stockert, E, Tsang, S, Coplan, KA, Old, LJ. Immunophenotyping of melanomas for tyrosinase: implications for vaccine development. Proc Natl Acad Sci USA 1995;92:81258129.Google Scholar
Hofbauer, GF, Kamarashev, J, Geertsen, R, Boni, R, Dummer, R. Tyrosinase immunoreactivity in formalin-fixed, paraffin embedded primary and metastatic melanoma: frequency and distribution. J Cutan Pathol 1998;25:204209.Google Scholar
Jungbluth, AA, Iversen, K, Coplan, K, et al. T311: an anti-tyrosinase monoclonal antibody for the detection of melanocytic lesions in paraffin-embedded tissues. Pathol Res Pract 2000;196:235242.Google Scholar
Busam, KJ, Iversen, K, Coplan, KC, Jungbluth, AA. Analysis of microphthalmia transcription factor expression in normal tissues and tumors, and comparison of its expression with S-100 protein, gp100, and tyrosinase in desmoplastic malignant melanoma. Am J Surg Pathol 2001;25:197204.Google Scholar
Zavala-Pompa, A, Folpe, AL, Jimenez, RE, et al. Immunohistochemical study of microphthalmia transcription factor and tyrosinase in angiomyolipoma of the kidney, renal cell carcinoma, and renal and retroperitoneal sarcomas. Am J Surg Pathol 2001;25:6570.Google Scholar
Kawakami, Y, Eliyahu, S, Delgado, CH, et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T-cells infiltrating into tumor. Proc Natl Acad Sci USA 1994;91:35153519.Google Scholar
Coulie, PG, Brichard, V, van Pel, A, et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1994;180:3542.Google Scholar
Kawakami, Y, Eliyahu, S, Delgado, CH, et al. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 1994;91:64586462.Google Scholar
Jungbluth, AA, Busam, KJ, Gerald, WL, et al. A103: an anti melan-A monoclonal antibody for the detection of malignant melanoma in paraffin-embedded tissues. Am J Surg Pathol 1998;22:595602.Google Scholar
Orosz, Z. Melan-A/MART-1 expression in various melanocytic lesions and in non-melanocytic soft tissue tumours. Histopathology 1999;34:517525.Google Scholar
Jungbluth, AA, Iversen, K, Coplan, K, et al. Expression of melanocyte-associated markers gp-100 and Melan-A/MART-1 in angiomyolipomas. An immunohistochemical and RT-PCR analysis. Virchows Arch 1999;434:429435.Google Scholar
Fetsch, PA, Fetsch, JF, Marincola, FM, et al. Comparison of melanoma antigen recognized by T-cells (MART-1) to HMB-45: additional evidence to support a common lineage for angiomyolipoma, lymphangiomyomatosis and clear cell sugar tumor. Mod Pathol 1998;11:699703.Google Scholar
Busam, KJ, Iversen, K, Coplan, KA, et al. Immunoreactivity for A103, an antibody to melan-A (Mart-1), in adrenocortical and other steroid tumors. Am J Surg Pathol 1998;22:5763.Google Scholar
Yasumoto, K, Yokoyama, K, Shibata, K, Tomita, Y, Shibahara, S. Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol Cell Biol 1994;14:80588070.Google Scholar
Hemesath, TJ, Steingrimsson, E, McGill, G, et al. Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev 1994;8:27702780.Google Scholar
Weilbacher, KN, Hershey, CL, Takemoto, CM, et al. Age-resolving osteopetrosis: a rat model implicating microphthalmia and the related transcription factor TEF3. J Exp Med 1998;187:775785.Google Scholar
King, R, Weilbaecher, KN, McGill, G, et al. Microphthalmia transcription factor. A sensitive and specific melanocytic marker for melanoma diagnosis. Am J Pathol 1999;155:731738.Google Scholar
King, R, Googe, PB, Weilbaecher, KN, Mihm, MC, Fisher, DE. Microphthalmia transcription factor expression in cutaneous benign, malignant melanocytic, and nonmelanocytic tumors. Am J Surg Pathol 2001;25:5157.Google Scholar
Granter, SR, Weilbaecher, KN, Quigley, C, Fletcher, CDM, Fisher, DE. Microphthalmia transcription factor. Not a sensitive or specific marker for the diagnosis of desmoplastic melanoma and spindle cell (non-desmoplastic) melanoma. Am J Dermatopathol 2001;23:185189.Google Scholar
Koch, MB, Shih, IM, Weiss, SW, Folpe, AL. Microphthalmia transcription factor and melanoma cell adhesion molecule expression distinguish desmoplastic/spindle cell melanoma from morphologic mimics. Am J Surg Pathol 2001;25:5864.Google Scholar
Busam, KJ, Kucukgöl, D, Sato, E, et al. Immunohistochemical analysis of novel monoclonal antibody PNL2 and comparison with other melanocyte differentiation markers. Am J Surg Pathol 2005;29:400–406.Google Scholar
Aung, PP, Sarlomo-Rikala, M, Lasota, J, et al. KBA62 and PNL2: 2 new melanoma markers-immunohistochemical analysis of 1563 tumors including metastatic, desmoplastic, and mucosal melanomas and their mimics. Am J Surg Pathol 2012;36:265272.Google Scholar
Ichinose, A. Physiopathology and regulation of factor XIII. Thromb Haemost 2001;86:5765.Google Scholar
Nemes, Z, Thomazy, V, Adany, L, Muszbek, L. Identification of histiocytic reticulum cells by the immunohistochemical domonstration of factor XIII (F-XIIIa) in human lymph nodes. J Pathol 1986;149:121132.Google Scholar
Nickoloff, BJ, Griffiths, CEM. Factor XIIIa-expressing dermal dendrocytes in AIDS-associated cutaneous Kaposi’s sarcomas. Science 1989;243:17361737.Google Scholar
Nemes, Z, Thomazy, V. Factor XIIIa and the classic histiocytic markers in malignant fibrous histiocytoma: a comparative immunohistochemical study. Hum Pathol 1988;19:822829.Google Scholar
Misery, L, Boucheron, S, Claudy, AL. Factor XIIIa expression in juvenile xanthogranuloma. Acta Dermatovenerol 1994;74:4344.Google Scholar
Kraus, MD, Haley, JC, Ruiz, R, et al. “Juvenile” xanthogranuloma. An immunophenotypic study with reappraisal of histogenesis. Am J Dermatopathol 2001;23:104111.Google Scholar
Pulford, KAF, Rigney, EM, Jones, M, et al. KP1: a new monoclonal antibody detecting a monocyte/macrophage associated antigen in routinely processed tissue sections. J Clin Pathol 1989;42:414421.Google Scholar
Weiss, LM, Arber, DA, Chang, KL. CD68: a review. Appl Immunohistochem 1994;2:28.Google Scholar
Warnke, RA, Pulford, KAF, Pallesen, G, et al. Diagnosis of myelomonocytic and macrophage neoplasms in routinely processed tissue biopsies with monoclonal antibody KP1. Am J Pathol 1989;135:10891095.Google Scholar
Tsang, WY, Chan, JK. KP1 (CD68) staining of granular cell neoplasms: is KP1 a marker for lysosomes rather than the histiocytic lineage? Histopathology 1992;21:8486.Google Scholar
dei Tos, A, Doglioni, C, Laurino, L, Fletcher, CDM. KP1 (CD68) expression in benign neural tumours. Further evidence of its low specificity as a histiocytic/myeloid marker. Histopathology 1993;23:185187.Google Scholar
McHugh, M, Miettinen, M. CD68: its limited specificity for histiocytic tumors. Appl Immunohistochem 1994;2:186190.Google Scholar
Cassidy, M, Loftus, B, Whelan, A, et al. KP-1: not a specific marker. Staining of 137 sarcomas, 48 lymphomas, 28 carcinomas, 7 malignant melanomas and 8 cystosarcoma phyllodes. Virchows Arch 1994;424:635640.Google Scholar
Binder, SW, Said, JW, Shintaku, IP, Pinkus, GS. A histiocyte-specific marker in the diagnosis of malignant fibrous histiocytoma: use of monoclonal antibody KP-1 (CD68). Am J Clin Pathol 1992;97:759763.Google Scholar
Buechler, C, Ritter, M, Orso, E, et al. Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J Leukoc Biol 2000;67:97103.Google Scholar
Fabriek, BO, Dijkstra, CD, Van Den Berg, TK. The macrophage scavenger receptor CD163. Immunobiology 2005;210:153160.Google Scholar
Nguyen, TT, Schwartz, EJ, West, RB, et al. Expression of CD163 (hemoglobin scavenger receptor) in normal tissues, lymphomas, carcinomas, and sarcomas is largely restricted to the monocyte/macrophage lineage. Am J Surg Pathol 2005;29:617624.Google Scholar
Lau, SK, Chu, PG, Weiss, LM. CD163: a specific marker of macrophages in paraffin-embedded tissue samples. Am J Clin Pathol 2004;122:794801.Google Scholar
Moll, R, Divo, M, Langbein, L. The human keratins: biology and pathology. Histochem Cell Biol 2008;129:705733.Google Scholar
Franke, WW, Schiller, DL, Moll, R, et al. Diversity of cytokeratins. Differentiation specific expression of cytokeratin polypeptides in epithelial cells and tissues. J Mol Biol 1981;153:933959.Google Scholar
Moll, R, Franke, WW, Schiller, DL, Geiger, B, Krepler, R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 1982;31:1124.Google Scholar
Moll, R, Schiller, DL, Franke, WW. Identification of protein IT of the intestinal cytoskeleton as a novel type I cytokeratin with unusual properties and expression patterns. J Cell Biol 1990;111:567580.Google Scholar
Sun, T-T, Eichner, R, Schermer, A, et al. Classification, expression and possible mechanisms of evolution of mammalian epithelial keratins: a unifying model. In Cancer Cell I/The Transformed Phenotype. Levine, AJ, van de Voude, GF, Topp, WC, Watson, JD (eds.) Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1985: 169176.Google Scholar
Cooper, D, Schermer, A, Sun, TT. Biology of disease. Classification of human epithelia and their neoplasms using monoclonal antibodies to keratins: strategies, applications and limitations. Lab Invest 1985;52:243256.Google Scholar
Eichner, R, Bonitz, P, Sun, TT. Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression. J Cell Biol 1984;98:13881396.Google Scholar
Alfonso, P, Nunez, A, Mazdoz-Gurpide, J, et al. Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis. Proteomics 2005;5:26022611.Google Scholar
Miettinen, M, Lehto, VP, Virtanen, I. Keratin in the epithelial-like cells of classical biphasic synovial sarcoma. Virchows Arch B Cell Pathol Incl Mol Pathol 1982;40:157161.Google Scholar
Chase, DR, Enzinger, FM, Weiss, SW, Langloss, JM. Keratin in epithelioid sarcoma. An immunohistochemical study. Am J Surg Pathol 1984;8:435441.Google Scholar
Miettinen, M, Lehto, VP, Dahl, D, Virtanen, I. Differential diagnosis of chordoma, chondroid, and ependymal tumors as aided by anti-intermediate filament antibodies. Am J Pathol 1983;112:160169.Google Scholar
Huitfeldt, HS, Brandtzaeg, P. Various keratin antibodies produce immunohistochemical staining of human myocardium and myometrium. Histochemistry 1985;83:381389.Google Scholar
Miettinen, M. Keratin immunohistochemistry: update of applications and pitfalls. Pathol Annu 1993;24(Part 2):113143.Google Scholar
von Koskull, H, Virtanen, I. Induction of cytokeratin expression in human mesenchymal cells. J Cell Physiol 1987;133:321329.Google Scholar
Knapp, AC, Franke, WW. Spontaneous losses of control of cytokeratin gene expression in transformed, non-epithelial human cells occurring at different levels of regulation. Cell 1989;59:6779.Google Scholar
Rosenberg, M, Ray Chaudhury, A, Shows, TB, LeBeau, MM, Fuchs, E. A group of type I keratin genes on human chromosome 17: characterization and expression. Mol Cell Biol 1988;8:722736.Google Scholar
