Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T19:08:58.041Z Has data issue: false hasContentIssue false

32 - Common forms of visual handicap

Published online by Cambridge University Press:  17 August 2009

Alan Wright
Affiliation:
MRC Human Genetics Unit, Edinburgh
Nicholas Hastie
Affiliation:
MRC Human Genetics Unit, Edinburgh
Get access

Summary

Introduction

The evolution, comparative structure and function of the eye have attracted the attention of many scientists, including Isaac Newton, who first showed that light could be split into different wavelengths, and later Charles Darwin, for whom the eye presented an interesting test of the evolutionary paradigm. Newton laid the foundations for the trichromatic theory of vision (Young, 1802), whereby different wavelengths of light are perceived by three distinct receptors within the retina, with overlapping sensitivities, now known to be the short-, medium- and long-wavelength cone opsins. The eye interacts with the environment in the most direct way, since it is constantly bombarded with electromagnetic radiation of many wavelengths and yet it specifically responds only to those in the 400–700 nm range. These wavelengths correspond closely to the solar spectrum measured below the surface of the sea, where the earliest visual systems are thought to have evolved (McIlwaine, 1996). An otherwise rare member of the carotenoid family, 11-cis retinal, an isomer of vitamin A aldehyde, has the important property of changing shape on absorbing a photon of light. This molecule combines with the different opsin apoproteins, which are members of the G-protein coupled receptor superfamily, to form the visual photopigment in all multicellular animals. In this way, light serves to generate a neural signal but at the same time renders the eye vulnerable to oxidative damage, which is a major factor in at least two of the major causes of global blindness.

