Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-22T14:15:13.698Z Has data issue: false hasContentIssue false

19 - Susceptibility to infectious diseases

Published online by Cambridge University Press:  17 August 2009

Alan Wright
Affiliation:
MRC Human Genetics Unit, Edinburgh
Nicholas Hastie
Affiliation:
MRC Human Genetics Unit, Edinburgh
Get access

Summary

Introduction

The study of the host genetic component of infectious disease is potentially one of the most difficult areas of complex human genetic disease analysis for one major reason: the absolute requirement for a host–pathogen interaction to cause disease. Since the pathogen has its own genome, with all of its attendant potential for variability, there has been an ongoing “arms race” between man and microbe that has driven each to incorporate changes within their genomes that increase their survival chances should they encounter the other. However, this strong evolutionary pressure on the human genome has also inevitably produced associations between gene variants and disease. The field of genetic susceptibility to infectious disease has been around for over 50 years now and there is a substantial body of evidence for the role of genetics in infectious disease susceptibility.

Historical perspective

Infectious disease is as old as humanity and remains a significant influence on polymorphism in the human genome. Major effects of infectious disease such as epidemics that have drastically reduced populations to a small percentage of individuals, so-called “bottlenecks,” such as the Black Death in Europe and the introduction of smallpox and other diseases to the Americas, have a strong selective effect. In addition, the slow continual onslaught of endemic diseases that are still with us today, such as malaria, tuberculosis and, more recently, AIDS, lead to a continual enrichment within the population for resistance alleles, even when these might be harmful and would be quickly lost in the absence of disease.