Romano, V, Bosco, P, Rocchi, M, et al. Chromosomal assignments of human type I and type II cytokeratin genes to different chromosomes. Cytogenet Cell Genet 1988;48:148151.Google Scholar
Rosenberg, M, Fuchs, E, Le Beau, MM. Three epidermal and one simple epithelial type II keratin genes map to chromosome 12. Cytogenet Cell Genet 1991;57:3338.Google Scholar
Blobel, GA, Moll, R, Franke, WW, Kayser, KW, Gould, VE. The intermediate filament cytoskeleton of malignant mesotheliomas and its diagnostic significance. Am J Pathol 1985;121:235247.Google Scholar
Moll, R, Achstetter, T, Becht, E, et al. Cytokeratins in normal and malignant transitional epithelium. Maintenance of expression of urothelial differentiation features in transitional cell carcinomas and bladder carcinoma cell culture lines. Am J Pathol 1990;132:123144.Google Scholar
Schaafsma, HE, Ramaekers, FC, van Muijen, GN, et al. Distribution of cytokeratin polypeptides in human transitional cell carcinomas, with special emphasis on changing expression patterns during tumor progression. Am J Pathol 1990;136:329343.Google Scholar
Moll, R. Cytokeratins as markers of differentiation in the diagnosis of epithelial tumors. Subcell Biochem 1998;31:205262.Google Scholar
Markey, AC, Lane, EB, Churchill, LJ, McDonald, DM, Leigh, IM. Expression of simple epithelial keratins 8 and 18 in epidermal neoplasia. J Invest Dermatol 1991;97:763770.Google Scholar
Brown, DC, Theaker, JM, Banks, PM, Gatter, KC, Mason, DY. Cytokeratin expression in smooth muscle and smooth muscle tumours. Histopathology 1987;11:477486.Google Scholar
Norton, AJ, Thomas, JA, Isaacson, PG. Cytokeratin-specific monoclonal antibodies are reactive with tumours of smooth muscle derivation. An immunocytochemical and biochemical study using antibodies to intermediate filament cytoskeletal proteins. Histopathology 1987;11:487499.Google Scholar
Gown, AM, Boyd, HC, Chang, Y, et al. Smooth muscle cells can express cytokeratins of “simple” epithelium. Immunocytochemical and biochemical studies in vitro and in vivo. Am J Pathol 1988;132:223232.Google Scholar
Kuruc, N, Franke, WW. Transient coexpression of desmin and cytokeratins 8 and 18 in developing myocardial cells of some vertebrate species. Differentiation 1986;38:177193.Google Scholar
Jahn, L, Fouquet, B, Rohe, K, Franke, WW. Cytokeratins in certain endothelial and smooth muscle cells of two taxonomically distant vertebrate species, Xenopus laevis and man. Differentiation 1987;36:234254.Google Scholar
Miettinen, M, Fetsch, JF. Distribution of keratins in normal endothelial cells and a spectrum of vascular tumors: implications in tumor diagnosis. Hum Pathol 2000;31:10621067.Google Scholar
Miettinen, M, Paetau, A. Mapping of the keratin polypeptides in meningiomas of different types: an immunohistochemical analysis of 463 cases. Hum Pathol 2002;33:590598.Google Scholar
Franke, WW, Moll, R. Cytoskeletal components of lymphoid organs. I. Synthesis of cytokeratins 8 and 18 and desmin in subpopulations of extrafollicular reticulum cells of human lymph nodes, tonsils and spleen. Differentiation 1987;36:145163.Google Scholar
Traweek, ST, Liu, J, Battifora, H. Keratin gene expression in non-epithelial tissues: detection with polymerase chain reaction. Am J Pathol 1993;142:11111118.Google Scholar
Miettinen, M. Keratin subsets in spindle cell sarcomas. Keratins are widespread but synovial sarcoma contains a distinctive keratin polypeptide pattern and desmoplakins. Am J Pathol 1991;138:505513.Google Scholar
Miettinen, M, Limon, J, Niezabitowski, A, Lasota, J. Patterns of keratin polypeptides in 110 biphasic, monophasic and poorly differentiated synovial sarcomas. Virchows Arch 2000;437:275283.Google Scholar
Manivel, JC, Wick, MR, Dehner, LP, Sibley, RK. Epithelioid sarcoma. An immunohistochemical study. Am J Clin Pathol 1987;87:319326.Google Scholar
Daimaru, Y, Hashimoto, H, Tsuneyoshi, M, Enjoji, M. Epithelial profile of epithelioid sarcoma. An immunohistochemical analysis of six cases. Cancer 1987;59:3441.Google Scholar
Miettinen, M, Fanburg-Smith, JC, Virolainen, M, Shmookler, BM, Fetsch, JF. Epithelioid sarcoma: an immunohistochemical analysis of 112 classical and variant cases and a discussion of the differential diagnosis. Hum Pathol 1999;30:934942.Google Scholar
Heikinheimo, K, Persson, S, Kindblom, LG, Morgan, PR, Virtanen, I. Expression of different cytokeratin subclasses in human chordoma. J Pathol 1991;164:145150.Google Scholar
Naka, T, Iwamoto, Y, Shinohara, N, et al. Cytokeratin subtyping in chordoma and the fetal notochord: an immunohistochemical analysis of aberrant expression. Mod Pathol 1997;10:545551.Google Scholar
O’Hara, BJ, Paetau, A, Miettinen, M. Keratin subsets and monoclonal antibody HBME-1 in chordoma: immunohistochemical differential diagnosis between tumors simulating chordoma. Hum Pathol 1998;29:119126.Google Scholar
Chu, PG, Weiss, LM. Keratin expression in human tissues and neoplasms. Histopathology 2002;40:403439.Google Scholar
Bolen, JW, Hammar, SP, McNutt, MA. Reactive and neoplastic serosal tissue: a light microscopic, ultrastructural, and immunocytochemical study. Am J Surg Pathol 1986;10:3447.Google Scholar
Gray, MH, Rosenberg, AE, Dickersin, GR, Bhan, AK. Cyto keratin expression in epithelioid vascular neoplasms. Hum Pathol 1990;21:212217.Google Scholar
Miettinen, M. Immunoreactivity for cytokeratin and epithelial membrane antigen in leiomyosarcoma. Arch Pathol Lab Med 1988;112:637640.Google Scholar
Iwata, J, Fletcher, CD. Immunohistochemical detection of cytokeratin and epithelial membrane antigen in leiomyosarcoma: a systematic study of 100 cases. Pathol Int 2000;50:714.Google Scholar
Miettinen, M, Soini, Y. Malignant fibrous histiocytoma. Heterogeneous patterns of intermediate filament proteins by immunohistochemistry. Arch Pathol Lab Med 1989;113:13631366.Google Scholar
Rosenberg, AE, O’Connell, JX, Dickersin, GR, Bhan, AK. Expression of epithelial markers in malignant fibrous histiocytoma of the musculoskeletal system: an immunohistochemical and electron microscopic study. Hum Pathol 1993;24:284293.Google Scholar
Litzky, LA, Brooks, JJ. Cytokeratin immunoreactivity in malignant fibrous histiocytoma and spindle cell tumors: comparison between frozen and paraffin-embedded tissues. Mod Pathol 1992;5:3034.Google Scholar
Sarlomo-Rikala, M, Tsujimura, T, Lendahl, U, Miettinen, M. Patterns of nestin and other intermediate filament expression distinguish between gastrointestinal stromal tumors, leiomyomas, and schwannomas. APMIS 2002;110:499507.Google Scholar
Gu, M, Antonescu, CR, Guiter, G, et al. Cytokeratin immunoreactivity in Ewing’s sarcoma: prevalence in 50 cases confirmed by molecular diagnostic studies. Am J Surg Pathol 2000;24:410416.Google Scholar
Zarbo, RJ, Gown, AM, Nagle, RB, Visscher, DW, Crissman, JD. Anomalous cytokeratin expression in malignant melanoma: one- and two- dimensional western blot analysis and immunohistochemical survey of 100 melanomas. Mod Pathol 1990;3:494501.Google Scholar
Wotherspoon, AC, Norton, AJ, Isaacson, PG. Immunoreactive cytokeratins in plasmacytomas. Histopathology 1989; 14:141150.Google Scholar
Lasota, J, Hyjek, E, Koo, C, Blonski, J, Miettinen, M. Cytokeratin-positive B-cell lymphomas: verification by polymerase chain reaction. Am J Surg Pathol 1996;20:346354.Google Scholar
Gustmann, C, Altmannsberger, M, Osborn, M, Griesser, H, Feller, AC. Cytokeratin expression and vimentin content in large cell anaplastic lymphomas and other non-Hodgkin’s lymphomas. Am J Pathol 1991;138:14131422.Google Scholar
Bartek, J, Vojtesek, B, Staskova, Z, et al. A series of 14 new monoclonal antibodies to keratins: characterization and value in diagnostic histopathology. J Pathol 1991;164:215224.Google Scholar
Ramaekers, F, Huysmans, A, Schaart, G, Moesker, O, Vooijs, P. Tissue distribution of keratin 7 as monitored by a monoclonal antibody. Exp Cell Res 1987;170:235249.Google Scholar
van Niekerk, CC, Jap, PH, Ramaekers, FC, van de Molengraft, F, Poels, LG. Immunohistochemical demonstration of keratin 7 in routinely fixed paraffin-embedded human tissues. J Pathol 1991;165:145152.Google Scholar
Osborn, M, van Lessen, G, Weber, K, Kloppel, G, Altmannsberger, M. Differential diagnosis of gastrointestinal carcinomas by using monoclonal antibodies specific for individual keratin polypeptides. Lab Invest 1986;55:497504.Google Scholar
Ramaekers, F, van Niekerk, C, Poels, L, et al. Use of monoclonal antibodies to keratin 7 in the differential diagnosis of adenocarcinomas. Am J Pathol 1990;136:641655.Google Scholar
Wang, NP, Zee, S, Zarbo, RJ, Bacchi, CE, Gown, AM. Coordinate expression of cytokeratins 7 and 20 defines unique subsets of carcinomas. Appl Immunohistochem 1995;3:99107.Google Scholar
Chu, P, Wu, E, Weiss, LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol 2000;13:962972.Google Scholar
Jensen, K, Kohler, S, Rouse, RV. Cytokeratin staining in Merkel cell carcinoma: an immunohistochemical study of cytokeratins 5/6, 7, 17, and 20. Appl Immunohistochem Mol Morphol 2000;8:310315.Google Scholar
Folpe, AL, Schmid, RA, Chapman, D, Gown, AM. Poorly differentiated synovial sarcoma: immunohistochemical distinction from primitive neuroectodermal tumors and high-grade malignant peripheral nerve sheath tumors. Am J Surg Pathol 1998;22:673682.Google Scholar
Moll, R, Lowe, A, Laufer, J, Franke, WW. Cytokeratin 20 in human carcinomas. A new histodiagnostic marker detected by monoclonal antibodies. Am J Pathol 1992;140:427447.Google Scholar
Laskin, WB, Miettinen, M. Epithelioid sarcoma: new insights based on extended immunohistochemical analysis. Arch Pathol Lab Med 2003;127:11611168.Google Scholar
Miettinen, M. Keratin 20: immunohistochemical marker for gastrointestinal, urothelial, and Merkel cell carcinomas. Mod Pathol 1995;8:384388.Google Scholar
Purkis, PE, Steel, JB, Mackenzie, IC, et al. Antibody markers of basal cells in complex epithelia. J Cell Sci 1990;97:3950.Google Scholar
Chu, PG, Luda, MH, Weiss, LM. Cytokeratin 14 expression in epithelial neoplasms: a survey of 435 cases with emphasis on its value in differentiating squamous carcinomas from other epithelial tumours. Histopathology 2001;39:916.Google Scholar
Wetzels, RHW, Kuijpers, HJH, Lane, EB, et al. Basal cell-specific and hyperproliferation-related keratins in human breast cancer. Am J Pathol 1991;138:751763.Google Scholar
Malzahn, K, Mitze, M, Thoenes, M, Moll, R. Biological and prognostic significance of stratified epithelial cytokeratins in infiltrating ductal breast carcinomas. Virchows Arch 1988;433:119129.Google Scholar
Moll, R, Dhouailly, D, Sun, TT. Expression of keratin 5 as a distinctive feature of epithelial and biphasic mesotheliomas: an immunohistochemical study using monoclonal antibody AE14. Virchows Arch B Cell Pathol Incl Mol Pathol 1989;58:129145.Google Scholar
