Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T17:57:32.589Z Has data issue: false hasContentIssue false

23 - Type 2 diabetes mellitus

Published online by Cambridge University Press:  17 August 2009

Alan Wright
Affiliation:
MRC Human Genetics Unit, Edinburgh
Nicholas Hastie
Affiliation:
MRC Human Genetics Unit, Edinburgh
Get access

Summary

Introduction

Type 2 diabetes accounts for the overwhelming majority of diabetes worldwide (Zimmet et al., 2001) and represents a major and growing challenge to biomedical care. In contrast to many other complex traits, the environmental exposures which contribute to the development of this condition are well characterized: but as they are so pervasive, efforts to reduce the prevalence of this condition through environmental and behavioral manipulation have had only limited impact. Personal risk of developing type 2 diabetes results from the interaction between these pervasive exposures and our individual portfolios of susceptibility and protective genomic variants. Over the past decade, more and more of these variants have been identified and characterized. The challenge for the next decade is to understand how these variants interact with each other and with environment, and to use this information to target preventive and therapeutic interventions to maximize their effect.

Type 2 diabetes: the next global epidemic?

Definitions

In contrast to type 1 diabetes, which is known to result from autoimmune destruction of the insulin-secreting beta-cells of the pancreas, leading to lifelong dependence on exogenous insulin, the etiology of type 2 diabetes is poorly understood (Kahn, 2003). Whilst type 1 diabetes is typically diagnosed in childhood or early adulthood, type 2 diabetes classically presents in later life. These clinical distinctions lie behind previous disease classifications in which type 2 diabetes was known originally as maturity-onset diabetes, and subsequently, as non-insulin-dependent diabetes mellitus (World Health Organization Study Group, 1985).

Type
Chapter
Information
Genes and Common Diseases
Genetics in Modern Medicine
, pp. 344 - 358
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, K. (1996). The clinical implications of impaired glucose tolerance. Diabetic Medicine, 13, 927–37.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Altshuler, D., Hirschhorn, J. N., Klannemark, M.et al. (2000). The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nature Genetics, 26, 76–80.Google ScholarPubMed
Barker, D. J. P. (1995). Fetal origins of coronary heart disease. British Medical Journal, 311, 171–4.CrossRefGoogle ScholarPubMed
Berger, J. and Wagner, J. A. (2002). Physiological and therapeutic roles of peroxisomal proliferators-activated receptors. Diabetes Technol Ther, 4, 163–74.CrossRefGoogle Scholar
Brandle, M., Zhou, H., Smith, B. R.et al. (2003). The direct medical cost of type 2 diabetes. Diabetes Care, 26, 2300–4.CrossRefGoogle ScholarPubMed
Brosseau, J. D., Eelkema, R. C., Crawford, A. C. and Abe, T. A. (1979). Diabetes among the three affiliated tribes: correlation with degree of Indian inheritance. American Journal of Public Health, 69, 1277–8.CrossRefGoogle ScholarPubMed
Busfield, F., Duffy, D. L., Kesting, J. B.et al. (2002). A genomewide search for type 2 diabetes-susceptibility genes in indigenous Australians. American Journal of Human Genetics, 70, 349–57.CrossRefGoogle ScholarPubMed
Cardon, L. R. and Bell, J. I. (2001).Association study designs for complex diseases. Nature Genetics Reviews, 2, 91–9.CrossRefGoogle ScholarPubMed
