Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-22T16:14:18.018Z Has data issue: false hasContentIssue false

20 - Inflammatory bowel diseases

Published online by Cambridge University Press:  17 August 2009

Alan Wright
Affiliation:
MRC Human Genetics Unit, Edinburgh
Nicholas Hastie
Affiliation:
MRC Human Genetics Unit, Edinburgh
Get access

Summary

Introduction

Inflammatory bowel diseases (IBD) consist of two major disorders: Crohn's disease (CD, OMIM 266600) and ulcerative colitis (UC, OMIM 191390). They are both characterized by a chronic or relapsing inflammation of the digestive tract (for review see Shanahan, 2002; Podolsky, 2002). In UC, the inflammation is limited to the colon with continuous mucosal inflammation already affecting the rectum. On the other hand, CD may affect all the digestive tract from the mouth to the anus with discontinuous lesions. The inflammation is often transmural with potential complications including fistulas, abscesses and strictures. At late stages, granulomas with giant and epithelioid cells are encountered in biopsies or specimens in about half of CD cases.

UC and CD are usually diagnosed in patients presenting with isolated or associated symptoms such as: diarrhea, rectal bleeding, abdominal pain, inflammatory syndromes and malabsorption. Both disorders can be complicated by under-nutrition (and failure to grow in children), osteopenia, extra-intestinal inflammation and cancer. IBD treatment is often complex and requires a combination of anti-inflammatory drugs including 5-aminosalicylates and steroids, immunosuppressant agents and biological therapies. Surgery is often mandatory and iatrogenic complications are frequent.

IBD are lifelong disorders occurring in the young adult with a peak of incidence in the third decade (for review see Mayberry and Rhodes, 1984). CD is more frequent in females (M/F sex ratio = 0.8) while UC is more frequent in males (M/F sex ratio: 1.2).

Type
Chapter
Information
Genes and Common Diseases
Genetics in Modern Medicine
, pp. 302 - 315
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, M. T., Taylor, K. D., Lin, Y. C.et al. (2002). Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn's disease. Gastroenterology, 123, 679–88.CrossRefGoogle ScholarPubMed
Ahmad, T., Armuzzi, A., Bunce, M.et al. (2002). The molecular classification of the clinical manifestations of Crohn's disease. Gastroenterology, 122, 854–66.CrossRefGoogle ScholarPubMed
Albrecht, M., Domingues, F. S., Schreiber, S. and Lengauer, T. (2003). Structural localization of disease-associated sequence variations in the NACHT and LRR domains of PYPAF1 and NOD2. FEBS Lett, 554, 520–8.CrossRefGoogle ScholarPubMed
Andersson, R. E., Olaison, G., Tysk, C. and Ekbom, A. (2001). Appendectomy and protection against ulcerative colitis. N Engl J Med, 344, 808–14.CrossRefGoogle ScholarPubMed
Bayless, T. M., Tokayer, A. Z., Polito, J. M. 2nd, et al. (1996). Crohn's disease: concordance for site and clinical type in affected family members–potential hereditary influences. Gastroenterology, 111, 573–9.CrossRefGoogle ScholarPubMed
Bennett, R. A., Rubin, P. H. and Present, D. H. (1991). Frequency of inflammatory bowel disease in offspring of couples both presenting with inflammatory bowel disease. Gastroenterology, 100, 1638–43.CrossRefGoogle ScholarPubMed
Bouma, G. and Strober, W. (2003). The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol, 3, 521–33.CrossRefGoogle ScholarPubMed
Brahme, F., Lindstrom, C. and Wenckert, A. (1975). Crohn's disease in a defined population. An epidemiological study of incidence, prevalence, mortality, and secular trends in the city of Malmo, Sweden. Gastroenterology, 69, 342–51.Google Scholar