Ordonez, NG. Value of cytokeratin 5/6 immunostaining in distinguishing epithelial mesothelioma of the pleura from lung adenocarcinoma. Am J Surg Pathol 1998;22:12151221.Google Scholar
Troyanovsky, SM, Guelstein, VI, Tchipysheva, TA, Krutovskikh, VA, Bannikov, GA. Patterns of expression of keratin 17 in human epithelia: dependency on cell position. J Cell Sci 1989;93:419426.Google Scholar
Troyanovsky, SM, Leube, RE, Franke, WW. Characterization of the human gene encoding cytokeratin 17 and its expression pattern. Eur J Cell Biol 1992;59:127137.Google Scholar
Miettinen, M, Nobel, MP, Tuma, BT, Kovatich, AJ. Keratin 17. Immunohistochemical mapping of its distribution in human epithelial tumors and its potential applications. Appl Immunohistochem 1997;5:152159.Google Scholar
Goldstein, NS, Bassi, D, Uzieblo, A. WT1 is an integral component of an antibody panel to distinguish pancreaticobiliary and some ovarian epithelial neoplasms. Am J Clin Pathol 2001;116:246252.Google Scholar
Moll, R, Krepler, R, Franke, WW. Complex cytokeratin polypeptide patterns observed in certain human carcinomas. Differentiation 1983;23:256269.Google Scholar
van Muijen, GNP, Ruiter, DJ, Franke, WW. Cell-type heterogeneity of cytokeratin expression in complex epithelia and carcinomas as demonstrated by monoclonal antibodies specific for cytokeratins 4 and 13. Exp Cell Res 1986;62:97113.Google Scholar
Remotti, F, Fetsch, JF, Miettinen, M. Keratin 1 expression in endothelia and mesenchymal tumors: immunohistochemical analysis of normal and neoplastic tissues. Hum Pathol 2001;32:873879.Google Scholar
Hasan, AAK, Zisman, T, Schmaier, AH. Identification of cytokeratin 1 as a binding protein and presentation receptor for kininogens on endothelial cells. Proc Natl Acad Sci USA 1998;95:36153620.Google Scholar
Ivanyi, D, Ansink, A, Groeneweld, E, et al. New monoclonal antibodies recognizing epidermal differentiation-associated keratins in formalin-fixed, paraffin-embedded tissue: keratin 10 expression in carcinoma of the vulva. J Pathol 1989;159:712.Google Scholar
Knapp, AC, Franke, WW, Heid, H, et al. Cytokeratin No. 9, an epidermal type I keratin characteristic of a special program of keratinocyte differentiation displaying body site specificity. J Cell Biol 1986;103:657667.Google Scholar
Jih, DM, Lyle, S, Elenitsas, R, Elder, DE, Cotsarelis, G. Cyto keratin 15 expression in trichoepitheliomas and a subset of basal cell carcinomas suggests they originate from hair follicle stem cells. J Cutan Pathol 1999;26:113118.Google Scholar
Gendler, SJ. MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia 2001;6:339353.Google Scholar
Brayman, M, Thathiah, A, Carson, DD. MUC1: a multifunctional cell surface component of reproductive tissue epithelia. Reprod Biol Endocrinol 2004;2:4.Google Scholar
Sasaki, M, Peterson, JA, Wara, WM, Ceriani, RL. Human mammary epithelial antigens (HME-Ags) in the circulation of nude mice implanted with a breast tumor and non-breast tumors. Cancer 1981;48:22042210.Google Scholar
Sloane, JP, Ormerod, MG. Distribution of epithelial membrane antigen in normal and neoplastic tissues and its value in diagnostic tumor pathology. Cancer 1981;47:17861795.Google Scholar
Pinkus, GS, Kurtin, PJ. Epithelial membrane antigen: a diagnostic discriminant in surgical pathology; immunohistochemical profile in epithelial, mesenchymal, and hematopoietic neoplasms using paraffin sections and monoclonal antibodies. Hum Pathol 1985;16:929940.Google Scholar
Heyderman, E, Strudley, I, Powell, G, et al. A new monoclonal antibody to epithelial membrane antigen (EMA)-E29: a comparison of its immunocytochemical reactivity with polyclonal anti-EMA antibodies and with another monoclonal antibody, HMFG-2. Br J Cancer 1985;52:355361.Google Scholar
Swanson, PE, Manivel, JC, Scheithauer, BW, Wick, MR. Epithelial membrane antigen reactivity in mesenchymal neoplasms: an immunohistochemical study of 306 soft tissue sarcomas. Surg Pathol 1989;2:313322.Google Scholar
Ariza, A, Bilbao, JM, Rosai, J. Immunohistochemical detection of epithelial membrane antigen in normal perineurial cells and perineurioma. Am J Surg Pathol 1988;12:678683.Google Scholar
Theaker, JM, Fletcher, CDM. Epithelial membrane antigen expression by the perineurial cell: further studies on peripheral nerve lesions. Histopathology 1989;14:581588.Google Scholar
Fetsch, JF, Miettinen, M. Sclerosing perineurioma: a clinicopathologic study of 19 cases of a distinctive soft tissue lesion with a predilection for the fingers and palms of young adults. Am J Surg Pathol 1997;21:14331442.Google Scholar
Guillou, L, Benhattar, J, Gengler, C, et al. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting a potential relationship with sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol 2007;31:13871402.Google Scholar
Doyle, LA, Fletcher, CD. EMA positivity in epithelioid fibrous histiocytoma: a potential diagnostic pitfall. J Cutan Pathol 2011;38:697703.Google Scholar
Coffin, CM, Patel, A, Perkins, S, et al. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod Pathol 2001;14:569576.Google Scholar
Cook, JR, Dehner, LP, Collins, MH, et al. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. Am J Surg Pathol 2001;25:13641371.Google Scholar
Mariño-Enríquez, A, Wang, WL, Roy, A, et al. Epithelioid inflammatory myofibroblastic sarcoma: an aggressive intra-abdominal variant of inflammatory myofibroblastic tumor with nuclear membrane or perinuclear ALK. Am J Surg Pathol 2011;35:135144.Google Scholar
Cessna, MH, Zhou, H, Sanger, WG, et al. Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod Pathol 2002;15:931938.Google Scholar
Doyle, LA, Mariño-Enriquez, A, Fletcher, CD, Hornick, JL. ALK rearrangement and overexpression in epithelioid fibrous histiocytoma. Mod Pathol 2015;28:904912.Google Scholar
Angst, RD, Marcozzi, C, Magee, AI. The cadherin superfamily. J Cell Sci 2001;114:625626.Google Scholar
Smith, MEF, Pignatelli, M. The molecular histology of neoplasia: the role of the cadherin/catenin complex. Histopathology 1997;31:107111.Google Scholar
Sato, H, Hasegawa, T, Abe, Y, Skai, H, Hirohashi, S. Expression of E-cadherin in bone and soft tissue sarcoma: a possible role in epithelial differentiation. Hum Pathol 1999;30:13441349.Google Scholar
Danen, EH, de Vries, TJ, Morandini, R, et al. E-cadherin expression in human melanoma. Melanoma Res 1996;6:127131.Google Scholar
Smith, ME, Brown, JI, Fisher, C. Epithelioid sarcoma: presence of vascular-endothelial cadherin and lack of epithelial cadherin. Histopathology 1998;33:425431.Google Scholar
Laskin, WB, Miettinen, M. Epithelial-type and neural-type cadherin expression in malignant noncarcinomatous neoplasms with epithelioid features that involve the soft tissues. Arch Pathol Lab Med 2002;126:425431.Google Scholar
Mechtersheimer, G, Moller, P. Expression of the common acute lymphoblastic leukemia antigen (CD10) in mesenchymal tumors. Am J Pathol 1989;134:961965.Google Scholar
Chu, P, Arber, DA. Paraffin-section detection of CD10 in 505 nonhematopoietic neoplasms: frequent expression in renal cell carcinoma and endometrial stromal sarcoma. Am J Clin Pathol 2000;113:374382.Google Scholar
Chu, PG, Arber, DA, Weiss, LM, Chang, KL. Utility of CD10 in distinguishing between endometrial stromal sarcoma and uterine smooth muscle tumors: an immunohistochemical comparison of 34 cases. Mod Pathol 2001;14:465471.Google Scholar
McCluggage, WG, Sumathi, VP, Maxwell, P. CD10 is a sensitive and diagnostically useful immunohistochemical marker of normal endometrial stroma and of endometrial stromal neoplasms. Histopathology 2001;39:273278.Google Scholar
Kanitakis, J, Bourchany, D, Claudy, A. Expression of the CD10 antigen (neutral endopeptidase) by mesenchymal tumors of the skin. Anticancer Res 2000;20:35393544.Google Scholar
Deniz, K, Çoban, G, Okten, T. Anti-CD10 (56C6) expression in soft tissue sarcomas. Pathol Res Pract 2012;208:281285.Google Scholar
Ambros, IM, Ambros, PF, Strehl, J, et al. MIC2 is a specific marker for Ewing’s sarcoma and peripheral neuroectodermal tumors: evidence for a common histogenesis of Ewing’s sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and common chromosome aberration. Cancer 1991;67:18861893.Google Scholar
Fellinger, EJ, Garin-Chesa, P, Triche, TJ, Huvos, AG, Rettig, WJ. Immunohistochemical analysis of Ewing’s sarcoma cell surface antigen p30/32MIC2 Am J Pathol 1991;1139:317325.Google Scholar
Stevenson, AJ, Chatten, J, Bertoni, F, Miettinen, M. CD99 (p30/32-MIC2) neuroectodermal/Ewing sarcoma antigen as an immunohistochemical marker. Review of more than 600 tumors and the literature experience. Appl Immunohistochem 1994;2:231240.Google Scholar
Renshaw, AA. O13 (CD99) in spindle cell tumors. Reactivity with hemangiopericytoma, solitary fibrous tumor, synovial sarcoma, and meningioma but rarely with sarcomatoid mesothelioma. Appl Immunohistochem 1995;3:250256.Google Scholar
Diwan, AH, Skelton, HG III, Horenstein, MG, et al. Dermatofibrosarcoma protuberans and giant cell fibroblastoma exhibit CD99 positivity. J Cutan Pathol 2008;35:547550.Google Scholar
Shibuya, R, Matsuyama, A, Nakamoto, M, et al. The combination of CD99 and NKX2.2, a transcriptional target of EWSR1-FLI1, is highly specific for the diagnosis of Ewing sarcoma. Virchows Arch 2014;465:599605.Google Scholar
Dei Tos, AP, Doglioni, C. Calretinin: a novel tool for diagnostic immunohistochemistry. Adv Anat Pathol 1998;5:6166.Google Scholar
Miettinen, M, Limon, J, Niezabitowski, A, Lasota, J. Calretinin and other mesothelioma markers in synovial sarcoma: analysis of antigenic similarities and differences with malignant mesothelioma. Am J Surg Pathol 2001;25:610617.Google Scholar
Barak, S, Wang, Z, Miettinen, M. Immunoreactivity for calretinin and keratins in desmoid fibromatosis and other myofibroblastic tumors: a diagnostic pitfall. Am J Surg Pathol 2012;36:14041409.Google Scholar
Cates, JM, Coffing, BN, Harris, BT, Black, CC. Calretinin expression in tumors of adipose tissue. Hum Pathol 2006;37:312321.Google Scholar
Miettinen, M, Foidart, JM, Ekblom, P. Immunohistological demonstration of laminin, the major glycoprotein of basement membranes, as an aid in the diagnosis of soft tissue tumors. Am J Clin Pathol 1983;79:306311.Google Scholar
Autio-Harmainen, H, Apaja-Sarkkinen, M, Martikainen, J, Taipale, A, Rapola, J. Production of basement membrane laminin and type IV collagen by tumors of striated muscle: an immunohistochemical study of rhabdomyosarcomas of different histologic types and a benign vaginal rhabdomyoma. Hum Pathol 1986;17:12181224.Google Scholar
Ogawa, K, Oguchi, M, Yamabe, H, Nakashima, Y, Hamashima, Y. Distribution of collagen type IV in soft tissue tumors: an immunohistochemical study. Cancer 1986;58:269277.Google Scholar