Type
Chapter
Information
Genes and Common Diseases
Genetics in Modern Medicine
, pp. 277 - 301
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, L. and Demenais, F. (1988). Detection of major genes for susceptibility to leprosy and its subtypes in a Caribbean island: Desirade island. Am J Hum Genet, 42, 256–66.Google Scholar
Aitman, T. J., Cooper, L. D., Norsworthy, P. J.et al. (2000). Malaria susceptibility and CD36 mutation. Nature, 405, 1015–16.CrossRefGoogle ScholarPubMed
Akira, S. and Hemmi, H. (2003). Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett, 85, 85–95.CrossRefGoogle ScholarPubMed
Alexopoulou, L., Holt, A. C., Medzhitov, R. and Flavell, R. A. (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature, 413, 732–8.CrossRefGoogle ScholarPubMed
Alexopoulou, L., Thomas, V., Schnare, M.et al. (2002). Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med, 8, 878–84.CrossRefGoogle ScholarPubMed
Allison, A. C. (1954). Protection afforded by sickle-cell trait against subtertian malarial infection. Br Med J, 4857, 290–4.CrossRefGoogle Scholar
Altare, F., Durandy, A., Lammas, D.et al. (1998 a). Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science, 280, 1432–5.CrossRefGoogle ScholarPubMed
Altare, F., Lammas, D., Revy, P.et al. (1998 b). Inherited interleukin 12 deficiency in a child with bacille Calmette-Guerin and Salmonella enteritidis disseminated infection. J Clin Invest, 102, 2035–40.CrossRefGoogle Scholar
Alvarez, C. P., Lasala, F., Carrillo, J.et al. (2002). C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol, 76, 6841–4.CrossRefGoogle ScholarPubMed
Amouyel, P., Vidal, O., Launay, J. M. and Laplanche, J. L. (1994). The apolipoprotein E alleles as major susceptibility factors for Creutzfeldt-Jakob disease. The French Research Group on Epidemiology of Human Spongiform Encephalopathies. Lancet, 344, 1315–18.CrossRefGoogle ScholarPubMed
An, P., Nelson, G. W., Wang, L.et al. (2002). Modulating influence on HIV/AIDS by interacting RANTES gene variants. Proc Natl Acad Sci USA, 99, 10002–7.CrossRefGoogle ScholarPubMed
Anzala, A. O., Ball, T. B., Rostron, T.et al. (1998). CCR2–64I allele and genotype association with delayed AIDS progression in African women. University of Nairobi Collaboration for HIV Research. Lancet, 351, 1632–3.CrossRefGoogle ScholarPubMed
Ashley-Koch, A., Yang, Q. and Olney, R. S. (2000). Sickle hemoglobin (HbS) allele and sickle cell disease: a HuGE review. Am J Epidemiol, 151, 839–45.CrossRefGoogle ScholarPubMed
Aucan, C., Walley, A. J., Greenwood, B. M. and Hill, A. V. (2002). Haptoglobin genotypes are not associated with resistance to severe malaria in The Gambia. Trans R Soc Trop Med Hyg, 96, 327–8.CrossRefGoogle Scholar
Aucan, C., Walley, A. J., Hennig, B. J.et al. (2003). Interferon-alpha receptor-1 (IFNAR1) variants are associated with protection against cerebral malaria in The Gambia. Genes Immun, 4, 275–82.CrossRefGoogle ScholarPubMed
Barber, R. C., Aragaki, C. C., Rivera-Chavez, F. A.et al. (2004). TLR4 and TNF-alpha polymorphisms are associated with an increased risk for severe sepsis following burn injury. J Med Genet, 41, 808–13.CrossRefGoogle ScholarPubMed
Barreiro, L. B., Neyrolles, O., Babb, C. L.et al. (2006). Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med, 3, e20.CrossRefGoogle ScholarPubMed
Bellamy, R., Beyers, N., McAdam, K. P.et al. (2000). Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci USA, 97, 8005–9.CrossRefGoogle ScholarPubMed
Bellamy, R., Ruwende, C., Corrah, T.et al. (1999). Tuberculosis and chronic hepatitis B virus infection in Africans and variation in the vitamin D receptor gene. J Infect Dis, 179, 721–4.CrossRefGoogle ScholarPubMed
Bellamy, R., Ruwende, C., Corrah, T.et al. (1998). Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med, 338, 640–4.CrossRefGoogle ScholarPubMed
Boreham, P. F., Lenahan, J. K., Port, G. R. and McGregor, I. A. (1981). Haptoglobin polymorphism and its relationship to malaria infections in The Gambia. Trans R Soc Trop Med Hyg, 75, 193–200.CrossRefGoogle ScholarPubMed