Casteels, K., Ong, K., Phillips, D.et al. (1999). Mitochondrial 16189 variant, thinness at birth and type-2 diabetes. Lancet, 353, 1499–500, (letter).Google ScholarPubMed
Christensen, K., Vaupel, J. W., Holm, N. V. and Yashin, A. I. (1995). Mortality among twins after age 6: fetal origins hypothesis versus twin method. British Medical Journal, 310, 432–6.CrossRefGoogle ScholarPubMed
Collin, G. B., Marshall, J. D., Ikeda, A.et al. (2002). Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alstrom syndrome. Nature Genetics, 31, 74–8.CrossRefGoogle ScholarPubMed
Davey Smith, G. and Ebrahim, S. (2003). “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? InternationalJournal of Epidemiology, 32, 1–22.CrossRefGoogle Scholar
Deeb, S. S., Fajas, L., Nemoto, M.et al. (1998). A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nature Genetics, 20, 284–7.CrossRefGoogle ScholarPubMed
Diaz, G. A., Banikazemi, M., Oishi, K., Desnick, R. J. and Gelb, B. D. (1999). Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anaemia syndrome. Nature Genetics, 22, 309–12.CrossRefGoogle Scholar
Douglas, J. A., Erdos, M. R., Watanabe, R. M.et al. (2001). The peroxisome proliferator-activated receptor-gamma2 Pro12Ala variant: association with type 2 diabetes and trait differences. Diabetes, 50, 886–90.CrossRefGoogle ScholarPubMed
Dunger, D. B., Ong, K. K. L., Huxtable, S. J.et al. (1998). Association of the INS VNTR with size at birth. Nature Genetics, 19, 98–100.CrossRefGoogle ScholarPubMed
Ehtisham, S., Kirk, J., McEvilly, A.et al. (2001). Prevalence of type 2 diabetes in children in Birmingham. British Medical Journal, 322, 1428.Google ScholarPubMed
Ek, J., Andersen, G., Urhammer, S. A.et al. (2001). Mutation analysis of peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to type II diabetes mellitus. Diabetologia, 44, 2220–6.CrossRefGoogle ScholarPubMed
Elbein, S. C., Hasstedt, S. J., Wegner, K. and Kahn, S. E. (1999 a). Heritability of pancreatic β-cell function among nondiabetic members of Caucasian familial type 2 diabetic kindreds. Journal of Clinical Endocrinology and Metabolism, 84, 1398–403.Google ScholarPubMed
Elbein, S. C., Hoffman, M. D., Teng, K., Leppert, M. F. and Hasstedt, S. J. (1999 b). A genome-wide search for type 2 diabetes susceptibility genes in Utah Caucasians. Diabetes, 48, 1175–82.CrossRefGoogle ScholarPubMed
Evans, J. C., Frayling, T. M., Cassell, P. G.et al. (2001). Studies of association between the gene for calpain-10 and type 2 diabetes mellitus in the United Kingdom. American Journal of Human Genetics, 69, 544–52.CrossRefGoogle ScholarPubMed
Fajans, S. (1990). Scope and heterogeneous nature of MODY. Diabetes Care, 13, 49–64.CrossRefGoogle ScholarPubMed
Frayling, T. M., Evans, J. C., Bulman, M. P.et al. (2001). β-cell genes and diabetes. Molecular and clinical characterization of mutations in transcription factors. Diabetes, 50, Suppl 1, S94–S100.CrossRefGoogle ScholarPubMed
Frayn, K. N. (2001). Adipose tissue and the insulin resistance syndrome. Proceedings of the Nutrition Society, 60, 375–80.CrossRefGoogle ScholarPubMed
Froguel, Ph, Vaxillaire, M., Sun, F.et al. (1992). Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature, 356, 162–5.CrossRefGoogle ScholarPubMed
Gardner, R. J., Mackay, D. J. G., Mungall, A. J.et al. (2000). An imprinted locus associated with transient neonatal diabetes mellitus. Human Molecular Genetics, 9, 589–96.CrossRefGoogle ScholarPubMed
Ghosh, S., Watanabe, R. M., Valle, T. T.et al. (2000). The Finland–United States Investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to type 2 diabetes. American Journal of Human Genetics, 67, 1174–85.Google ScholarPubMed