Leong, ASY, Vinyuvat, S, Suthipintawong, C, Leong, FJ. Patterns of basal lamina immunostaining in soft tissue and bony tumors. Appl Immunohistochem 1997;5:17.Google Scholar
Billings, SD, Al, Folpe, Weiss, SW. Do leiomyomas of deep soft tissue exist?: an analysis of highly differentiated smooth muscle tumors of deep soft tissue supporting two distinct subtypes. Am J Surg Pathol 2001;25:11341142.Google Scholar
Paal, E, Miettinen, M. Retroperitoneal leiomyomas: a clinicopathologic and immunohistochemical study of 56 cases with a comparison to retroperitoneal leiomyosarcomas. Am J Surg Pathol 2001;25:13551363.Google Scholar
Rao, UN, Finkelstein, SD, Jones, MW. Comparative immunohistochemical and molecular analysis of uterine and extrauterine leiomyosarcomas. Mod Pathol 1999;12:10011009.Google Scholar
Kelley, TW, Borden, EC, Goldblum, JR. Estrogen and progesterone receptor expression in uterine and extrauterine leiomyosarcomas: an immunohistochemical study. Appl Immunohistochem Mol Morphol 2004;12:338341.Google Scholar
Deamant, FD, Pombo, MT, Battifora, H. Estrogen receptor immunohistochemistry as a predictor of site of origin in metastatic breast cancer. Appl Immunohistochem 1993;1:188192.Google Scholar
Deyrup, AT, Tretiakova, M, Montag, AG. Estrogen receptor-beta expression in extra abdominal fibromatoses: an analysis of 40 cases. Cancer 2006;106:208213.Google Scholar
Deyrup, AT, Tretiakova, M, Khramtsov, A, Montag, AG. Exstrogen receptor beta expression in vascular neoplasia: an analysis of 53 benign and malignant cases. Mod Pathol 2004;17:13721377.Google Scholar
Achstatter, T, Moll, R, Anderson, A, et al. Expression of glial filament protein (GFP) in nerve sheaths and non-neural cells re-examined using monoclonal antibodies, with special emphasis on the co-expression of GFP and cytokeratins in epithelial cells of human salivary gland and pleomorphic adenomas. Differentiation 1986;31:206227.Google Scholar
Mancardi, GL, Cadoni, A, Tabaton, M, et al. Schwann cell GFAP expression increases in axonal neuropathies. J Neurol Sci 1991;102:177183.Google Scholar
Memoli, VA, Brown, EF, Gould, VE. Glial fibrillary acidic protein (GFAP) immunoreactivity in peripheral nerve sheath tumors. Ultrastruct Pathol 1984;7:269275.Google Scholar
Gould, VE, Moll, R, Moll, I, et al. The intermediate filament complement of the spectrum of nerve sheath neoplasms. Lab Invest 1986;55:463474.Google Scholar
Kawahara, E, Oda, Y, Ooi, A, et al. Expression of glial fibrillary acidic protein (GFAP) in peripheral nerve sheath tumors. A comparative study of immunoreactivity of GFAP, vimentin, S100-protein and neurofilament in 38 schwannomas and 18 neurofibromas. Am J Surg Pathol 1988;12:115120.Google Scholar
Gray, MH, Rosenberg, AE, Dickersin, GR, Bhan, AK. Glial fibrillary acidic protein and keratin expression by benign and malignant nerve sheath tumors. Hum Pathol 1989;20:10891096.Google Scholar
Masliah-Planchon, J, Bièche, I, Guinebretière, JM, Bourdeaut, F, Delattre, O. SWI/SNF chromatin remodeling and human malignancies. Annu Rev Pathol 2015;10:145171.Google Scholar
Hollmann, TJ, Hornick, JL. INI1-deficient tumors; diagnostic features and molecular genetics. Am J Surg Pathol 2011:35:e47e63Google Scholar
Hornick, JL, Dal Cin, P, Fletcher, CD. Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol 2009;33:542550.Google Scholar
Sigauke, E, Rakheja, D, Maddox, DL, et al. Absence of expression of SMARCB1/INI1 in malignant rhabdoid tumors of the central nervous system, kidneys and soft tissue: an immunohistochemical study with implications for diagnosis. Mod Pathol 2006;19:717725.Google Scholar
Hoot, AC, Russo, P, Judkins, AR, Perlman, EJ, Biegel, JA. Immunohistochemical analysis of hSNF5/INI1 distinguishes renal and extra-renal malignant rhabdoid tumors from other pediatric soft tissue tumors. Am J Surg Pathol 2004;28:14851491.Google Scholar
Kohashi, K, Oda, Y, Yamamoto, H, et al. SMARCB1/INI1 protein expression in round cell soft tissue sarcomas associated with chromosomal translocations involving EWS: a special reference to SMARCB1/INI1 negative variant extraskeletal myxoid chondrosarcoma. Am J Surg Pathol 2008;32:11681174.Google Scholar
Jo, VY, Fletcher, CD. Epithelioid malignant peripheral nerve sheath tumor: clinicopathologic analysis of 63 cases. Am J Surg Pathol 2015;39:673682.Google Scholar
Rizzo, D, Fréneaux, P, Brisse, H, et al. SMARCB1 deficiency in tumors from the peripheral nervous system: a link between schwannomas and rhabdoid tumors? Am J Surg Pathol 2012;36:964972.Google Scholar
Arnold, MA, Arnold, CA, Li, G, et al. A unique pattern of INI1 immunohistochemistry distinguishes synovial sarcoma from its histologic mimics. Hum Pathol 2013;44:881887.Google Scholar
Kadoch, C, Crabtree, GR. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell 2013;153:7185.Google Scholar
Agaimy, A. The expanding family of SMARCB1(INI1)-deficient neoplasia: implications of phenotypic, biological, and molecular heterogeneity. Adv Anat Pathol 2014;21:394410.Google Scholar
Besmer, P, Murphy, JE, George, PC, et al. A new acute transforming feline retro-virus and relationship of its oncogene v-kit with the protein kinase gene family. Nature 1986;320:415421.Google Scholar
Kitamura, Y, Hirota, S, Nishida, T. Molecular pathology of c-kit proto-oncogene and development of gastrointestinal stromal tumors. Ann Chir Gynaecol 1998;87:282286.Google Scholar
Miettinen, M, Lasota, J. KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol 2005;13:205220.Google Scholar
Tsuura, Y, Hiraki, H, Watanabe, K, et al. Preferential localization of c-kit product in tissue mast cells, basal cells of skin, epithelial cells of breast, small cell lung carcinoma and seminoma/dysgerminoma in human: immunohistochemical study of formalin-fixed, paraffin-embedded tissues. Virchows Arch 1994;424:135141.Google Scholar
Lammie, A, Drobnjak, M, Gerald, W, et al. Expression of c-kit and kit ligand proteins in normal human tissues. J Histochem Cytochem 1994;42:14171425.Google Scholar
Arber, DA, Tamayo, R, Weiss, LM. Paraffin section detection of the c-kit gene product (CD117) in human tissues: value in the diagnosis of mast cell disorders. Hum Pathol 1998;29:498504.Google Scholar
Kindblom, LG, Remotti, HE, Aldenborg, F, Meis-Kindblom, JM. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 1998;152:12591269.Google Scholar
Sarlomo-Rikala, M, Kovatich, AJ, Barusevicius, A, Miettinen, M. CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod Pathol 1998;11: 728734.Google Scholar
Sircar, K, Hewlett, BR, Huizinga, JD, et al. Interstitial cells of Cajal as precursors for gastrointestinal stromal tumors. Am J Surg Pathol 1999;23:377389.Google Scholar
Chen, J, Yanuck, RR III, Abbondanzo, SL, Chu, WS, Aguilera, NS. c-kit (CD117) reactivity in extramedullary myeloid tumor/granulocytic sarcoma. Arch Pathol Lab Med 2001;125:14481452.Google Scholar
Miettinen, M, Sarlomo-Rikala, M, Lasota, J. KIT expression in angiosarcomas and in fetal endothelial cells. Lack of c-kit mutations in exon 11 and 17 of c-kit. Mod Pathol 2000;13:536541.Google Scholar
Montone, KT, van Belle, P, Elenitsas, R, Elder, DE. Protooncogene c-kit expression in malignant melanoma: protein loss with tumor progression. Mod Pathol 1997;10:939944.Google Scholar
Doyle, LA, Möller, E, Dal Cin, P, et al. MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am J Surg Pathol 2011;35:733–741.Google Scholar
Doyle, LA, Wang, WL, Dal Cin, P, et al. MUC4 is a sensitive and extremely useful marker for sclerosing epithelioid fibrosarcoma: association with FUS gene rearrangement. Am J Surg Pathol 2012;36:14441451.Google Scholar
Conner, JR, Hornick, JL. SATB2 is a novel marker of osteoblastic differentiation in bone and soft tissue tumors. Histopathology 2013;63:3649.Google Scholar
Ordonez, NG. SATB2 is a novel marker of osteoblastic differentiation and colorectal carcinoma. Adv Anat Pathol 2014;21:6367.Google Scholar
Franke, WW, Schmid, E, Osborn, M, Weber, K. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci USA 1978;75:50345038.Google Scholar
Azumi, N, Battifora, H. The distribution of vimentin and keratin in epithelial and nonepithelial neoplasms. A comprehensive immunohistochemical study on formalin- and alcohol-fixed tumors. Am J Clin Pathol 1987;88:286296.Google Scholar
Battifora, H. Assessment of antigen damage in immunohistochemistry. The vimentin internal control. Am J Clin Pathol 1991;96:669671.Google Scholar
Scharnhorst, V, Van Der Eb, AJ, Jochemsen, AG. WT1 proteins: functions in growth and differentiation. Gene 2001;273:141161.Google Scholar
Ordonez, NG. Desmoplastic small round cell tumor. II: an ultrastructural and immunohistochemical study with emphasis on new immunohistochemical markers. Am J Surg Pathol 1998;22:13141327.Google Scholar
Barnoud, R, Sabourin, J, Pasquier, D, et al. Immunohistochemical expression of WT1 by desmoplastic small round cell tumor: a comparative study with other small round cell tumors. Am J Surg Pathol 2000;24:830836.Google Scholar
Amin, KM, Litzky, LA, Smythe, WR, et al. Wilms’ tumor 1 susceptibility (WT1) gene products are selectively expressed in malignant mesothelioma. Am J Pathol 1995;146:344356.Google Scholar
Shimizu, M, Toki, T, Takagi, Y, Konishi, I, Fujii, S. Immunohistochemical detection of the Wilms’ tumor gene (WT1) in epithelial ovarian tumors. Int J Gynecol Pathol 2000;19:158163.Google Scholar
Tornos, C, Soslow, R, Chen, S, et al. Expression of WT1, CA125, and GCDFP-15 as useful markers in the differential diagnosis of primary ovarian carcinomas versus metastatic breast cancer to the ovary. Am J Surg Pathol 2005;29:14821489.Google Scholar
Coffin, CM, Patel, A, Perkins, S, et al. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod Pathol 2001;14:569576.Google Scholar
Cook, JR, Dehner, LP, Collins, MH, et al. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. Am J Surg Pathol 2001;25:13641371.Google Scholar
Mariño-Enríquez, A, Wang, WL, Roy, A, et al. Epithelioid inflammatory myofibroblastic sarcoma: an aggressive intra-abdominal variant of inflammatory myofibroblastic tumor with nuclear membrane or perinuclear ALK. Am J Surg Pathol 2011;35:135144.Google Scholar
Cessna, MH, Zhou, H, Sanger, WG, et al. Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod Pathol 2002;15:931938.Google Scholar
Doyle, LA, Mariño-Enriquez, A, Fletcher, CD, Hornick, JL. ALK rearrangement and overexpression in epithelioid fibrous histiocytoma. Mod Pathol 2015;28:904912.Google Scholar
Angst, RD, Marcozzi, C, Magee, AI. The cadherin superfamily. J Cell Sci 2001;114:625626.Google Scholar