Bornman, L., Campbell, S. J., Fielding, K.et al. (2004). Vitamin D receptor polymorphisms and susceptibility to tuberculosis in West Africa: a case-control and family study. J Infect Dis, 190, 1631–41.CrossRefGoogle ScholarPubMed
Bothamley, G. H., Beck, J. S., Schreuder, G. M.et al. (1989). Association of tuberculosis and M. tuberculosis-specific antibody levels with HLA. J Infect Dis, 159, 549–55.CrossRefGoogle Scholar
Brahmajothi, V., Pitchappan, R. M., Kakkanaiah, V. N.et al. (1991). Association of pulmonary tuberculosis and HLA in south India. Tubercle, 72, 123–32.CrossRefGoogle ScholarPubMed
Bredius, R. G., Derkx, B. H., Fijen, C. A.et al. (1994). Fc gamma receptor IIa (CD32) polymorphism in fulminant meningococcal septic shock in children. J Infect Dis, 170, 848–53.CrossRefGoogle ScholarPubMed
Brightbill, H. D., Libraty, D. H., Krutzik, S. R.et al. (1999). Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science, 285, 732–6.CrossRefGoogle ScholarPubMed
Burgner, D., Xu, W., Rockett, K.et al. (1998). Inducible nitric oxide synthase polymorphism and fatal cerebral malaria. Lancet, 352, 1193–4.CrossRefGoogle ScholarPubMed
Campos, M. A., Almeida, I. C., Takeuchi, O.et al. (2001). Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol, 167, 416–23.CrossRefGoogle ScholarPubMed
Carrington, M., Nelson, G. W., Martin, M. P.et al. (1999). HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science, 283, 1748–52.CrossRefGoogle ScholarPubMed
Casanova, J. L., Blanche, S., Emile, J. F.et al. (1996). Idiopathic disseminated bacillus Calmette-Guerin infection: a French national retrospective study. Pediatrics, 98, 774–8.Google ScholarPubMed
Cervino, A. C., Lakiss, S., Sow, O.et al. (2002). Fine mapping of a putative tuberculosis-susceptibility locus on chromosome 15q11–13 in African families. Hum Mol Genet, 11, 1599–603.CrossRefGoogle ScholarPubMed
Cervino, A. C., Lakiss, S., Sow, O. and Hill, A. V. (2000). Allelic association between the NRAMP1 gene and susceptibility to tuberculosis in Guinea-Conakry. Ann Hum Genet, 64, 507–12.CrossRefGoogle ScholarPubMed
Chakravarti, M. R. and Vogel, F. (1973). A twin study in leprosy. Top Hum Genet, 1, 1–123.
Chotivanich, K., Udomsangpetch, R., Pattanapanyasat, K.et al. (2002). Hemoglobin E: a balanced polymorphism protective against high parasitemias and thus severe P falciparum malaria. Blood, 100, 1172–6.Google ScholarPubMed
Cocchi, F., DeVico, A. L., Garzino-Demo, A.et al. (1995). Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science, 270, 1811–15.CrossRefGoogle ScholarPubMed
Comstock, G. W. (1978). Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Resp Dis, 117, 621–4.Google ScholarPubMed
Contu, L., Carcassi, C., Orru, S.et al. (1998). HLA-B35 frequency variations correlate with malaria infection in Sardinia. Tissue Antigens, 52, 452–61.CrossRefGoogle ScholarPubMed
Cooke, G. S., Aucan, C., Walley, A. J.et al. (2003). Association of Fcgamma receptor IIa (CD32) polymorphism with severe malaria in West Africa. Am J Trop Med Hyg, 69, 565–8.Google ScholarPubMed
Cookson, W. O., Ubhi, B., Lawrence, R.et al. (2001). Genetic linkage of childhood atopic dermatitis to psoriasis susceptibility loci. Nat Genet, 27, 372–3.CrossRefGoogle ScholarPubMed
Cox, R. A., Downs, M., Neimes, R. E.et al. (1988). Immunogenetic analysis of human tuberculosis. J Infect Dis, 158, 1302–8.CrossRefGoogle ScholarPubMed
Croes, E. A., Alizadeh, B. Z., Bertoli-Avella, A. M.et al. (2004). Polymorphisms in the prion protein gene and in the doppel gene increase susceptibility for Creutzfeldt-Jakob disease. Eur J Hum Genet, 12, 389–94.CrossRefGoogle ScholarPubMed
Curtis, B. M., Scharnowske, S. and Watson, A. J. (1992). Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc Natl Acad Sci USA, 89, 8356–60.CrossRefGoogle ScholarPubMed
Davies, P. D., Brown, R. C. and Woodhead, J. S. (1985). Serum concentrations of vitamin D metabolites in untreated tuberculosis. Thorax, 40, 187–90.CrossRefGoogle ScholarPubMed
Jong, R., Altare, F., Haagen, I. A.et al. (1998). Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science, 280, 1435–8.CrossRefGoogle ScholarPubMed