Gloyn, A. L., Weedon, M. N., Owen, K. R.et al. (2003). Large scale association studies of variants in genes encoding the pancreatic beta-cell K-ATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with increased risk of Type 2 Diabetes. Diabetes, 52, 568–72.CrossRefGoogle Scholar
Gloyn, A. L., Pearson, E. R., Antcliff, J. F.et al. (2004). Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. New England Journal of Medicine, 350, 1838–49.CrossRefGoogle ScholarPubMed
Gloyn, A. L., Reimann, F., Girard, C.et al. (2005). Relapsing diabetes can result from moderately activating mutations in KCNJ11. Human Molecular Genetics, 14, 925–34.CrossRefGoogle ScholarPubMed
Goring, H. H. H., Terwilliger, J. D. and Blangero, J. (2001). Large upward bias in estimation of locus-specific effects from genome-wide scans. American Journal of Human Genetics, 69, 1357–69.CrossRefGoogle Scholar
Grant, S. F., Thorleifsson, G., Reynisdottir, I.et al. (2006). Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nature Genetics, 38, 320–3.CrossRefGoogle ScholarPubMed
Hanis, C. L., Boerwinkle, E., Chakraborty, R.et al. (1996). A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nature Genetics, 13, 161–71.CrossRefGoogle Scholar
Hanson, R. L., Ehm, M. G., Pettitt, D. J.et al. (1998). An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. American Journal of Human Genetics, 63, 1124–32.CrossRefGoogle ScholarPubMed
Hanson, R. L., Imperatore, G., Narayan, K. M.et al. (2001). Family and genetic studies of indices of insulin sensitivity and insulin secretion in Pima Indians. Diabetes Metabolism Research Reviews, 17, 296–303.CrossRefGoogle ScholarPubMed
Hattersley, A. T., Turner, R. C., Permutt, M. A.et al. (1992). Linkage of type 2 diabetes to the glucokinase gene. Lancet, 339, 1307–10.CrossRefGoogle ScholarPubMed
Hattersley, A. T., Beards, F., Ballantyne, E.et al. (1998). Mutations in the glucokinase gene of the foetus result in reduced birth weight. Nature Genetics, 19, 268–70.CrossRefGoogle ScholarPubMed
Hattersley, A. T. and Tooke, J. E. (1999). The fetal insulin hypothesis an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet, 353, 1789–92.CrossRefGoogle ScholarPubMed
Hogan, P., Dall, T., Nikolov, P. and American Diabetes Association (2003). Economic costs of diabetes in the US in 2002. Diabetes Care, 26, 917–32.Google ScholarPubMed
Horikawa, Y., Iwasaki, N., Hara, M.et al. (1997). Mutation in hepatocyte nuclear factor-1β gene (TCF2) associated with MODY. Nature Genetics, 17, 384–5.CrossRefGoogle ScholarPubMed
Horikawa, Y., Oda, N., Cox, N. J.et al. (2000). Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nature Genetics, 26, 163–75.CrossRefGoogle ScholarPubMed
Hsueh, W. C., Mitchell, B. D., Aburomia, R.et al. (2000). Diabetes in the Old Order Amish: characterization and heritability analysis of the Amish Family Diabetes Study. Diabetes Care, 23, 595–601.CrossRefGoogle ScholarPubMed
Hsueh, W. C., St Jean, P. L., Mitchell, B. D.et al. (2003). Genome-wide and fine-mapping linkage studies of type 2 diabetes and glucose traits in the Old Order Amish: evidence for a new diabetes locus on chromosome 14q11 and confirmation of a locus on chromosome 1q21-q24. Diabetes, 52, 550–7.CrossRefGoogle ScholarPubMed
Huxtable, S. J., Saker, P. J., Haddad, L.et al. (2000). Analysis of parent–offspring trios provides evidence for linkage and association between the insulin gene and type 2 diabetes mediated exclusively through paternally transmitted class III variable number tandem repeat alleles. Diabetes, 49, 126–30.CrossRefGoogle ScholarPubMed
Hypönnen, E., Davey Smith, G. and Power, C. (2003). Parental diabetes and birth weight of offspring: intergenerational cohort study. British Medical Journal, 326, 19–20.CrossRefGoogle Scholar