Smith, MEF, Pignatelli, M. The molecular histology of neoplasia: the role of the cadherin/catenin complex. Histopathology 1997;31:107111.Google Scholar
Sato, H, Hasegawa, T, Abe, Y, Skai, H, Hirohashi, S. Expression of E-cadherin in bone and soft tissue sarcoma: a possible role in epithelial differentiation. Hum Pathol 1999;30:13441349.Google Scholar
Danen, EH, de Vries, TJ, Morandini, R, et al. E-cadherin expression in human melanoma. Melanoma Res 1996;6:127131.Google Scholar
Smith, ME, Brown, JI, Fisher, C. Epithelioid sarcoma: presence of vascular-endothelial cadherin and lack of epithelial cadherin. Histopathology 1998;33:425431.Google Scholar
Laskin, WB, Miettinen, M. Epithelial-type and neural-type cadherin expression in malignant noncarcinomatous neoplasms with epithelioid features that involve the soft tissues. Arch Pathol Lab Med 2002;126:425431.Google Scholar
Mechtersheimer, G, Moller, P. Expression of the common acute lymphoblastic leukemia antigen (CD10) in mesenchymal tumors. Am J Pathol 1989;134:961965.Google Scholar
Chu, P, Arber, DA. Paraffin-section detection of CD10 in 505 nonhematopoietic neoplasms: frequent expression in renal cell carcinoma and endometrial stromal sarcoma. Am J Clin Pathol 2000;113:374382.Google Scholar
Chu, PG, Arber, DA, Weiss, LM, Chang, KL. Utility of CD10 in distinguishing between endometrial stromal sarcoma and uterine smooth muscle tumors: an immunohistochemical comparison of 34 cases. Mod Pathol 2001;14:465471.Google Scholar
McCluggage, WG, Sumathi, VP, Maxwell, P. CD10 is a sensitive and diagnostically useful immunohistochemical marker of normal endometrial stroma and of endometrial stromal neoplasms. Histopathology 2001;39:273278.Google Scholar
Kanitakis, J, Bourchany, D, Claudy, A. Expression of the CD10 antigen (neutral endopeptidase) by mesenchymal tumors of the skin. Anticancer Res 2000;20:35393544.Google Scholar
Deniz, K, Çoban, G, Okten, T. Anti-CD10 (56C6) expression in soft tissue sarcomas. Pathol Res Pract 2012;208:281285.Google Scholar
Ambros, IM, Ambros, PF, Strehl, J, et al. MIC2 is a specific marker for Ewing’s sarcoma and peripheral neuroectodermal tumors: evidence for a common histogenesis of Ewing’s sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and common chromosome aberration. Cancer 1991;67:18861893.Google Scholar
Fellinger, EJ, Garin-Chesa, P, Triche, TJ, Huvos, AG, Rettig, WJ. Immunohistochemical analysis of Ewing’s sarcoma cell surface antigen p30/32MIC2 Am J Pathol 1991;1139:317325.Google Scholar
Stevenson, AJ, Chatten, J, Bertoni, F, Miettinen, M. CD99 (p30/32-MIC2) neuroectodermal/Ewing sarcoma antigen as an immunohistochemical marker. Review of more than 600 tumors and the literature experience. Appl Immunohistochem 1994;2:231240.Google Scholar
Renshaw, AA. O13 (CD99) in spindle cell tumors. Reactivity with hemangiopericytoma, solitary fibrous tumor, synovial sarcoma, and meningioma but rarely with sarcomatoid mesothelioma. Appl Immunohistochem 1995;3:250256.Google Scholar
Diwan, AH, Skelton, HG III, Horenstein, MG, et al. Dermatofibrosarcoma protuberans and giant cell fibroblastoma exhibit CD99 positivity. J Cutan Pathol 2008;35:547550.Google Scholar
Shibuya, R, Matsuyama, A, Nakamoto, M, et al. The combination of CD99 and NKX2.2, a transcriptional target of EWSR1-FLI1, is highly specific for the diagnosis of Ewing sarcoma. Virchows Arch 2014;465:599605.Google Scholar
Dei Tos, AP, Doglioni, C. Calretinin: a novel tool for diagnostic immunohistochemistry. Adv Anat Pathol 1998;5:6166.Google Scholar
Miettinen, M, Limon, J, Niezabitowski, A, Lasota, J. Calretinin and other mesothelioma markers in synovial sarcoma: analysis of antigenic similarities and differences with malignant mesothelioma. Am J Surg Pathol 2001;25:610617.Google Scholar
Barak, S, Wang, Z, Miettinen, M. Immunoreactivity for calretinin and keratins in desmoid fibromatosis and other myofibroblastic tumors: a diagnostic pitfall. Am J Surg Pathol 2012;36:14041409.Google Scholar
Cates, JM, Coffing, BN, Harris, BT, Black, CC. Calretinin expression in tumors of adipose tissue. Hum Pathol 2006;37:312321.Google Scholar
Miettinen, M, Foidart, JM, Ekblom, P. Immunohistological demonstration of laminin, the major glycoprotein of basement membranes, as an aid in the diagnosis of soft tissue tumors. Am J Clin Pathol 1983;79:306311.Google Scholar
Autio-Harmainen, H, Apaja-Sarkkinen, M, Martikainen, J, Taipale, A, Rapola, J. Production of basement membrane laminin and type IV collagen by tumors of striated muscle: an immunohistochemical study of rhabdomyosarcomas of different histologic types and a benign vaginal rhabdomyoma. Hum Pathol 1986;17:12181224.Google Scholar
Ogawa, K, Oguchi, M, Yamabe, H, Nakashima, Y, Hamashima, Y. Distribution of collagen type IV in soft tissue tumors: an immunohistochemical study. Cancer 1986;58:269277.Google Scholar
Leong, ASY, Vinyuvat, S, Suthipintawong, C, Leong, FJ. Patterns of basal lamina immunostaining in soft tissue and bony tumors. Appl Immunohistochem 1997;5:17.Google Scholar
Billings, SD, Al, Folpe, Weiss, SW. Do leiomyomas of deep soft tissue exist?: an analysis of highly differentiated smooth muscle tumors of deep soft tissue supporting two distinct subtypes. Am J Surg Pathol 2001;25:11341142.Google Scholar
Paal, E, Miettinen, M. Retroperitoneal leiomyomas: a clinicopathologic and immunohistochemical study of 56 cases with a comparison to retroperitoneal leiomyosarcomas. Am J Surg Pathol 2001;25:13551363.Google Scholar
Rao, UN, Finkelstein, SD, Jones, MW. Comparative immunohistochemical and molecular analysis of uterine and extrauterine leiomyosarcomas. Mod Pathol 1999;12:10011009.Google Scholar
Kelley, TW, Borden, EC, Goldblum, JR. Estrogen and progesterone receptor expression in uterine and extrauterine leiomyosarcomas: an immunohistochemical study. Appl Immunohistochem Mol Morphol 2004;12:338341.Google Scholar
Deamant, FD, Pombo, MT, Battifora, H. Estrogen receptor immunohistochemistry as a predictor of site of origin in metastatic breast cancer. Appl Immunohistochem 1993;1:188192.Google Scholar
Deyrup, AT, Tretiakova, M, Montag, AG. Estrogen receptor-beta expression in extra abdominal fibromatoses: an analysis of 40 cases. Cancer 2006;106:208213.Google Scholar
Deyrup, AT, Tretiakova, M, Khramtsov, A, Montag, AG. Exstrogen receptor beta expression in vascular neoplasia: an analysis of 53 benign and malignant cases. Mod Pathol 2004;17:13721377.Google Scholar
Achstatter, T, Moll, R, Anderson, A, et al. Expression of glial filament protein (GFP) in nerve sheaths and non-neural cells re-examined using monoclonal antibodies, with special emphasis on the co-expression of GFP and cytokeratins in epithelial cells of human salivary gland and pleomorphic adenomas. Differentiation 1986;31:206227.Google Scholar
Mancardi, GL, Cadoni, A, Tabaton, M, et al. Schwann cell GFAP expression increases in axonal neuropathies. J Neurol Sci 1991;102:177183.Google Scholar
Memoli, VA, Brown, EF, Gould, VE. Glial fibrillary acidic protein (GFAP) immunoreactivity in peripheral nerve sheath tumors. Ultrastruct Pathol 1984;7:269275.Google Scholar
Gould, VE, Moll, R, Moll, I, et al. The intermediate filament complement of the spectrum of nerve sheath neoplasms. Lab Invest 1986;55:463474.Google Scholar
Kawahara, E, Oda, Y, Ooi, A, et al. Expression of glial fibrillary acidic protein (GFAP) in peripheral nerve sheath tumors. A comparative study of immunoreactivity of GFAP, vimentin, S100-protein and neurofilament in 38 schwannomas and 18 neurofibromas. Am J Surg Pathol 1988;12:115120.Google Scholar
Gray, MH, Rosenberg, AE, Dickersin, GR, Bhan, AK. Glial fibrillary acidic protein and keratin expression by benign and malignant nerve sheath tumors. Hum Pathol 1989;20:10891096.Google Scholar
Masliah-Planchon, J, Bièche, I, Guinebretière, JM, Bourdeaut, F, Delattre, O. SWI/SNF chromatin remodeling and human malignancies. Annu Rev Pathol 2015;10:145171.Google Scholar
Hollmann, TJ, Hornick, JL. INI1-deficient tumors; diagnostic features and molecular genetics. Am J Surg Pathol 2011:35:e47e63Google Scholar
Hornick, JL, Dal Cin, P, Fletcher, CD. Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol 2009;33:542550.Google Scholar
Sigauke, E, Rakheja, D, Maddox, DL, et al. Absence of expression of SMARCB1/INI1 in malignant rhabdoid tumors of the central nervous system, kidneys and soft tissue: an immunohistochemical study with implications for diagnosis. Mod Pathol 2006;19:717725.Google Scholar
Hoot, AC, Russo, P, Judkins, AR, Perlman, EJ, Biegel, JA. Immunohistochemical analysis of hSNF5/INI1 distinguishes renal and extra-renal malignant rhabdoid tumors from other pediatric soft tissue tumors. Am J Surg Pathol 2004;28:14851491.Google Scholar
Kohashi, K, Oda, Y, Yamamoto, H, et al. SMARCB1/INI1 protein expression in round cell soft tissue sarcomas associated with chromosomal translocations involving EWS: a special reference to SMARCB1/INI1 negative variant extraskeletal myxoid chondrosarcoma. Am J Surg Pathol 2008;32:11681174.Google Scholar
Jo, VY, Fletcher, CD. Epithelioid malignant peripheral nerve sheath tumor: clinicopathologic analysis of 63 cases. Am J Surg Pathol 2015;39:673682.Google Scholar
Rizzo, D, Fréneaux, P, Brisse, H, et al. SMARCB1 deficiency in tumors from the peripheral nervous system: a link between schwannomas and rhabdoid tumors? Am J Surg Pathol 2012;36:964972.Google Scholar
Arnold, MA, Arnold, CA, Li, G, et al. A unique pattern of INI1 immunohistochemistry distinguishes synovial sarcoma from its histologic mimics. Hum Pathol 2013;44:881887.Google Scholar
Kadoch, C, Crabtree, GR. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell 2013;153:7185.Google Scholar
Agaimy, A. The expanding family of SMARCB1(INI1)-deficient neoplasia: implications of phenotypic, biological, and molecular heterogeneity. Adv Anat Pathol 2014;21:394410.Google Scholar
Besmer, P, Murphy, JE, George, PC, et al. A new acute transforming feline retro-virus and relationship of its oncogene v-kit with the protein kinase gene family. Nature 1986;320:415421.Google Scholar
Kitamura, Y, Hirota, S, Nishida, T. Molecular pathology of c-kit proto-oncogene and development of gastrointestinal stromal tumors. Ann Chir Gynaecol 1998;87:282286.Google Scholar
Miettinen, M, Lasota, J. KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol 2005;13:205220.Google Scholar
Tsuura, Y, Hiraki, H, Watanabe, K, et al. Preferential localization of c-kit product in tissue mast cells, basal cells of skin, epithelial cells of breast, small cell lung carcinoma and seminoma/dysgerminoma in human: immunohistochemical study of formalin-fixed, paraffin-embedded tissues. Virchows Arch 1994;424:135141.Google Scholar