Brant, S. R., Panhuysen, C. I., Nicolae, D.et al. (2003). MDR1 Ala893 polymorphism is associated with inflammatory bowel disease. Am J Hum Genet, 73, 1282–92.CrossRefGoogle ScholarPubMed
Bridger, S., Lee, J. C., Bjarnason, I., Jones, J. E. and Macpherson, A. J. (2002). In siblings with similar genetic susceptibility for inflammatory bowel disease, smokers tend to develop Crohn's disease and non-smokers develop ulcerative colitis. Gut, 51, 21–5.CrossRefGoogle ScholarPubMed
Bull, T. J., McMinn, E. J., Sidi-Boumedine, K.et al. (2003). Detection and verification of Mycobacterium avium subsp. paratuberculosis in fresh ileocolonic mucosal biopsy specimens from individuals with and without Crohn's disease. J Clin Microbiol, 41, 2915–23.CrossRefGoogle ScholarPubMed
Calkins, B. M. (1989). A meta-analysis of the role of smoking in inflammatory bowel disease. Dig Dis Sci, 34, 1841–54.CrossRefGoogle ScholarPubMed
Chamaillard, M., Philpott, D., Girardin, S. E.et al. (2003). Gene-environment interaction modulated by allelic heterogeneity in inflammatory diseases. Proc Natl Acad Sci USA, 100, 3455–60.CrossRefGoogle ScholarPubMed
Chen, C. M., Gong, Y., Zhang, M. and Chen, J. J. (2004). Reciprocal cross-talk between NOD2 and TAK1 signaling pathways. J Biol Chem, 279, 25876–82.CrossRefGoogle ScholarPubMed
Cho, J. H., Nicolae, D. L., Gold, L. H.et al. (1998). Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: evidence for epistasis between 1p and IBD1. Proc Natl Acad Sci USA, 95, 7502–7.CrossRefGoogle ScholarPubMed
Colombel, J. F., Grandbastien, B., Gower-Rousseau, C.et al. (1996). Clinical characteristics of Crohn's disease in 72 families. Gastroenterology, 111, 604–7.CrossRefGoogle ScholarPubMed
Cosnes, J., Beaugerie, L., Carbonnel, F. and Gendre, J. P. (2001). Smoking cessation and the course of Crohn's disease: an intervention study. Gastroenterology, 120, 1093–9.CrossRefGoogle Scholar
Cosnes, J., Carbonnel, F., Beaugerie, L., Quintrec, Y. and Gendre, J. P. (1996). Effects of cigarette smoking on the long-term course of Crohn's disease. Gastroenterology, 110, 424–31.CrossRefGoogle ScholarPubMed
Cosnes, J., Carbonnel, F., Carrat, F., Beaugerie, L. and Gendre, J. P. (1999). Oral contraceptive use and the clinical course of Crohn's disease: a prospective cohort study. Gut, 45, 218–22.CrossRefGoogle ScholarPubMed
Cottone, M., Rosselli, M., Orlando, A.et al. (1994). Smoking habits and recurrence in Crohn's disease. Gastroenterology, 106, 643–8.CrossRefGoogle ScholarPubMed
Cuthbert, A. P., Fisher, S. A., Mirza, M. M.et al. (2002). The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology, 122, 867–74.CrossRefGoogle ScholarPubMed
Darfeuille-Michaud, A., Neut, C., Barnich, N.et al. (1998). Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease. Gastroenterology, 115, 1405–13.CrossRefGoogle ScholarPubMed
Duerr, R. H., Barmada, M. M., Zhang, L., Pfutzer, R. and Weeks, D. E. (2000). High-density genome scan in Crohn disease shows confirmed linkage to chromosome 14q11–12. Am J Hum Genet, 66, 1857–62.CrossRefGoogle ScholarPubMed
Ekbom, A., Adami, H. O., Helmick, C. G., Jonzon, A. and Zack, M. M. (1990). Perinatal risk factors for inflammatory bowel disease: a case-control study. Am J Epidemiol, 132, 1111–19.CrossRefGoogle ScholarPubMed
Ekbom, A., Daszak, P., Kraaz, W. and Wakefield, A. J. (1996). Crohn's disease after in-utero measles virus exposure. Lancet, 348, 515–17.CrossRefGoogle ScholarPubMed
Evans, J. G. and Acheson, E. D. (1965). An epidemiological study of ulcerative colitis and regional enteritis in the Oxford area. Gut, 6, 311–24.CrossRefGoogle ScholarPubMed
Fellows, I. W., Freeman, J. G. and Holmes, G. K. (1990). Crohn's disease in the city of Derby, 1951–85. Gut, 31, 1262–5.CrossRefGoogle ScholarPubMed
Gent, A. E., Hellier, M. D., Grace, R. H., Swarbrick, E. T. and Coggon, D. (1994). Inflammatory bowel disease and domestic hygiene in infancy. Lancet, 343, 766–7.CrossRefGoogle ScholarPubMed