Inoue, H., Tanizawa, Y., Wasson, J.et al. (1998). A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nature Genetics, 20, 143–8.CrossRefGoogle Scholar
Jellema, A., Zeegers, M. P., Feskens, E. J., Dagnelie, P. C. and Mensink, R. P. (2003). Gly972Arg variant in the insulin receptor substrate-1 gene and association with type 2 diabetes: a metaanalysis of 27 studies. Diabetologia, 46, 990–5.CrossRefGoogle Scholar
Kadowaki, T., Kadowaki, H., Mori, Y.et al. (1994). A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. New England Journal of Medicine, 330, 962–8.CrossRefGoogle ScholarPubMed
Kahn, S. E. (2003). The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia, 46, 3–19.CrossRefGoogle ScholarPubMed
Kaprio, J., Tuomilehto, J., Koskenvuo, M.et al. (1992). Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia, 35, 1060–7.CrossRefGoogle Scholar
Kissebah, A. H., Sonnenberg, G. E., Myklebust, J.et al. (2002). Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proceedings of the National Academy of Sciences USA, 97, 14478–83.CrossRefGoogle Scholar
Klebanoff, M. A., Mednick, B. R., Schulsinger, C., Secher, N. J. and Shiono, P. H. (1998). Father's effect on infant birth weight. American Journal of Obstetrics and Gynaecology, 178, 1022–6.CrossRefGoogle ScholarPubMed
Knowler, W. C., Pettitt, D. J., Saad, M. F. and Bennett, P. H. (1990). Diabetes mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabetes/Metabolism Reviews, 6, 1–27.CrossRefGoogle ScholarPubMed
Knowler, W. C., Pettitt, D. J., Savage, P. J. and Bennett, P. H. (1981). Diabetes incidence in Pima Indians: contributions of obesity and parental diabetes. American Journal of Epidemiology, 113, 144–56.CrossRefGoogle ScholarPubMed
Kramer, M. S. and Joseph, K. S. (1996). Enigma of fetal/infant-origins hypothesis. Lancet, 348, 1254–5.CrossRefGoogle ScholarPubMed
Lander, E. S. and Schork, N. J. (1994). Genetic dissection of complex traits. Science, 265, 2037–48.CrossRefGoogle Scholar
Lehtovirta, M., Kaprio, J., Forsblom, C.et al. (2000). Insulin sensitivity and insulin secretion in monozygotic and dizygotic twins. Diabetologia, 43, 285–93.CrossRefGoogle ScholarPubMed
Lindgren, C. M., Mahtani, M. M., Widen, E.et al. (2002). Genomewide search for type 2 diabetes mellitus susceptibility loci in Finnish families: the Botnia Study. American Journal of Human Genetics, 70, 509–16.CrossRefGoogle ScholarPubMed
Lindsay, R. S., Dabelea, D., Roumain, J.et al. (2000). Type 2 diabetes and low birth weight: the role of paternal inheritance in the association of low birth weight and diabetes. Diabetes, 49, 445–9.CrossRefGoogle ScholarPubMed
Love-Gregory, L., Wasson, J., Ma, J.et al. (2004). A common polymorphism in the upstream promoter region of the hepatocyte nuclear factor-4 gene on chromosome 20q is associated with Type 2 Diabetes and appears to contribute to the evidence for linkage in an Ashkenazi Jewish population. Diabetes, 53, 1134–40.CrossRefGoogle Scholar
Luo, T. H., Zhao, Y., Li, G.et al. (2001). A genome-wide search for type II diabetes susceptibility genes in Chinese Hans. Diabetologia, 44, 501–6.CrossRefGoogle ScholarPubMed
MacFarlane, W. M., Frayling, T. M., Ellard, S.et al. (1999). Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. Journal of Clinical Investigation, 104, R33–R39.CrossRefGoogle ScholarPubMed
Mahtani, M. M., Widén, E., Lehto, M.et al. (1996). Mapping of a gene for NIDDM associated with an insulin secretion defect by a genome scan in Finnish families. Nature Genetics, 14, 90–5.CrossRefGoogle ScholarPubMed