Lammie, A, Drobnjak, M, Gerald, W, et al. Expression of c-kit and kit ligand proteins in normal human tissues. J Histochem Cytochem 1994;42:14171425.Google Scholar
Arber, DA, Tamayo, R, Weiss, LM. Paraffin section detection of the c-kit gene product (CD117) in human tissues: value in the diagnosis of mast cell disorders. Hum Pathol 1998;29:498504.Google Scholar
Kindblom, LG, Remotti, HE, Aldenborg, F, Meis-Kindblom, JM. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 1998;152:12591269.Google Scholar
Sarlomo-Rikala, M, Kovatich, AJ, Barusevicius, A, Miettinen, M. CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod Pathol 1998;11: 728734.Google Scholar
Sircar, K, Hewlett, BR, Huizinga, JD, et al. Interstitial cells of Cajal as precursors for gastrointestinal stromal tumors. Am J Surg Pathol 1999;23:377389.Google Scholar
Chen, J, Yanuck, RR III, Abbondanzo, SL, Chu, WS, Aguilera, NS. c-kit (CD117) reactivity in extramedullary myeloid tumor/granulocytic sarcoma. Arch Pathol Lab Med 2001;125:14481452.Google Scholar
Miettinen, M, Sarlomo-Rikala, M, Lasota, J. KIT expression in angiosarcomas and in fetal endothelial cells. Lack of c-kit mutations in exon 11 and 17 of c-kit. Mod Pathol 2000;13:536541.Google Scholar
Montone, KT, van Belle, P, Elenitsas, R, Elder, DE. Protooncogene c-kit expression in malignant melanoma: protein loss with tumor progression. Mod Pathol 1997;10:939944.Google Scholar
Doyle, LA, Möller, E, Dal Cin, P, et al. MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am J Surg Pathol 2011;35:733–741.Google Scholar
Doyle, LA, Wang, WL, Dal Cin, P, et al. MUC4 is a sensitive and extremely useful marker for sclerosing epithelioid fibrosarcoma: association with FUS gene rearrangement. Am J Surg Pathol 2012;36:14441451.Google Scholar
Conner, JR, Hornick, JL. SATB2 is a novel marker of osteoblastic differentiation in bone and soft tissue tumors. Histopathology 2013;63:3649.Google Scholar
Ordonez, NG. SATB2 is a novel marker of osteoblastic differentiation and colorectal carcinoma. Adv Anat Pathol 2014;21:6367.Google Scholar
Franke, WW, Schmid, E, Osborn, M, Weber, K. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci USA 1978;75:50345038.Google Scholar
Azumi, N, Battifora, H. The distribution of vimentin and keratin in epithelial and nonepithelial neoplasms. A comprehensive immunohistochemical study on formalin- and alcohol-fixed tumors. Am J Clin Pathol 1987;88:286296.Google Scholar
Battifora, H. Assessment of antigen damage in immunohistochemistry. The vimentin internal control. Am J Clin Pathol 1991;96:669671.Google Scholar
Scharnhorst, V, Van Der Eb, AJ, Jochemsen, AG. WT1 proteins: functions in growth and differentiation. Gene 2001;273:141161.Google Scholar
Ordonez, NG. Desmoplastic small round cell tumor. II: an ultrastructural and immunohistochemical study with emphasis on new immunohistochemical markers. Am J Surg Pathol 1998;22:13141327.Google Scholar
Barnoud, R, Sabourin, J, Pasquier, D, et al. Immunohistochemical expression of WT1 by desmoplastic small round cell tumor: a comparative study with other small round cell tumors. Am J Surg Pathol 2000;24:830836.Google Scholar
Amin, KM, Litzky, LA, Smythe, WR, et al. Wilms’ tumor 1 susceptibility (WT1) gene products are selectively expressed in malignant mesothelioma. Am J Pathol 1995;146:344356.Google Scholar
Shimizu, M, Toki, T, Takagi, Y, Konishi, I, Fujii, S. Immunohistochemical detection of the Wilms’ tumor gene (WT1) in epithelial ovarian tumors. Int J Gynecol Pathol 2000;19:158163.Google Scholar
Tornos, C, Soslow, R, Chen, S, et al. Expression of WT1, CA125, and GCDFP-15 as useful markers in the differential diagnosis of primary ovarian carcinomas versus metastatic breast cancer to the ovary. Am J Surg Pathol 2005;29:14821489.Google Scholar
Gerdes, J, Li, L, Schlueter, C, et al. Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am J Pathol 1991:138;867873.Google Scholar
Key, G, Becker, MH, Baron, B, et al. New Ki-67 equivalent murine monoclonal antibodies (MIB 1–3) generated against bacterially expressed parts of the Ki-67 cDNA containing three 62 base pair repetitive elements encoding for the Ki-67 epitope. Lab Invest 1993;68:629636.Google Scholar
Swanson, SA, Brooks, JJ. Proliferation markers Ki-67 and p105 in soft tissue lesions. Correlation with DNA flow cytometric characteristics. Am J Pathol 1990;137:14911500.Google Scholar
Huuhtanen, RL, Blomqvist, CP, Wiklund, TA, et al. Comparison of the Ki-67-score and S-phase fraction as prognostic variables in soft-tissue sarcoma. Br J Cancer 1999;79:945951.Google Scholar
Heslin, MJ, Cordon-Cardo, C, Lewis, JJ, Woodruff, JM, Brennan, MF. Ki-67 detected by MIB-1 predicts distant metastasis and tumor mortality in primary, high-grade extremity sarcomas. Cancer 1998;83:490497.Google Scholar
Hoos, A, Stojadinovic, A, Mastorides, S, et al. High Ki-67 proliferative index predicts disease-specific survival in patients with high-risk soft tissue sarcomas. Cancer 2001;92:869874.Google Scholar
Hasegawa, T. Histological grading and MIB-1 labeling index of soft tissue sarcomas. Pathol Int 2007;57:121125.Google Scholar
Seinen, JM, Jönsson, M, Bendahl, PO, et al. Prognostic value of proliferation in pleomorphic soft tissue sarcomas: a new look at an old measure. Hum Pathol 2012;43;22472254.Google Scholar
Lin, XY, Wang, L, Zhang, Y, Dai, SD, Wang, EH. Variable Ki67 proliferative index in 65 cases of nodular fasciitis, compared with fibrosarcoma and fibromatosis. Diagn Pathol 2013;8:50.Google Scholar
Wurl, P, Taubert, H, Meye, A, et al. Prognostic value of immunohistochemistry for p53 in primary soft-tissue sarcomas: a multivariate analysis of five antibodies. J Cancer Res Clin Oncol 1997;123:502508.Google Scholar
Antonescu, CR, Leuang, DH, Dudas, M, et al. Alterations of cell cycle regulators in localized synovial sarcoma: a multifactorial study with prognostic implications. Am J Pathol 2000;156:977983.Google Scholar
Yang, P, Hirose, T, Hasegawa, T, et al. Prognostic implication of the p53 protein and Ki-67 antigen immunohistochemistry in malignant fibrous histiocytoma. Cancer 1995;76:618625.Google Scholar
Sabah, M, Cummins, R, Leader, M, Kay, E. Immunoreactivity of p53, MDM2, p21 (WAF/CIP1), Bcl-2, and Bax in soft tissue sarcomas: correlation with histologic grade. Appl Immunohistochem Mol Morphol 2007;15:6469.Google Scholar
Soini, Y, Vähäkangas, K, Nuorva, K, Kamel, D, Lane, DP, Pääkkö, P. p53 immunohistochemistry in malignant fibrous histiocytomas and other mesenchymal tumours. J Pathol 1992;168:2933.Google Scholar
Dei Tos, AP, Doglioni, C, Laurino, L, Barbareschi, M, Fletcher, CD. p53 protein expression in non-neoplastic lesions and benign and malignant neoplasms of soft tissues. Histopathology 1993;22:4550.Google Scholar
Giordano, A, Kaiser, HE. The retinoblastoma gene: its role in cell cycle and cancer. In Vivo 1996;10:223227.Google Scholar
Hamel, PA, Gallie, BL, Phillips, RA. The retinoblastoma protein and cell cycle regulation. Trends Genet 1992;8:180185.Google Scholar
Wang, J, Coltrera, MD, Gown, AM. Abnormalities of p53 and p110RB tumor suppressor gene expression in human soft tissue tumors: correlations with cell proliferation and tumor grade. Mod Pathol 1995;8:837842.Google Scholar
Kohashi, K, Oda, Y, Yamamoto, H, et al. Alterations of RB1 gene in embryonal and alveolar rhabdomyosarcoma: special reference to utility of pRB immunoreactivity in differential diagnosis of rhabdomyosarcoma subtype. J Cancer Res Clin Oncol 2008;134:10971103.Google Scholar
Kawauchi, S, Goto, Y, Liu, XP, et al. Low expression of p27(Kip1), a cyclin-dependent kinase inhibitor, is a marker of poor prognosis in synovial sarcoma. Cancer 2001;91:10051012.Google Scholar
Kourea, HP, Orlow, I, Scheithauer, BW, Cordon-Cardo, C, Woodruff, JM. Deletions of the INK4A gene occur in malignant peripheral nerve sheath tumors but not in neurofibromas. Am J Pathol 1999;155:18551860.Google Scholar
Nielsen, GP, Stemmer-Rachamimov, AO, Ino, Y, et al. Malignant transformation of neurofibromas in neurofibromatosis 1 is associated with CDKN2A/p16 inactivation. Am J Pathol 1999;155:18791884.Google Scholar
O’Neill, CJ, McBride, HA, Connolly, LE, McCluggage, WG. Uterine leiomyosarcomas are characterized by high p16, p53 and MIB1 expression in comparison with usual leiomyomas, leiomyoma variants and smooth muscle tumours of uncertain potential. Histopathology 2007;50:851858.Google Scholar
Atkins, KA, Arronte, N, Darus, CJ, Rice, LW. The use of p16 in enhancing the histologic classification of uterine smooth muscle tumors. Am J Surg Pathol 2008;32:98102.Google Scholar
Gonzalez, RS, McClain, CM, Chamberlain, BK, Coffin, CM, Cates, JM. Cyclin-dependent kinase inhibitor 2A (p16) distinguishes well-differentiated liposarcoma from lipoma. Histopathology 2013;62:11091111.Google Scholar
Wiedenmann, B, Franke, WW. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38000 characteristic of presynaptic vesicles. Cell 1985;41:10171028.Google Scholar
Thomas, L, Hartung, K, Langosch, D, et al. Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science 1988;242:10501052.CrossRefGoogle ScholarPubMed
Wiedenmann, B, Franke, WW, Kuhn, C, Moll, R, Gould, VE. Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 1986;83:35003504.Google Scholar
Wiedenmann, B, Huttner, WB. Synaptophysin and chromogranins/secretogranins: widespread constituents of distinct types of neuroendocrine vesicles and new tools in tumor diagnosis. Virchows Arch B Cell Pathol Incl Mol Pathol 1989;58:95121.Google Scholar
Miettinen, M, Rapola, J. Synaptophysin: an immunohistochemical marker for childhood neuroblastoma. Acta Pathol Microbiol Scand A 1987;95:167170.Google Scholar
Hachitanda, Y, Tsuneyoshi, M, Enjoji, M. Expression of pan-neuroendocrine proteins in 53 neuroblastic tumors. Arch Pathol Lab Med 1989;113:381384.Google Scholar
Schwechheimer, K, Wiedenmann, B, Franke, WW. Synaptophysin: a reliable marker for medulloblastomas. Virchows Arch A Pathol Anat Histopathol 1987;411:5359.Google Scholar
Frierson, HF, Ross, GW, Mills, SE, Frankfurter, A. Olfactory neuroblastoma: additional immunohistochemical characterization. Am J Clin Pathol 1990;94:547553.Google Scholar
Cavazzana, AO, Ninfo, V, Roberts, J, Triche, TJ. Peripheral neuroepithelioma: a light microscopic, immunocytochemical, and ultrastructural study. Mod Pathol 1992;5:7178.Google Scholar
Ladanyi, M, Heinemann, FS, Huvos, AG, et al. Neural differentiation in small round cell tumors of bone and soft tissue with the translocation t(11l22)(q24;q12): an immunohistochemical study of 11 cases. Hum Pathol 1990;21:12451251.Google Scholar
Amann, G, Zoubek, A, Salzer-Kuntschik, M, Windhager, R, Kovar, H. Relation of neurological marker expression and EWS gene fusion types in MIC2/CD99-positive tumors of the Ewing family. Hum Pathol 1999;30:10581064.Google Scholar