Type
Chapter
Information
Genes and Common Diseases
Genetics in Modern Medicine
, pp. 488 - 504
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alward, W. L., Kwon, Y. H., Kawase, K.et al. (2003). Evaluation of optineurin sequence variations in 1,048 patients with open-angle glaucoma. Am J Ophthalmol, 136, 904–10.CrossRefGoogle ScholarPubMed
Appel, G. B., Cook, H. T., Hageman, G.et al. (2005). Membranoproliferative glomerulonephritis type II (dense deposit disease): an update. J Am Soc Nephrol, 16, 1392–403.CrossRefGoogle ScholarPubMed
Argraves, W. S., Greene, L. M., Cooley, M. A. and Gallagher, W. M. (2003). Fibulins: physiological and disease perspectives. EMBO Rep, 4, 1127–31.CrossRefGoogle ScholarPubMed
Aroca-Aguilar, J. D., Sanchez-Sanchez, F., Ghosh, S., Coca-Prados, M. and Escribano, J. (2005). Myocilin mutations causing glaucoma inhibit the intracellular endoproteolytic cleavage of myocilin between amino acids Arg226 and Ile227. J Biol Chem, 280, 21043–51.CrossRefGoogle ScholarPubMed
Ayyagari, R., Griesinger, I. B., Bingham, E.et al. (2000). Autosomal dominant hemorrhagic macular dystrophy not associated with the TIMP3 gene. Arch Ophthalmol, 118, 85–92.CrossRefGoogle Scholar
Buhrmann, R. R., Quigley, H. A., Barron, Y.et al. (2000). Prevalence of glaucoma in a rural East African population. Invest Ophthalmol Vis Sci, 41, 40–8.Google Scholar
Congdon, N. G. and Taylor, H. R. (2003). Age-related cataract. In Johnson, G. J., Minassian, D. C., Weale, R. A. and West, S. K. (eds.), The epidemiology of eye disease, pp.105–19. London: Arnold.Google Scholar
Conley, Y. P., Erturk, D., Keverline, A.et al. (2000). A juvenile-onset, progressive cataract locus on chromosome 3q21-q22 is associated with a missense mutation in the beaded filament structural protein-2. Am J Hum Genet, 66, 1426–31.CrossRefGoogle ScholarPubMed
Crabb, J. W., Miyagi, M., Gu, X.et al. (2002). Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA, 99, 14682–7.CrossRefGoogle ScholarPubMed
Delaye, M. and Tardieu, A. (1983). Short-range order of crystallin proteins accounts for eye lens transparency. Nature, 302, 415–17.CrossRefGoogle ScholarPubMed
Edwards, A. O., Ritter, R. 3rd, Abel, K. J.et al. (2005). Complement factor H polymorphism and age-related macular degeneration. Science, 308, 421–4.CrossRefGoogle ScholarPubMed
Evans, J. (2003). Age-related macular degeneration. In Johnson, G. J., Minassian, D. C., Weale, R. A. and West, S. K. (eds.), The epidemiology of eye disease, pp. 356–69. London: Arnold.Google Scholar
Fisher, S. A., Abecasis, G. R., Yashar, B. M.et al. (2005). Meta-analysis of genome scans of age-related macular degeneration. Hum Mol Genet, 14, 2257–64.CrossRefGoogle ScholarPubMed
Francis, P., Berry, V., Bhattacharya, S. and Moore, A. (2000). Congenital progressive polymorphic cataract caused by a mutation in the major intrinsic protein of the lens, MIP (AQP0). Br J Ophthalmol, 84, 1376–9.CrossRefGoogle Scholar
Freeman, L. J., Lomas, A., Hodson, N.et al. (2005). Fibulin-5 interacts with fibrillin-1 molecules and microfibrils. Biochem J, 388, 1–5.CrossRefGoogle ScholarPubMed
Geirsdottir, A., Stefansson, E., Jonasson, F.et al. (2005). Do all individuals with a family history of age-related maculopathy (ARM) develop age-related macular degeneration (AMD) if they live to be 100 years old?Invest Ophthalmol Vis Sci, A3310.Google Scholar
Giltay, R., Timpl, R. and Kostka, G. (1999). Sequence, recombinant expression and tissue localization of two novel extracellular matrix proteins, fibulin-3 and fibulin-4. Matrix Biol, 18, 469–80.CrossRefGoogle ScholarPubMed
Gong, G., Kosoko-Lasaki, O., Haynatzki, G. R. and Wilson, M. R. (2004). Genetic dissection of myocilin glaucoma. Hum Mol Genet, 13 Spec No 1, R91–102.CrossRefGoogle ScholarPubMed
Graw, J. (2004). Congenital hereditary cataracts. Int J Dev Biol, 48, 1031–44.CrossRefGoogle ScholarPubMed
Hageman, G. S., Anderson, D. H., Johnson, L. V.et al. (2005). A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA, 102, 7227–32.CrossRefGoogle ScholarPubMed
Haines, J. L., Hauser, M. A., Schmidt, S.et al. (2005). Complement factor H variant increases the risk of age-related macular degeneration. Science, 308, 419–21.CrossRefGoogle ScholarPubMed
Hammond, C. J., Duncan, D. D., Snieder, H.et al. (2001). The heritability of age-related cortical cataract: the twin eye study. Invest Ophthalmol Vis Sci, 42, 601–5.Google ScholarPubMed
Hammond, C. J., Snieder, H., Spector, T. D. and Gilbert, C. E. (2000). Genetic and environmental factors in age-related nuclear cataracts in monozygotic and dizygotic twins. N Engl J Med, 342, 1786–90.CrossRefGoogle ScholarPubMed
