We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathcal {S}$ denote the class of univalent functions in the open unit disc $\mathbb {D}:=\{z\in \mathbb {C}:\, |z|<1\}$ with the form $f(z)= z+\sum _{n=2}^{\infty }a_n z^n$. The logarithmic coefficients $\gamma _{n}$ of $f\in \mathcal {S}$ are defined by $F_{f}(z):= \log (f(z)/z)=2\sum _{n=1}^{\infty }\gamma _{n}z^{n}$. The second Hankel determinant for logarithmic coefficients is defined by
The sharp bound for the third Hankel determinant for the coefficients of the inverse function of convex functions is obtained, thus answering a recent conjecture concerning invariance of coefficient functionals for convex functions.
We begin the study of Hankel matrices whose entries are logarithmic coefficients of univalent functions and give sharp bounds for the second Hankel determinant of logarithmic coefficients of convex and starlike functions.
By making use of the Cauchy double alternant and the Laplace expansion formula, we establish two closed formulae for the determinants of factorial fractions that are then utilised to evaluate several determinants of binomial coefficients and Catalan numbers, including those obtained recently by Chammam [‘Generalized harmonic numbers, Jacobi numbers and a Hankel determinant evaluation’, Integral Transforms Spec. Funct.30(7) (2019), 581–593].
We apply the Schwarz lemma to find general formulas for the third coefficient of Carathéodory functions dependent on a parameter in the closed unit polydisk. Next we find sharp estimates of the Hankel determinant $H_{2,2}$ and Zalcman functional $J_{2,3}$ over the class ${\mathcal{C}}{\mathcal{V}}$ of analytic functions $f$ normalised such that $\text{Re}\{(1-z^{2})f^{\prime }(z)\}>0$ for $z\in \mathbb{D}:=\{z\in \mathbb{C}:|z|<1\}$, that is, the subclass of the class of functions convex in the direction of the imaginary axis.
We prove the sharp inequality $|H_{3,1}(f)|\leq 4/135$ for convex functions, that is, for analytic functions $f$ with $a_{n}:=f^{(n)}(0)/n!,~n\in \mathbb{N}$, such that
For every $q\in (0,1)$, we obtain the Herglotz representation theorem and discuss the Bieberbach problem for the class of $q$-convex functions of order $\unicode[STIX]{x1D6FC}$ with $0\leq \unicode[STIX]{x1D6FC}<1$. In addition, we consider the Fekete–Szegö problem and the Hankel determinant problem for the class of $q$-starlike functions, leading to two conjectures for the class of $q$-starlike functions of order $\unicode[STIX]{x1D6FC}$ with $0\leq \unicode[STIX]{x1D6FC}<1$.
Let the function $f$ be analytic in $\mathbb{D}=\{z:|z|<1\}$ and given by $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$. For $0<\unicode[STIX]{x1D6FD}\leq 1$, denote by ${\mathcal{C}}(\unicode[STIX]{x1D6FD})$ the class of strongly convex functions. We give sharp bounds for the initial coefficients of the inverse function of $f\in {\mathcal{C}}(\unicode[STIX]{x1D6FD})$, showing that these estimates are the same as those for functions in ${\mathcal{C}}(\unicode[STIX]{x1D6FD})$, thus extending a classical result for convex functions. We also give invariance results for the second Hankel determinant $H_{2}=|a_{2}a_{4}-a_{3}^{2}|$, the first three coefficients of $\log (f(z)/z)$ and Fekete–Szegö theorems.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.