Parham, DM, Hijazi, Y, Steinberg, SM, et al. Neuroectodermal differentiation in Ewing’s sarcoma family of tumors does not predict tumor behavior. Hum Pathol 1999;30:911918.Google Scholar
Gould, VE, Wiedenmann, B, Lee, I, et al. Synaptophysin expression in neuroendocrine neoplasms as determined by immunocytochemistry. Am J Pathol 1987;126:243257.Google Scholar
Miettinen, M. Synaptophysin and neurofilament proteins as markers for neuroendocrine tumors. Arch Pathol Lab Med 1987;111:813818.Google Scholar
Johnson, TL, Zarbo, RJ, Lloyd, RV, Crissman, JD. Paragangliomas of the head and neck: immunohistochemical neuroendocrine and intermediate filament typing. Mod Pathol 1988;1:216223.Google Scholar
Goh, YW, Spagnolo, DV, Platten, M, et al. Extraskeletal myxoid chondrosarcoma: a light microscopic, immunohistochemical, ultrastructural, and immunoultrastructural study indicating neuroendocrine differentiation. Histopathology 2001;39:514524.Google Scholar
Banerjee, SS, Menasce, LP, Eyden, BP, Brain, AN. Malignant melanoma showing ganglioneuroblastic differentiation: report of a unique case. Am J Surg Pathol 1999;23:582588.Google Scholar
O’Connor, DT, Mahata, SK, Taupenot, L, et al. Chromogranin A in human disease. Adv Exp Med Biol 2000;482:377388.Google Scholar
Lloyd, RV. Immunohistochemical localization of chromogranin in normal and neoplastic endocrine tissues. Pathol Annu 1987;22(Part 2):6990.Google Scholar
Molenaar, WM, Baker, DL, Pleasure, D, Lee, VMY, Trojanowski, JQ. The neuroendocrine and neural profiles of neuroblastomas, ganglioneuroblastomas, and ganglioneuromas. Am J Pathol 1990;136:375382.Google Scholar
Christensen, WN, Strong, EW, Bains, MS, Woodruff, JM. Neuroendocrine differentiation in the glandular peripheral nerve sheath tumor: pathologic distinction from the biphasic synovial sarcoma with glands. Am J Surg Pathol 1988;12:417426.Google Scholar
Pagani, A, Fischer-Colbrie, R, Sanfilippo, B, et al. Secretogranin II expression in Ewing’s sarcomas and primitive neuroectodermal tumors. Diagn Mol Pathol 1992;1:165172.Google Scholar
Lee, MK, Cleveland, DW. Neuronal intermediate filaments. Annu Rev Neurosci 1996;19:187217.Google Scholar
Dahl, D. Immunohistochemical differences between neurofilaments in perikarya, dendrites and axons: immunofluorescence study with antisera raised to neurofilament polypeptides (200K, 150K, 70K) isolated by anion exchange chromatography. Exp Cell Res 1983;149:397408.Google Scholar
Gould, VE, Moll, R, Moll, I, Lee, I, Franke, WW. Neuroendocrine (Merkel) cells of the skin: hyperplasias, dysplasias, and neoplasms. Lab Invest 1985;52:334353.Google Scholar
Mukai, M, Torikata, C, Iri, H, et al. Expression of neurofilament triplet proteins in human neural tumors: an immunohistochemical study of paraganglioma, ganglioneuroma, ganglioneuroblastoma and neuroblastoma. Am J Pathol 1986;122: 2835.Google Scholar
Miettinen, M, Lehto, VP, Virtanen, I. Immunofluorescence microscopic evaluation of the intermediate filament expression of the adrenal cortex and medulla and their tumors. Am J Pathol 1985;118:360366.Google Scholar
Miettinen, M, Lehto, VP, Dahl, D, Virtanen, I. Varying expression of cytokeratin and neurofilaments in neuroendocrine tumors of human gastrointestinal tract. Lab Invest 1985;52:429436.Google Scholar
Lehto, VP, Miettinen, M, Virtanen, I. A dual expression of cytokeratin and neurofilaments in bronchial carcinoid cells. Int J Cancer 1985;35:421425.Google Scholar
Moll, R, Lee, I, Gould, VE, et al. Immunocytochemical analysis of Ewing’s tumors. Patterns of expression of intermediate filaments and desmosomal proteins indicate cell-type heterogeneity and pluripotential differentiation. Am J Pathol 1987;27:288304.Google Scholar
Gerharz, CD, Moll, R, Meister, P, Knuth, A, Gabbert, H. Cytoskeletal heterogeneity of an epithelioid sarcoma with expression of vimentin, cytokeratins, and neurofilaments. Am J Surg Pathol 1990;14:274283.Google Scholar
Folpe, AL, Gown, AM. Poorly differentiated synovial sarcoma: immunohistochemical distinction from primitive neuroectodermal tumors and high grade malignant peripheral nerve sheath tumors. Am J Surg Pathol 1998;22:673682.Google Scholar
Miettinen, M, Rapola, J. Immunohistochemical spectrum of rhabdomyosarcoma and rhabdomyosarcoma-like tumors: expression of cytokeratin and the 68 kD neurofilament protein. Am J Surg Pathol 1989;13:120132.CrossRefGoogle ScholarPubMed
Thomas, JO, Nijjar, J, Turley, H, Micklem, H, Gatter, KC. NB84: a new monoclonal antibody for the recognition of neuroblastoma in routinely processed material. J Pathol 1991;163:6975.Google Scholar
Miettinen, M, Chatten, J, Paetau, A, Stevenson, AJ. Monoclonal antibody NB84 in the differential diagnosis of neuroblastoma and other small round cell tumors. Am J Surg Pathol 1998;22:327332.Google Scholar
Folpe, AL, Patterson, K, Gown, AM. Antineuroblastoma antibody NB-84 also identifies a significant subset of other small blue round cell tumors. Appl Imunohistochem 1997;5:239245.Google Scholar
Nonaka, D, Chiriboga, L, Rubin, BP. Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol 2008;32:12911298.Google Scholar
Heerema, MG, Suurmeijer, AJ. Sox10 immunohistochemistry allows the pathologist to differentiate between prototypical granular cell tumors and other granular cell lesions. Histopathology 2012;61:997999.Google Scholar
Karamchandani, JR, Nielsen, TO, van de Rijn, M, West, RB. Sox10 and S100 in the diagnosis of soft-tissue neoplasms. Appl Immunohistochem Mol Morphol 2012;20:445450.Google Scholar
Naujokas, A, Charli-Joseph, Y, Ruben, BS, et al. SOX-10 expression in cutaneous myoepitheliomas and mixed tumors. J Cutan Pathol 2014;41:353363.Google Scholar
Miettinen, M, McCue, PA, Sarlomo-Rikala, M, et al. Sox10–a marker for not only schwannian and melanocytic neoplasms but also myoepithelial cell tumors of soft tissue: a systematic analysis of 5134 tumors. Am J Surg Pathol 2015;39:826835.Google Scholar
Coffin, CM, Patel, A, Perkins, S, et al. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod Pathol 2001;14:569576.Google Scholar
Cook, JR, Dehner, LP, Collins, MH, et al. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. Am J Surg Pathol 2001;25:13641371.Google Scholar
Mariño-Enríquez, A, Wang, WL, Roy, A, et al. Epithelioid inflammatory myofibroblastic sarcoma: an aggressive intra-abdominal variant of inflammatory myofibroblastic tumor with nuclear membrane or perinuclear ALK. Am J Surg Pathol 2011;35:135144.Google Scholar
Cessna, MH, Zhou, H, Sanger, WG, et al. Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod Pathol 2002;15:931938.Google Scholar
Doyle, LA, Mariño-Enriquez, A, Fletcher, CD, Hornick, JL. ALK rearrangement and overexpression in epithelioid fibrous histiocytoma. Mod Pathol 2015;28:904912.Google Scholar
Angst, RD, Marcozzi, C, Magee, AI. The cadherin superfamily. J Cell Sci 2001;114:625626.Google Scholar
Smith, MEF, Pignatelli, M. The molecular histology of neoplasia: the role of the cadherin/catenin complex. Histopathology 1997;31:107111.Google Scholar
Sato, H, Hasegawa, T, Abe, Y, Skai, H, Hirohashi, S. Expression of E-cadherin in bone and soft tissue sarcoma: a possible role in epithelial differentiation. Hum Pathol 1999;30:13441349.Google Scholar
Danen, EH, de Vries, TJ, Morandini, R, et al. E-cadherin expression in human melanoma. Melanoma Res 1996;6:127131.Google Scholar
Smith, ME, Brown, JI, Fisher, C. Epithelioid sarcoma: presence of vascular-endothelial cadherin and lack of epithelial cadherin. Histopathology 1998;33:425431.Google Scholar
Laskin, WB, Miettinen, M. Epithelial-type and neural-type cadherin expression in malignant noncarcinomatous neoplasms with epithelioid features that involve the soft tissues. Arch Pathol Lab Med 2002;126:425431.Google Scholar
Mechtersheimer, G, Moller, P. Expression of the common acute lymphoblastic leukemia antigen (CD10) in mesenchymal tumors. Am J Pathol 1989;134:961965.Google Scholar
Chu, P, Arber, DA. Paraffin-section detection of CD10 in 505 nonhematopoietic neoplasms: frequent expression in renal cell carcinoma and endometrial stromal sarcoma. Am J Clin Pathol 2000;113:374382.Google Scholar
Chu, PG, Arber, DA, Weiss, LM, Chang, KL. Utility of CD10 in distinguishing between endometrial stromal sarcoma and uterine smooth muscle tumors: an immunohistochemical comparison of 34 cases. Mod Pathol 2001;14:465471.Google Scholar
McCluggage, WG, Sumathi, VP, Maxwell, P. CD10 is a sensitive and diagnostically useful immunohistochemical marker of normal endometrial stroma and of endometrial stromal neoplasms. Histopathology 2001;39:273278.Google Scholar
Kanitakis, J, Bourchany, D, Claudy, A. Expression of the CD10 antigen (neutral endopeptidase) by mesenchymal tumors of the skin. Anticancer Res 2000;20:35393544.Google Scholar
Deniz, K, Çoban, G, Okten, T. Anti-CD10 (56C6) expression in soft tissue sarcomas. Pathol Res Pract 2012;208:281285.Google Scholar
Ambros, IM, Ambros, PF, Strehl, J, et al. MIC2 is a specific marker for Ewing’s sarcoma and peripheral neuroectodermal tumors: evidence for a common histogenesis of Ewing’s sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and common chromosome aberration. Cancer 1991;67:18861893.Google Scholar
Fellinger, EJ, Garin-Chesa, P, Triche, TJ, Huvos, AG, Rettig, WJ. Immunohistochemical analysis of Ewing’s sarcoma cell surface antigen p30/32MIC2 Am J Pathol 1991;1139:317325.Google Scholar
Stevenson, AJ, Chatten, J, Bertoni, F, Miettinen, M. CD99 (p30/32-MIC2) neuroectodermal/Ewing sarcoma antigen as an immunohistochemical marker. Review of more than 600 tumors and the literature experience. Appl Immunohistochem 1994;2:231240.Google Scholar
Renshaw, AA. O13 (CD99) in spindle cell tumors. Reactivity with hemangiopericytoma, solitary fibrous tumor, synovial sarcoma, and meningioma but rarely with sarcomatoid mesothelioma. Appl Immunohistochem 1995;3:250256.Google Scholar
Diwan, AH, Skelton, HG III, Horenstein, MG, et al. Dermatofibrosarcoma protuberans and giant cell fibroblastoma exhibit CD99 positivity. J Cutan Pathol 2008;35:547550.Google Scholar
Shibuya, R, Matsuyama, A, Nakamoto, M, et al. The combination of CD99 and NKX2.2, a transcriptional target of EWSR1-FLI1, is highly specific for the diagnosis of Ewing sarcoma. Virchows Arch 2014;465:599605.Google Scholar
Dei Tos, AP, Doglioni, C. Calretinin: a novel tool for diagnostic immunohistochemistry. Adv Anat Pathol 1998;5:6166.Google Scholar
Miettinen, M, Limon, J, Niezabitowski, A, Lasota, J. Calretinin and other mesothelioma markers in synovial sarcoma: analysis of antigenic similarities and differences with malignant mesothelioma. Am J Surg Pathol 2001;25:610617.Google Scholar