Hammond, C. J., Webster, A. R., Snieder, H.et al. (2002). Genetic influence on early age-related maculopathy: a twin study. Ophthalmology, 109, 730–6.CrossRefGoogle ScholarPubMed
Harding, J. J. (1991). Cataract: biochemistry, epidemiology and pharmacology. London: Chapman and Hall.Google Scholar
Hayward, C., Shu, X., Cideciyan, A. V.et al. (2003). Mutation in a short-chain collagen gene, CTRP5, results in extracellular deposit formation in late-onset retinal degeneration: a genetic model for age-related macular degeneration. Hum Mol Genet, 12, 2657–67.CrossRefGoogle Scholar
Heijl, A., Leske, M. C., Bengtsson, B.et al. (2002). Early Manifest Glaucoma Trial Group. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol, 120, 1268–79.CrossRefGoogle ScholarPubMed
Hejtmancik, J. F. and Kantorow, M. (2004). Molecular genetics of age-related cataract. Exp Eye Res, 79, 3–9.CrossRefGoogle ScholarPubMed
Hejtmancik, J. F., Kaiser-Kupfer, M. I. and Piatigorsky, J. (2001). Molecular biology and inherited disorders of the eye lens. In Scriver, C. R. and Sly, W. S. (eds.), The metabolic basis of inherited disease, 8th edn, pp. 6033–62. New York: McGraw Hill.Google Scholar
Hendrickson, A. (2005). Organization of the adult primate fovea. In Penfold, P. L. and Provis, J. M. (eds.), Macular degeneration, pp.1–23. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Iyengar, S. K., Klein, B. E., Klein, R.et al. (2004). Identification of a major locus for age-related cortical cataract on chromosome 6p12-q12 in the Beaver Dam Eye Study. Proc Natl Acad Sci USA, 101, 14485–90.CrossRefGoogle Scholar
Johnson, L. V. and Anderson, D. H. (2004). Age-related macular degeneration and the extracellular matrix. N Engl J Med, 351, 320–2.CrossRefGoogle ScholarPubMed
Johnstone, G. J. and Quigley, H. A. (2003). In Johnson, G. J., Minassian, D. C., Weale, R. A. and West, S. K. (eds.), The epidemiology of eye disease, pp. 222–39. London: Arnold.Google Scholar
Klein, R. J., Zeiss, C., Chew, E. Y.et al. (2005). Complement factor H polymorphism in age-related macular degeneration. Science, 308, 385–9.CrossRefGoogle ScholarPubMed
Klenotic, P. A., Munier, F. L., Marmorstein, L. Y. and Anand-Apte, B. (2004). Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1). Implications for macular degenerations. J Biol Chem, 279, 30469–73.CrossRefGoogle ScholarPubMed
Lee, S. C., Wang, Y., Ko, G. T.et al. (2001). Risk factors for cataract in Chinese patients with type 2 diabetes: evidence for the influence of the aldose reductase gene. Clin Genet, 59, 356–9.CrossRefGoogle ScholarPubMed
Lotery, A. J., Avery, K., Goverdhan, S. V.et al. (2005). Mutation analysis of fibulin 5 in a United Kingdom cohort of age-related macular degeneration patients. Invest Ophthalmol Vis Sci, A1150.Google Scholar
Marmorstein, L. Y., Munier, F. L., Arsenijevic, Y.et al. (2002). Aberrant accumulation of, EFEMP1 underlies drusen formation in Malattia Leventinese and age-related macular degeneration. Proc Natl Acad Sci USA, 99, 13067–72.CrossRefGoogle ScholarPubMed
Marshall, J., Hussain, A. A., Starita, C., Moore, D. J. and Patmore, A. L. (1998). Aging and Bruch's membrane. In Marmor, M. F. and Wolfensberger, T. J. (eds.), The retinal pigment epithelium, pp. 669–92. New York: Oxford University Press.Google Scholar
Martin, N., Boomsma, D. and Machin, G. (1997). A twin-pronged attack on complex traits. Nat Genet, 17, 387–92.CrossRefGoogle ScholarPubMed
McIlwaine, J. T. (1996). An introduction to the biology of vision. Cambridge, MA: Cambridge University Press, pp. 3–5.CrossRefGoogle Scholar
Nakamura, T., Lozano, P. R., Ikeda, Y.et al. (2002). Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature, 415, 171–5.CrossRefGoogle ScholarPubMed
Nguyen, A. D., Itoh, S., Jeney, V.et al. (2004). Fibulin-5 is a novel binding protein for extracellular superoxide dismutase. Circ Res, 95, 1067–74.CrossRefGoogle ScholarPubMed
Nguyen, T. D., Chen, P., Huang, W. D.et al. (1998). Gene structure and properties of TIGR, an olfactomedin-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells. J Biol Chem, 273, 6341–50.CrossRefGoogle ScholarPubMed
Okano, Y., Asada, M., Fujimoto, A.et al. (2001). A genetic factor for age-related cataract: identification and characterization of a novel galactokinase variant, “Osaka,” in Asians. Am J Hum Genet, 68, 1036–42.CrossRefGoogle Scholar
Pangburn, M. K., Pangburn, K. L., Koistinen, V., Meri, S. and Sharma, A. K. (2000). Molecular mechanisms of target recognition in an innate immune system: interactions among factor H, C3b, and target in the alternative pathway of human complement. J Immunol, 164, 4742–51.CrossRefGoogle Scholar