Malecki, M. T., Jhala, U. S., Antonellis, A.et al. (1999). Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nature Genetics, 23, 323–8.CrossRefGoogle ScholarPubMed
Matschinsky, F. M. (1990). Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes, 39, 647–52.CrossRefGoogle ScholarPubMed
Mayer, E. J., Newman, B., Austin, M. A.et al. (1996). Genetic and environmental influences on insulin levels and the insulin resistance syndrome: an analysis of women twins. American Journal of Epidemiology, 143, 323–32.CrossRefGoogle ScholarPubMed
McCarthy, M. I. and Hattersley, A. T. (2001). Molecular diagnostics in monogenic and multifactorial forms of type 2 diabetes. Expert Review of Molecular Diagnostics, 1, 403–12.CrossRefGoogle ScholarPubMed
McCarthy, M. I. (2002). Susceptibility gene discovery in common metabolic and endocrine traits. Journal of Molecular Endocrinology, 28, 1–17.CrossRefGoogle ScholarPubMed
McCarthy, M. I. (2003). Growing evidence for diabetes susceptibility genes from genome scan data. Diabetes Current Reports, 3, 159–67.CrossRefGoogle ScholarPubMed
McCarthy, M. I., Smedley, D. and Hide, W. (2003). New methods for finding disease susceptibility genes: Impact and potential. Genome Biology, 4, 119.1–119.8.CrossRefGoogle ScholarPubMed
McKeigue, P. M., Miller, G. J. and Marmot, M. G. (1989). Coronary heart disease in south Asians overseas: a review. Journal of Clinical Epidemiology, 42, 597–609.CrossRefGoogle ScholarPubMed
Meigs, J. B., Panhuysen, C. I., Myers, R. H., Wilson, P. W. and Cupples, L. A. (2002). A genome-wide scan for loci linked to plasma levels of glucose and HbA(1c) in a community-based sample of Caucasian pedigrees: the Framingham Offspring Study. Diabetes, 51, 833–40.CrossRefGoogle Scholar
Moller, D. E. (2001). New drug targets for type 2 diabetes and the metabolic syndrome. Nature, 414, 821–7.CrossRefGoogle ScholarPubMed
Mootha, V. K., Lindgren, C. M., Eriksson, K.-F.et al. (2003). PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics, 34, 267–73.CrossRefGoogle ScholarPubMed
Mori, Y., Otabe, S., Dina, C.et al. (2002). Genome-wide search for type 2 diabetes in Japanese affected sib-pairs confirms susceptibility genes on 3q, 15q, and 20q and identifies two new candidate loci on 7p and 11p. Diabetes, 51, 1247–55.CrossRefGoogle ScholarPubMed
Neel, J. V. (1962). Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”?American Journal of Human Genetics, 14, 353–62.Google ScholarPubMed
Nielsen, E. D., Hansen, L., Carstensen, B.et al. (2003). The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes, 52, 573–7.CrossRefGoogle ScholarPubMed
Njolstad, P. R., Sovik, O., Cuesta-Munoz, A.et al. (2001). Neonatal diabetes mellitus due to complete glucokinase deficiency. New England Journal of Medicine, 344, 1588–92.CrossRefGoogle ScholarPubMed
Ozanne, S. E. and Hales, C. N. (1998). Thrifty yes, genetic no. Diabetologia, 41, 485–7.CrossRefGoogle Scholar
Ozanne, S. E. (2001). Metabolic programming in animals. British Medical Bulletin, 60, 143–52.CrossRefGoogle ScholarPubMed
Pan, X. R., Li, G. W., Hu, Y. H.et al. (1997). Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care, 20, 537–44.CrossRefGoogle Scholar
Parker, A., Meyer, J., Lewitzky, S.et al. (2001). A gene conferring susceptibility to type 2 diabetes in conjunction with obesity is located on chromosome 18p11. Diabetes, 50, 675–80.CrossRefGoogle ScholarPubMed
Patti, M. E., Butte, A. J., Crunkhorn, S.et al. (2003). Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proceedings of the National Academy of Sciences USA, 100, 8466–71.CrossRefGoogle ScholarPubMed
Pearson, E. R., Starkey, B. J., Powell, R. J.et al. (2003). Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet, 362, 1275–81.CrossRefGoogle Scholar