Barak, S, Wang, Z, Miettinen, M. Immunoreactivity for calretinin and keratins in desmoid fibromatosis and other myofibroblastic tumors: a diagnostic pitfall. Am J Surg Pathol 2012;36:14041409.Google Scholar
Cates, JM, Coffing, BN, Harris, BT, Black, CC. Calretinin expression in tumors of adipose tissue. Hum Pathol 2006;37:312321.Google Scholar
Miettinen, M, Foidart, JM, Ekblom, P. Immunohistological demonstration of laminin, the major glycoprotein of basement membranes, as an aid in the diagnosis of soft tissue tumors. Am J Clin Pathol 1983;79:306311.Google Scholar
Autio-Harmainen, H, Apaja-Sarkkinen, M, Martikainen, J, Taipale, A, Rapola, J. Production of basement membrane laminin and type IV collagen by tumors of striated muscle: an immunohistochemical study of rhabdomyosarcomas of different histologic types and a benign vaginal rhabdomyoma. Hum Pathol 1986;17:12181224.Google Scholar
Ogawa, K, Oguchi, M, Yamabe, H, Nakashima, Y, Hamashima, Y. Distribution of collagen type IV in soft tissue tumors: an immunohistochemical study. Cancer 1986;58:269277.Google Scholar
Leong, ASY, Vinyuvat, S, Suthipintawong, C, Leong, FJ. Patterns of basal lamina immunostaining in soft tissue and bony tumors. Appl Immunohistochem 1997;5:17.Google Scholar
Billings, SD, Al, Folpe, Weiss, SW. Do leiomyomas of deep soft tissue exist?: an analysis of highly differentiated smooth muscle tumors of deep soft tissue supporting two distinct subtypes. Am J Surg Pathol 2001;25:11341142.Google Scholar
Paal, E, Miettinen, M. Retroperitoneal leiomyomas: a clinicopathologic and immunohistochemical study of 56 cases with a comparison to retroperitoneal leiomyosarcomas. Am J Surg Pathol 2001;25:13551363.Google Scholar
Rao, UN, Finkelstein, SD, Jones, MW. Comparative immunohistochemical and molecular analysis of uterine and extrauterine leiomyosarcomas. Mod Pathol 1999;12:10011009.Google Scholar
Kelley, TW, Borden, EC, Goldblum, JR. Estrogen and progesterone receptor expression in uterine and extrauterine leiomyosarcomas: an immunohistochemical study. Appl Immunohistochem Mol Morphol 2004;12:338341.Google Scholar
Deamant, FD, Pombo, MT, Battifora, H. Estrogen receptor immunohistochemistry as a predictor of site of origin in metastatic breast cancer. Appl Immunohistochem 1993;1:188192.Google Scholar
Deyrup, AT, Tretiakova, M, Montag, AG. Estrogen receptor-beta expression in extra abdominal fibromatoses: an analysis of 40 cases. Cancer 2006;106:208213.Google Scholar
Deyrup, AT, Tretiakova, M, Khramtsov, A, Montag, AG. Exstrogen receptor beta expression in vascular neoplasia: an analysis of 53 benign and malignant cases. Mod Pathol 2004;17:13721377.Google Scholar
Achstatter, T, Moll, R, Anderson, A, et al. Expression of glial filament protein (GFP) in nerve sheaths and non-neural cells re-examined using monoclonal antibodies, with special emphasis on the co-expression of GFP and cytokeratins in epithelial cells of human salivary gland and pleomorphic adenomas. Differentiation 1986;31:206227.Google Scholar
Mancardi, GL, Cadoni, A, Tabaton, M, et al. Schwann cell GFAP expression increases in axonal neuropathies. J Neurol Sci 1991;102:177183.Google Scholar
Memoli, VA, Brown, EF, Gould, VE. Glial fibrillary acidic protein (GFAP) immunoreactivity in peripheral nerve sheath tumors. Ultrastruct Pathol 1984;7:269275.Google Scholar
Gould, VE, Moll, R, Moll, I, et al. The intermediate filament complement of the spectrum of nerve sheath neoplasms. Lab Invest 1986;55:463474.Google Scholar
Kawahara, E, Oda, Y, Ooi, A, et al. Expression of glial fibrillary acidic protein (GFAP) in peripheral nerve sheath tumors. A comparative study of immunoreactivity of GFAP, vimentin, S100-protein and neurofilament in 38 schwannomas and 18 neurofibromas. Am J Surg Pathol 1988;12:115120.Google Scholar
Gray, MH, Rosenberg, AE, Dickersin, GR, Bhan, AK. Glial fibrillary acidic protein and keratin expression by benign and malignant nerve sheath tumors. Hum Pathol 1989;20:10891096.Google Scholar
Masliah-Planchon, J, Bièche, I, Guinebretière, JM, Bourdeaut, F, Delattre, O. SWI/SNF chromatin remodeling and human malignancies. Annu Rev Pathol 2015;10:145171.Google Scholar
Hollmann, TJ, Hornick, JL. INI1-deficient tumors; diagnostic features and molecular genetics. Am J Surg Pathol 2011:35:e47e63Google Scholar
Hornick, JL, Dal Cin, P, Fletcher, CD. Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol 2009;33:542550.Google Scholar
Sigauke, E, Rakheja, D, Maddox, DL, et al. Absence of expression of SMARCB1/INI1 in malignant rhabdoid tumors of the central nervous system, kidneys and soft tissue: an immunohistochemical study with implications for diagnosis. Mod Pathol 2006;19:717725.Google Scholar
Hoot, AC, Russo, P, Judkins, AR, Perlman, EJ, Biegel, JA. Immunohistochemical analysis of hSNF5/INI1 distinguishes renal and extra-renal malignant rhabdoid tumors from other pediatric soft tissue tumors. Am J Surg Pathol 2004;28:14851491.Google Scholar
Kohashi, K, Oda, Y, Yamamoto, H, et al. SMARCB1/INI1 protein expression in round cell soft tissue sarcomas associated with chromosomal translocations involving EWS: a special reference to SMARCB1/INI1 negative variant extraskeletal myxoid chondrosarcoma. Am J Surg Pathol 2008;32:11681174.Google Scholar
Jo, VY, Fletcher, CD. Epithelioid malignant peripheral nerve sheath tumor: clinicopathologic analysis of 63 cases. Am J Surg Pathol 2015;39:673682.Google Scholar
Rizzo, D, Fréneaux, P, Brisse, H, et al. SMARCB1 deficiency in tumors from the peripheral nervous system: a link between schwannomas and rhabdoid tumors? Am J Surg Pathol 2012;36:964972.Google Scholar
Arnold, MA, Arnold, CA, Li, G, et al. A unique pattern of INI1 immunohistochemistry distinguishes synovial sarcoma from its histologic mimics. Hum Pathol 2013;44:881887.Google Scholar
Kadoch, C, Crabtree, GR. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell 2013;153:7185.Google Scholar
Agaimy, A. The expanding family of SMARCB1(INI1)-deficient neoplasia: implications of phenotypic, biological, and molecular heterogeneity. Adv Anat Pathol 2014;21:394410.Google Scholar
Besmer, P, Murphy, JE, George, PC, et al. A new acute transforming feline retro-virus and relationship of its oncogene v-kit with the protein kinase gene family. Nature 1986;320:415421.Google Scholar
Kitamura, Y, Hirota, S, Nishida, T. Molecular pathology of c-kit proto-oncogene and development of gastrointestinal stromal tumors. Ann Chir Gynaecol 1998;87:282286.Google Scholar
Miettinen, M, Lasota, J. KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol 2005;13:205220.Google Scholar
Tsuura, Y, Hiraki, H, Watanabe, K, et al. Preferential localization of c-kit product in tissue mast cells, basal cells of skin, epithelial cells of breast, small cell lung carcinoma and seminoma/dysgerminoma in human: immunohistochemical study of formalin-fixed, paraffin-embedded tissues. Virchows Arch 1994;424:135141.Google Scholar
Lammie, A, Drobnjak, M, Gerald, W, et al. Expression of c-kit and kit ligand proteins in normal human tissues. J Histochem Cytochem 1994;42:14171425.Google Scholar
Arber, DA, Tamayo, R, Weiss, LM. Paraffin section detection of the c-kit gene product (CD117) in human tissues: value in the diagnosis of mast cell disorders. Hum Pathol 1998;29:498504.Google Scholar
Kindblom, LG, Remotti, HE, Aldenborg, F, Meis-Kindblom, JM. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 1998;152:12591269.Google Scholar
Sarlomo-Rikala, M, Kovatich, AJ, Barusevicius, A, Miettinen, M. CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod Pathol 1998;11: 728734.Google Scholar
Sircar, K, Hewlett, BR, Huizinga, JD, et al. Interstitial cells of Cajal as precursors for gastrointestinal stromal tumors. Am J Surg Pathol 1999;23:377389.Google Scholar
Chen, J, Yanuck, RR III, Abbondanzo, SL, Chu, WS, Aguilera, NS. c-kit (CD117) reactivity in extramedullary myeloid tumor/granulocytic sarcoma. Arch Pathol Lab Med 2001;125:14481452.Google Scholar
Miettinen, M, Sarlomo-Rikala, M, Lasota, J. KIT expression in angiosarcomas and in fetal endothelial cells. Lack of c-kit mutations in exon 11 and 17 of c-kit. Mod Pathol 2000;13:536541.Google Scholar
Montone, KT, van Belle, P, Elenitsas, R, Elder, DE. Protooncogene c-kit expression in malignant melanoma: protein loss with tumor progression. Mod Pathol 1997;10:939944.Google Scholar
Doyle, LA, Möller, E, Dal Cin, P, et al. MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am J Surg Pathol 2011;35:733–741.Google Scholar
Doyle, LA, Wang, WL, Dal Cin, P, et al. MUC4 is a sensitive and extremely useful marker for sclerosing epithelioid fibrosarcoma: association with FUS gene rearrangement. Am J Surg Pathol 2012;36:14441451.Google Scholar
Conner, JR, Hornick, JL. SATB2 is a novel marker of osteoblastic differentiation in bone and soft tissue tumors. Histopathology 2013;63:3649.Google Scholar
Ordonez, NG. SATB2 is a novel marker of osteoblastic differentiation and colorectal carcinoma. Adv Anat Pathol 2014;21:6367.Google Scholar
Franke, WW, Schmid, E, Osborn, M, Weber, K. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci USA 1978;75:50345038.Google Scholar
Azumi, N, Battifora, H. The distribution of vimentin and keratin in epithelial and nonepithelial neoplasms. A comprehensive immunohistochemical study on formalin- and alcohol-fixed tumors. Am J Clin Pathol 1987;88:286296.Google Scholar
Battifora, H. Assessment of antigen damage in immunohistochemistry. The vimentin internal control. Am J Clin Pathol 1991;96:669671.Google Scholar
Scharnhorst, V, Van Der Eb, AJ, Jochemsen, AG. WT1 proteins: functions in growth and differentiation. Gene 2001;273:141161.Google Scholar
Ordonez, NG. Desmoplastic small round cell tumor. II: an ultrastructural and immunohistochemical study with emphasis on new immunohistochemical markers. Am J Surg Pathol 1998;22:13141327.Google Scholar
Barnoud, R, Sabourin, J, Pasquier, D, et al. Immunohistochemical expression of WT1 by desmoplastic small round cell tumor: a comparative study with other small round cell tumors. Am J Surg Pathol 2000;24:830836.Google Scholar
Amin, KM, Litzky, LA, Smythe, WR, et al. Wilms’ tumor 1 susceptibility (WT1) gene products are selectively expressed in malignant mesothelioma. Am J Pathol 1995;146:344356.Google Scholar
Shimizu, M, Toki, T, Takagi, Y, Konishi, I, Fujii, S. Immunohistochemical detection of the Wilms’ tumor gene (WT1) in epithelial ovarian tumors. Int J Gynecol Pathol 2000;19:158163.Google Scholar
Tornos, C, Soslow, R, Chen, S, et al. Expression of WT1, CA125, and GCDFP-15 as useful markers in the differential diagnosis of primary ovarian carcinomas versus metastatic breast cancer to the ovary. Am J Surg Pathol 2005;29:14821489.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×