Gilat, T., Hacohen, D., Lilos, P. and Langman, M. J. (1987). Childhood factors in ulcerative colitis and Crohn's disease. An international cooperative study. Scand J Gastroenterol, 22, 1009–24.CrossRefGoogle ScholarPubMed
Girardin, S. E., Boneca, I. G., Viala, J.et al. (2003 a). NOD2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem, 278, 8869–72.CrossRefGoogle ScholarPubMed
Girardin, S. E., Travassos, L. H., Herve, M.et al. (2003 b). Peptidoglycan molecular requirements allowing detection by Nod1 and NOD2. J Biol Chem, 278, 41702–8.CrossRefGoogle ScholarPubMed
Godet, P. G., May, G. R. and Sutherland, L. R. (1995). Meta-analysis of the role of oral contraceptive agents in inflammatory bowel disease. Gut, 37, 668–73.CrossRefGoogle ScholarPubMed
Greenstein, R. J. (2003). Is Crohn's disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne's disease. Lancet Infect Dis, 3, 507–14.CrossRefGoogle ScholarPubMed
Gutierrez, O., Pipaon, C., Inohara, N.et al. (2002). Induction of NOD2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation. J Biol Chem, 277, 41701–5.CrossRefGoogle ScholarPubMed
Halfvarson, J., Bodin, L., Tysk, C., Lindberg, E. and Jarnerot, G. (2003). Inflammatory bowel disease in a Swedish twin cohort: a long-term follow-up of concordance and clinical characteristics. Gastroenterology, 124, 1767–73.CrossRefGoogle Scholar
Hampe, J., Cuthbert, A., Croucher, P. J.et al. (2001). Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet, 357, 1925–8.CrossRefGoogle ScholarPubMed
Hampe, J., Grebe, J., Nikolaus, S.et al. (2002). Association of NOD2 (CARD 15) genotype with clinical course of Crohn's disease: a cohort study. Lancet, 359, 1661–5.CrossRefGoogle ScholarPubMed
Hampe, J., Schreiber, S., Shaw, S. H.et al. (1999 a). A genomewide analysis provides evidence for novel linkages in inflammatory bowel disease in a large European cohort. Am J Hum Genet, 64, 808–16.CrossRefGoogle Scholar
Hampe, J., Shaw, S. H., Saiz, R.et al. (1999 b). Linkage of inflammatory bowel disease to human chromosome 6p. Am J Hum Genet, 65, 1647–55.CrossRefGoogle ScholarPubMed
Helio, T., Halme, L., Lappalainen, M.et al. (2003). CARD15/NOD2 gene variants are associated with familially occurring and complicated forms of Crohn's disease. Gut, 52, 558–62.CrossRefGoogle ScholarPubMed
Hellers, G. (1979). Crohn's disease in Stockholm county 1955–1974. A study of epidemiology, results of surgical treatment and long-term prognosis. Acta Chir Scand Suppl, 490, 1–84.Google ScholarPubMed
Hisamatsu, T., Suzuki, M., Reinecker, H. C.et al. (2003). CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology, 124, 993–1000.CrossRefGoogle ScholarPubMed
Holler, E., Rogler, G., Herfarth, H.et al. (2004). Both donor and recipient NOD2/CARD15 mutations associate with transplant-related mortality and GvHD following allogeneic stem cell transplantation. Blood, 104, 889–94.CrossRefGoogle ScholarPubMed
Hugot, J. P., Alberti, C., Berrebi, D., Bingen, E. and Cezard, J. P. (2003 a). Crohn's disease: the cold chain hypothesis. Lancet, 362, 2012–15.CrossRefGoogle ScholarPubMed
Hugot, J. P., Cezard, J. P., Colombel, J. F.et al. (2003 b). Clustering of Crohn's disease within affected sibships. Eur J Hum Genet, 11, 179–84.CrossRefGoogle ScholarPubMed
Hugot, J. P., Chamaillard, M., Zouali, H.et al. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature, 411, 599–603.CrossRefGoogle ScholarPubMed
Hugot, J. P., Laurent-Puig, P., Gower-Rousseau, C.et al. (1996). Mapping of a susceptibility locus for Crohn's disease on chromosome 16. Nature, 379, 821–3.CrossRefGoogle ScholarPubMed
Hugot, J. P., Zouali, H., Lesage, S. and Thomas, G. (1999). Etiology of the inflammatory bowel diseases. Int J Colorectal Dis, 14, 2–9.CrossRefGoogle ScholarPubMed