Permutt, M. A., Wasson, J. C., Suarez, B. K.et al. (2001). A genome scan for type 2 diabetes susceptibility loci in a genetically isolated population. Diabetes, 50, 681–5.CrossRefGoogle Scholar
Perry, R. and Baron, A. (1999). Impaired glucose tolerance. Why is it not a disease?Diabetes Care, 22, 920–4.CrossRefGoogle Scholar
Pharoah, P. D., Antoniou, A., Bobrow, M.et al. (2002). Polygenic susceptibility to breast cancer and implications for prevention. Nature Genetics, 31, 33–6.CrossRefGoogle Scholar
Phillips, D. I. W. (1993). Twin studies in medical research: can they tell us whether diseases are genetically determined?Lancet, 341, 1008–10.CrossRefGoogle ScholarPubMed
Phillips, D. I. W. (1996). Insulin resistance as a programmed response to fetal undernutrition. Diabetologia, 39, 1119–22.CrossRefGoogle ScholarPubMed
Poulsen, P., Vaag, A. A., Kyvik, K. O., Møller Jensen, D. and Beck-Nielsen, H. (1997). Low birth weight is associated with NIDDM in discordant monozygotic and dizygotic twin pairs. Diabetologia, 40, 439–46.CrossRefGoogle ScholarPubMed
Poulsen, P., Kyvik, K. O., Vaag, A. and Beck-Nielsen, H. (1999). Heritability of Type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance – a population-based twin study. Diabetologia, 42, 139–45.CrossRefGoogle ScholarPubMed
Proks, P., Reimann, F., Green, N., Gribble, F. and Ashcroft, F. (2002). Sulfonylurea stimulation of insulin secretion. Diabetes, 51, Suppl 3, S368–S376.CrossRefGoogle ScholarPubMed
Raeder, H., Johansson, S., Holm, P. I.et al. (2006). Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nature Genetics, 38, 54–62.CrossRefGoogle Scholar
Ravelli, A. C. J., Meulen, J. H. P., Michels, R. P. J.et al. (1998). Glucose tolerance in adults after prenatal exposure to famine. Lancet, 351, 173–7.CrossRefGoogle Scholar
Saltiel, A. R. and Kahn, C. R. (2002). Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414, 799–806.CrossRefGoogle Scholar
Silander, K., Mohlke, K. L., Scott, L. J.et al. (2004). Genetic variation near the Hepatocyte Nuclear Factor-4 gene predicts susceptibility to Type 2 Diabetes. Diabetes, 53, 1141–9.CrossRefGoogle ScholarPubMed
Sotos, J. G., Reinhoff, H. Y., Block, G. D.et al. (2000). Will genetics revolutionize medicine?New England Journal of Medicine, 343, 1496–8.Google ScholarPubMed
Stanner, S. A., Bulmer, K., Andrès, C.et al. (1997). Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad Siege Study, a cross sectional study. British Medical Journal, 315, 1342–9.CrossRefGoogle ScholarPubMed
Stoffers, D. A., Ferrer, J., Clarke, W. L. and Habener, J. F. (1997). Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nature Genetics, 17, 138–9.CrossRefGoogle ScholarPubMed
Stone, L. M., Kahn, S. E., Fujimoto, W. Y., Deeb, S. S. and Porte, D. (1996). A variation at position − 30 of the β-cell glucokinase gene promoter is associated with reduced β-cell function in middle-aged Japanese-American men. Diabetes, 45, 422–8.CrossRefGoogle ScholarPubMed
Tattersall, R. B. and Mansell, P. I. (1991). Maturity onset-type diabetes of the young (MODY): one condition or many?Diabetic Medicine, 8, 402–10.CrossRefGoogle ScholarPubMed
The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (1997). Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 20, 1183–97.CrossRef
Triggs-Raine, B. L., Kirkpatrick, R. D., Kelly, S. L.et al. (2002). HNF-1alpha G319S, a transactivation-deficient mutant, is associated with altered dynamics of diabetes onset in an Oji-Cree community. Proceedings of the National Academy of Sciences USA, 99, 4614–19.CrossRefGoogle Scholar