Penfold, P. L. and Provis, J. M. (Eds.) (2005). Macular degeneration. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Qi, J. H., Ebrahem, Q., Moore, N.et al. (2003). A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med, 9, 407–15.CrossRefGoogle ScholarPubMed
Quigley, H. A. (2004). New paradigms in the mechanisms and management of glaucoma. Eye, Advance Online Publication 29 October, 2004.Google Scholar
Reddy, M. A., Francis, P. J., Berry, V., Bhattacharya, S. S. and Moore, A. T. (2004). Molecular genetic basis of inherited cataract and associated phenotypes. Surv Ophthalmol, 49, 300–15.CrossRefGoogle ScholarPubMed
Reidy, A., Minassian, D. C., Vafidis, G.et al. (1998). Prevalence of serious eye disease and visual impairment in a north London population: population based, cross sectional study. BMJ, 316, 1643–6.CrossRefGoogle Scholar
Ren, Z., Li, A., Shastry, B. S.et al. (2000). A 5-base insertion in the gammaC-crystallin gene is associated with autosomal dominant variable zonular pulverulent cataract. Hum Genet, 106, 531–7.Google ScholarPubMed
Resnikoff, S., Pascolini, D., Etya'ale, D.et al. (2004). Global data on visual impairment in the year 2002. Bull World Health Organ, 82, 844–51.Google ScholarPubMed
Rezaie, T., Child, A., Hitchings, R.et al. (2002). Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science, 295, 1077–9.CrossRefGoogle ScholarPubMed
Rodriguez de Cordoba, S., Esparza-Gordillo, J., Goicoechea de Jorge, E., Lopez-Trascasa, M. and Sanchez-Corral, P. (2004). The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol, 41, 355–67.CrossRefGoogle ScholarPubMed
Seddon, J. M., Cote, J., Page, W. F., Aggen, S. H. and Neale, M. C. (2005). The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences. Arch Ophthalmol, 123, 321–7.CrossRefGoogle ScholarPubMed
Shu, X., Tulloch, B., Lennon, A.et al. (2006). Disease mechanisms in late-onset retinal macular degeneration associated with mutation in C1QTNF5. Hum Mol Genet, 15, 1680–9.CrossRefGoogle ScholarPubMed
Stoilov, I., Akarsu, A. N. and Sarfarazi, M. (1997). Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet, 6, 641–7.CrossRefGoogle ScholarPubMed
Stone, E. M., Braun, T. A., Russell, S. R.et al. (2004). Missense variations in the fibulin 5 gene and age-related macular degeneration. N Engl J Med, 351, 346–53.CrossRefGoogle ScholarPubMed
Stone, E. M., Fingert, J. H., Alward, W. L.et al. (1997). Identification of a gene that causes primary open angle glaucoma. Science, 275, 668–70.CrossRefGoogle ScholarPubMed
Stone, E. M., Lotery, A. J., Munier, F. L.et al. (1999). A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nat Genet, 22, 199–202.CrossRefGoogle ScholarPubMed
Taylor, H. R., West, S. K., Rosenthal, F. S.et al. (1998). Effect of ultraviolet radiation on cataract formation. N Engl J Med, 319, 1429–33.CrossRefGoogle Scholar
Tielsch, J. M., Sommer, A., Katz, J.et al. (1991). Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. JAMA, 266, 369–74.CrossRefGoogle ScholarPubMed
Timpl, R., Sasaki, T., Kostka, G. and Chu, M. L. (2003). Fibulins: a versatile family of extracellular matrix proteins. Nat Rev Mol Cell Biol, 4, 479–89.CrossRefGoogle ScholarPubMed
United Nations (2001). World population prospects. The 2000 revision highlights. www.un.org/esa/population/publications/wpp2000/highlights.pdf
Vincent, A. L., Billingsley, G., Buys, Y.et al. (2002). Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am J Hum Genet, 70, 448–60.CrossRefGoogle ScholarPubMed
Weber, B. H., Vogt, G., Pruett, R. C., Stohr, H. and Felbor, U. (1994). Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nat Genet, 8, 352–6.CrossRefGoogle ScholarPubMed
West, S. K., Munoz, B., Schein, O. D., Duncan, D. D. and Rubin, G. S. (1998). Racial differences in lens opacities: the Salisbury Eye Evaluation (SEE) project. Am J Epidemiol, 148, 1033–9.CrossRefGoogle ScholarPubMed
Wiggs, J. L., Auguste, J., Allingham, R. R.et al. (2003). Lack of association of mutations in optineurin with disease in patients with adult-onset primary open-angle glaucoma. Arch Ophthalmol, 121, 1181–3.CrossRefGoogle ScholarPubMed
Williams-Lyn, D., Flanagan, J., Buys, Y.et al. (2000). The genetic aspects of adult-onset glaucoma: a perspective from the Greater Toronto area. Can J Ophthalmol, 35, 12–7.CrossRefGoogle ScholarPubMed
Yamada, K. M. and Geiger, B. (1997). Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol, 9, 76–85.CrossRefGoogle ScholarPubMed
Young, T. (1802). On the theory of light and colours. Philos Trans R Soc London, 92, 12–48.CrossRefGoogle Scholar
Zareparsi, S., Branham, K. E., Li, M.et al. (2005). Strong Association of the Y402H Variant in Complement Factor H at 1q32 with Susceptibility to Age-Related Macular Degeneration. Am J Hum Genet, 77, 149–53.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×