Inohara, N., Koseki, T., Lin, J.et al. (2000). An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem, 275, 27823–31.Google ScholarPubMed
Inohara, N., Ogura, Y., Chen, F. F., Muto, A. and Nunez, G. (2001). Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J Biol Chem, 276, 2551–4.CrossRefGoogle ScholarPubMed
Inohara, N., Ogura, Y., Fontalba, A.et al. (2003). Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J Biol Chem, 278, 5509–12.CrossRefGoogle ScholarPubMed
Kallinowski, F., Wassmer, A., Hofmann, M. A.et al. (1998). Prevalence of enteropathogenic bacteria in surgically treated chronic inflammatory bowel disease. Hepatogastroenterology, 45, 1552–8.Google ScholarPubMed
Kobayashi, K., Inohara, N., Hernandez, L. D.et al. (2002). RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature, 416, 194–9.CrossRefGoogle ScholarPubMed
Kugathasan, S., Judd, R. H., Hoffmann, R. G.et al. (2003). Epidemiologic and clinical characteristics of children with newly diagnosed inflammatory bowel disease in Wisconsin: a statewide population-based study. J Pediatr, 143, 525–31.CrossRefGoogle ScholarPubMed
Kuster, W., Pascoe, L., Purrmann, J., Funk, S. and Majewski, F. (1989). The genetics of Crohn disease: complex segregation analysis of a family study with 265 patients with Crohn disease and 5,387 relatives. Am J Med Genet, 32, 105–8.CrossRefGoogle ScholarPubMed
Kyle, J. (1971). An epidemiological study of Crohn's disease in Northeast Scotland. Gastroenterology, 61, 826–33.Google ScholarPubMed
Laharie, D., Debeugny, S., Peeters, M.et al. (2001). Inflammatory bowel disease in spouses and their offspring. Gastroenterology, 120, 816–19.CrossRefGoogle Scholar
Lala, S., Ogura, Y., Osborne, C.et al. (2003). Crohn's disease and the NOD2 gene: a role for paneth cells. Gastroenterology, 125, 47–57.CrossRefGoogle ScholarPubMed
Lamps, L. W., Madhusudhan, K. T., Havens, J. M.et al. (2003). Pathogenic Yersinia DNA is detected in bowel and mesenteric lymph nodes from patients with Crohn's disease. Am J Surg Pathol, 27, 220–7.CrossRefGoogle ScholarPubMed
Lee, J. C. and Lennard-Jones, J. E. (1996). Inflammatory bowel disease in 67 families each with three or more affected first-degree relatives. Gastroenterology, 111, 587–96.CrossRefGoogle ScholarPubMed
Lesage, S., Zouali, H., Cezard, J. P.et al. (2002). CARD15/NOD2 mutational analysis and genotype–phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet, 70, 845–57.CrossRefGoogle ScholarPubMed
Lindberg, E., Jarnerot, G. and Huitfeldt, B. (1992). Smoking in Crohn's disease: effect on localisation and clinical course. Gut, 33, 779–82.CrossRefGoogle ScholarPubMed
Loftus, E. V. Jr., Silverstein, M. D., Sandborn, W. J.et al. (1998). Crohn's disease in Olmsted County, Minnesota, 1940–1993: incidence, prevalence, and survival. Gastroenterology, 114, 1161–8.CrossRefGoogle Scholar
Louis, E., Michel, V., Hugot, J. P.et al. (2003). Early development of stricturing or penetrating pattern in Crohn's disease is influenced by disease location, number of flares, and smoking but not by NOD2/CARD15 genotype. Gut, 52, 552–7.CrossRefGoogle Scholar
Mascheretti, S., Hampe, J., Croucher, P. J.et al. (2002). Response to infliximab treatment in Crohn's disease is not associated with mutations in the CARD15 (NOD2) gene: an analysis in 534 patients from two multicenter, prospective GCP-level trials. Pharmacogenetics, 12, 509–15.CrossRefGoogle Scholar
Matsumoto, S., Okabe, Y., Setoyama, H.et al. (1998). Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain. Gut, 43, 71–8.CrossRefGoogle Scholar
Mayberry, J. F. and Rhodes, J. (1984). Epidemiological aspects of Crohn's disease: a review of the literature. Gut, 25, 886–99.CrossRefGoogle ScholarPubMed
Miceli-Richard, C., Lesage, S., Rybojad, M.et al. (2001). CARD15 mutations in Blau syndrome. Nat Genet, 29, 19–20.CrossRefGoogle ScholarPubMed