Tuomilehto, J., Lindstrom, J., Eriksson, J. G.et al., Finnish Diabetes Prevention Study Group (2001). Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. New England Journal of Medicine, 344, 1343–50.CrossRefGoogle ScholarPubMed
UK Prospective Diabetes Study (UKPDS) Group (1998). Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet, 352, 837–53.CrossRef
Vionnet, N., Hani, E. H., Dupont, S.et al. (2000). Genomewide search for type 2 diabetes-susceptibility genes in French Whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. American Journal of Human Genetics, 67, 1470–80.CrossRefGoogle ScholarPubMed
Virkamaki, A., Korsheninnikova, E., Seppala-Lindroos, A.et al. (2001). Intramyocellular lipid is associated with resistance to in vivo insulin actions on glucose uptake, antilipolysis, and early insulin signaling pathways in human skeletal muscle. Diabetes, 50, 2337–43.CrossRefGoogle ScholarPubMed
Watanabe, R. M., Valle, T., Hauser, E. R.et al. (1999). Familiality of quantitative metabolic traits in Finnish families with non-insulin-dependent diabetes mellitus. Finland–United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study investigators. Human Heredity, 49, 159–68.CrossRefGoogle ScholarPubMed
Weedon, M. N., Frayling, T. M., Shields, B.et al. (2005). Genetic regulation of birth weight and fasting glucose by a common polymorphism in the islet cell promoter of the glucokinase gene. Diabetes, 54, 576–81.CrossRefGoogle ScholarPubMed
Weedon, M. N., Owen, K. R., Shields, B.et al. (2004). Common variants of the HNF4alpha P2 promoter are associated with type 2 diabetes in the UK population. Diabetes, 53, 3002–6.CrossRefGoogle Scholar
Weedon, M. N., Schwarz, P. E. H., Horikawa, Y.et al. (2003). Meta-analysis confirms a role for calpain-10 variation in type 2 diabetes susceptibility. American Journal of Human Genetics, 73, 1208–12.CrossRefGoogle Scholar
Wiltshire, S., Hattersley, A. T., Hitman, G. A.et al. (2001). A genome-wide scan for loci predisposing to type 2 diabetes in a UK population (The Diabetes (UK) Warren 2 Repository): analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q. American Journal of Human Genetics, 69, 553–69.CrossRefGoogle Scholar
World Health Organization Study Group (1985). Diabetes Mellitus: Report of a WHO Study Group. World Health Organ Technical Report Series, 727, 1–113.
Yamagata, K., Furuta, H., Oda, N.et al. (1996 a). Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1). Nature, 384, 458–60.CrossRefGoogle Scholar
Yamagata, K., Oda, N., Kaisaki, P. J.et al. (1996 b). Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3). Nature, 384, 455–8.CrossRefGoogle Scholar
Yang, Q., Khoury, M. J., Botto, L., Friedman, J. M. and Flanders, W. D. (2003). Improving the prediction of complex diseases by testing for multiple disease-susceptibility genes. American Journal of Human Genetics, 72, 636–49.CrossRefGoogle ScholarPubMed
Yki-Jarvinen, H. (2002). Ectopic fat accumulation: an important cause of insulin resistance in humans. Journal of the Royal Society of Medicine, 95 Suppl 42, 39–45.Google ScholarPubMed
Zimmet, P. (2000). Globalization, coca-colonization and the chronic disease epidemic: can the doomsday scenario be averted?Journal of Internal Medicine, 247, 301–10.CrossRefGoogle ScholarPubMed
Zimmet, P., Alberti, K. G. M. M. and Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature, 414, 782–7.CrossRefGoogle ScholarPubMed
Zung, A., Glaser, B., Nimri, R. and Zadik, Z. (2004). Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2. Journal of Clinical Endocrinology and Metabolism, 89, 5504–7.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×