Monsen, U. (1990). Inflammatory bowel disease. An epidemiological and genetic study. Acta Chir Scand Suppl, 559, 1–42.Google ScholarPubMed
Monsen, U., Brostrom, O., Nordenvall, B., Sorstad, J. and Hellers, G. (1987). Prevalence of inflammatory bowel disease among relatives of patients with ulcerative colitis. Scand J Gastroenterol, 22, 214–18.CrossRefGoogle ScholarPubMed
Murillo, L., Crusius, J. B., Bodegraven, A. A., Alizadeh, B. Z. and Pena, A. S. (2002). CARD15 gene and the classification of Crohn's disease. Immunogenetics, 54, 59–61.CrossRefGoogle ScholarPubMed
Netea, M. G., Kullberg, B. J., Jong, D. J.et al. (2004). NOD2 mediates anti-inflammatory signals induced by TLR2 ligands: implications for Crohn's disease. Eur J Immunol, 34, 2052–9.CrossRefGoogle ScholarPubMed
Odes, H. S., Fich, A., Reif, S.et al. (2001). Effects of current cigarette smoking on clinical course of Crohn's disease and ulcerative colitis. Dig Dis Sci, 46, 1717–21.CrossRefGoogle ScholarPubMed
Ogura, Y., Bonen, D. K., Inohara, N.et al. (2001 a). A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature, 411, 603–6.CrossRefGoogle ScholarPubMed
Ogura, Y., Inohara, N., Benito, A.et al. (2001 b). NOD2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem, 276, 4812–18.CrossRefGoogle ScholarPubMed
Ogura, Y., Lala, S., Xin, W.et al. (2003). Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis. Gut, 52, 1591–7.CrossRefGoogle ScholarPubMed
Opitz, B., Puschel, A., Schmeck, B.et al. (2004). Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem, 279, 36426–32.CrossRefGoogle ScholarPubMed
Orholm, M., Binder, V., Sorensen, T. I., Rasmussen, L. P. and Kyvik, K. O. (2000). Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scand J Gastroenterol, 35, 1075–81.Google Scholar
Orholm, M., Iselius, L., Sorensen, T. I.et al. (1993). Investigation of inheritance of chronic inflammatory bowel diseases by complex segregation analysis. British Medical Journal, 306, 20–4.CrossRefGoogle ScholarPubMed
Pauleau, A. L. and Murray, P. J. (2003). Role of NOD2 in the response of macrophages to Toll-like receptor agonists. Mol Cell Biol, 23, 7531–9.CrossRefGoogle ScholarPubMed
Peeters, M., Nevens, H., Baert, F.et al. (1996). Familial aggregation in Crohn's disease: increased age-adjusted risk and concordance in clinical characteristics. Gastroenterology, 111, 597–603.CrossRefGoogle ScholarPubMed
Peltekova, V. D., Wintle, R. F., Rubin, L. A.et al. (2004). Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet, 36, 471–5.CrossRefGoogle ScholarPubMed
Persson, P. G., Ahlbom, A. and Hellers, G. (1987). Crohn's disease and ulcerative colitis. A review of dietary studies with emphasis on methodologic aspects. Scand J Gastroenterol, 22, 385–9.CrossRefGoogle ScholarPubMed
Pizarro, T. T., Arseneau, K. O., Bamias, G. and Cominelli, F. (2003). Mouse models for the study of Crohn's disease. Trends Mol Med, 9, 218–22.CrossRefGoogle Scholar
Podolsky, D. K. (2002). Inflammatory bowel disease. N Engl J Med, 347, 417–29.CrossRefGoogle ScholarPubMed
Polito, J. M. 2nd, Rees, R. C., Childs, B.et al. (1996). Preliminary evidence for genetic anticipation in Crohn's disease. Lancet, 347, 798–800.CrossRefGoogle ScholarPubMed
Probert, C. S., Jayanthi, V., Pinder, D., Wicks, A. C. and Mayberry, J. F. (1992). Epidemiological study of ulcerative proctocolitis in Indian migrants and the indigenous population of Leicestershire. Gut, 33, 687–93.CrossRefGoogle ScholarPubMed
Purrmann, J., Bertrams, J., Borchard, F.et al. (1986). Monozygotic triplets with Crohn's disease of the colon. Gastroenterology, 91, 1553–9.CrossRefGoogle ScholarPubMed
Radlmayr, M., Torok, H. P., Martin, K. and Folwaczny, C. (2002). The c-insertion mutation of the NOD2 gene is associated with fistulizing and fibrostenotic phenotypes in Crohn's disease. Gastroenterology, 122, 2091–2.CrossRefGoogle ScholarPubMed
Rioux, J. D., Daly, M. J., Silverberg, M. S.et al. (2001). Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet, 29, 223–8.CrossRefGoogle ScholarPubMed
Rioux, J. D., Silverberg, M. S., Daly, M. J.et al. (2000). Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am J Hum Genet, 66, 1863–70.CrossRefGoogle ScholarPubMed
Rose, J. D., Roberts, G. M., Williams, G., Mayberry, J. F. and Rhodes, J. (1988). Cardiff Crohn's disease jubilee: the incidence over 50 years. Gut, 29, 346–51.CrossRefGoogle ScholarPubMed
Rosenstiel, P., Fantini, M., Brautigam, K.et al. (2003). TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology, 124, 1001–9.CrossRefGoogle ScholarPubMed
Roth, M. P., Petersen, G. M., McElree, C.et al. (1989). Familial empiric risk estimates of inflammatory bowel disease in Ashkenazi Jews. Gastroenterology, 96, 1016–20.CrossRefGoogle ScholarPubMed
Russell, R. K. and Satsangi, J. (2004). IBD: a family affair. Best Pract Res Clin Gastroenterol, 18, 525–39.CrossRefGoogle ScholarPubMed
Sanderson, J. D., Moss, M. T., Tizard, M. L. and Hermon-Taylor, J. (1992). Mycobacterium paratuberculosis DNA in Crohn's disease tissue. Gut, 33, 890–6.CrossRefGoogle ScholarPubMed
Satsangi, J., Grootscholten, C., Holt, H. and Jewell, D. P. (1996 a). Clinical patterns of familial inflammatory bowel disease. Gut, 38, 738–41.CrossRefGoogle ScholarPubMed
Satsangi, J., Parkes, M., Louis, E.et al. (1996 b). Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet, 14, 199–202.CrossRefGoogle ScholarPubMed
Shanahan, F. (2002). Crohn's disease. Lancet, 359, 62–9.CrossRefGoogle ScholarPubMed
Shivananda, S., Lennard-Jones, J., Logan, R.et al. (1996). Incidence of inflammatory bowel disease across Europe: is there a difference between north and south? Results of the European Collaborative Study on Inflammatory Bowel Disease (EC-IBD). Gut, 39, 690–7.CrossRefGoogle Scholar
Stoll, M., Corneliussen, B., Costello, C. M.et al. (2004). Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet, 36, 476–80.CrossRefGoogle ScholarPubMed
Sutherland, L. R., Ramcharan, S., Bryant, H. and Fick, G. (1990). Effect of cigarette smoking on recurrence of Crohn's disease. Gastroenterology, 98, 1123–8.CrossRefGoogle ScholarPubMed
Thompson, N. P., Montgomery, S. M., Pounder, R. E. and Wakefield, A. J. (1995). Is measles vaccination a risk factor for inflammatory bowel disease?Lancet, 345, 1071–4.CrossRefGoogle ScholarPubMed
Tokuhiro, S., Yamada, R., Chang, X.et al. (2003). An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet, 35, 341–8.CrossRefGoogle Scholar
Tysk, C., Lindberg, E., Jarnerot, G. and Floderus-Myrhed, B. (1988). Ulcerative colitis and Crohn's disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut, 29, 990–6.CrossRefGoogle Scholar
Heel, D. A., Fisher, S. A., Kirby, A.et al. (2004). Inflammatory bowel disease susceptibility loci defined by genome scan meta-analysis of 1952 affected relative pairs. Hum Mol Genet, 13, 763–70.CrossRefGoogle ScholarPubMed
Vermeire, S., Louis, E., Rutgeerts, P.et al. (2002 a). NOD2/CARD15 does not influence response to infliximab in Crohn's disease. Gastroenterology, 123, 106–11.CrossRefGoogle Scholar
Vermeire, S., Wild, G., Kocher, K.et al. (2002 b). CARD15 genetic variation in a Quebec population: prevalence, genotype–phenotype relationship, and haplotype structure. Am J Hum Genet, 71, 74–83.CrossRefGoogle Scholar
Watanabe, T., Kitani, A., Murray, P. J. and Strober, W. (2004). NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol, 5, 800–8.CrossRefGoogle ScholarPubMed
Yap, L. M., Ahmad, T. and Jewell, D. P. (2004). The contribution of HLA genes to IBD susceptibility and phenotype. Best Pract Res Clin Gastroenterol, 18, 577–96.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×