Messias, I. J., Santamaria, J., Brenden, M., Reis, A. and Mauff, G. (1993). Association of C4B deficiency (C4B*Q0) with erythema nodosum in leprosy. Clin Exp Immunol, 92, 284–7.CrossRefGoogle ScholarPubMed
Vries, R. R., Fat, R. F., Nijenhuis, L. E. and Rood, J. J. (1976). HLA-linked genetic control of host response to Mycobacterium leprae. Lancet, 2, 1328–30.CrossRefGoogle ScholarPubMed
Witte, L., Abt, M., Schneider-Schaulies, S., Kooyk, Y. and Geijtenbeek, T. B. (2006). Measles virus targets DC-SIGN to enhance dendritic cell infection. J Virol, 80, 3477–86.CrossRefGoogle ScholarPubMed
Dean, M., Carrington, M., Winkler, C.et al. (1996). Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science, 273, 1856–62.CrossRefGoogle Scholar
Delgado, J. C., Baena, A., Thim, S. and Goldfeld, A. E. (2006). Aspartic acid homozygosity at codon 57 of HLA-DQ beta is associated with susceptibility to pulmonary tuberculosis in Cambodia. J Immunol, 176, 1090–7.CrossRefGoogle ScholarPubMed
Dharmana, E., Joosten, I., Tijssen, H. J.et al. (2002). HLA-DRB1*12 is associated with protection against complicated typhoid fever, independent of tumour necrosis factor alpha. Eur J Immunogenet, 29, 297–300.CrossRefGoogle ScholarPubMed
Diehl, K. and Verschuer, O. (1936). Der Erbeinfluss bei den Tuberkulose. Beitr Klin Kunsch, 92, 275.Google Scholar
Doffinger, R., Jouanguy, E., Dupuis, S.et al. (2000). Partial interferon-gamma receptor signaling chain deficiency in a patient with bacille Calmette-Guerin and Mycobacterium abscessus infection. J Infect Dis, 181, 379–84.CrossRefGoogle Scholar
Dorman, S. E. and Holland, S. M. (1998). Mutation in the signal-transducing chain of the interferon-gamma receptor and susceptibility to mycobacterial infection. J Clin Invest, 101, 2364–9.CrossRefGoogle ScholarPubMed
Dowling, G. B. and Prosser-Thomas, E. W. (1946). Treatment of lupus vulgaris with calciferol. Lancet, i, 919–22.CrossRefGoogle Scholar
Dunstan, S. J., Stephens, H. A., Blackwell, J. M.et al. (2001). Genes of the class II and class III major histocompatibility complex are associated with typhoid fever in Vietnam. J Infect Dis, 183, 261–8.CrossRefGoogle ScholarPubMed
Dupuis, S., Dargemont, C., Fieschi, C.et al. (2001). Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science, 293, 300–3.CrossRefGoogle Scholar
Elagib, A. A., Kider, A. O., Akerstrom, B. and Elbashir, M. I. (1998). Association of the haptoglobin phenotype (1–1) with falciparum malaria in Sudan. Trans R Soc Trop Med Hyg, 92, 309–11.CrossRefGoogle ScholarPubMed
Etokebe, G. E., Bulat-Kardum, L., Johansen, M. S.et al. (2006). Interferon-gamma gene (T874A and G2109A) polymorphisms are associated with microscopy-positive tuberculosis. Scand J Immunol, 63, 136–41.CrossRefGoogle ScholarPubMed
Faure, S., Meyer, L., Costagliola, D.et al. (2000). Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX3CR1. Science, 287, 2274–7.CrossRefGoogle ScholarPubMed
Fernandez-Reyes, D., Craig, A. G., Kyes, S. A.et al. (1997). A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya. Hum Mol Genet, 6, 1357–60.CrossRefGoogle ScholarPubMed
Fine, P. E., Wolf, E., Pritchard, J.et al. (1979). HLA-linked genes and leprosy: a family study in Karigiri, South India. J Infect Dis, 140, 152–61.CrossRefGoogle ScholarPubMed
Fink, J. K., Warren, J. T. Jr., Drury, I., Murman, D. and Peacock, M. L. (1991). Allele-specific sequencing confirms novel prion gene polymorphism in Creutzfeldt-Jakob disease. Neurology, 41, 1647–50.CrossRefGoogle ScholarPubMed
Flint, J., Hill, A. V., Bowden, D. K.et al. (1986). High frequencies of alpha-thalassaemia are the result of natural selection by malaria. Nature, 321, 744–50.CrossRefGoogle ScholarPubMed
Flori, L., Kumulungui, B., Aucan, C.et al. (2003). Linkage and association between Plasmodium falciparum blood infection levels and chromosome 5q31-q33. Genes Immun, 4, 265–8.CrossRefGoogle ScholarPubMed
Fortin, A., Stevenson, M. M. and Gros, P. (2002). Complex genetic control of susceptibility to malaria in mice. Genes Immun, 3, 177–86.CrossRefGoogle ScholarPubMed
Garred, P., Strom, J. J., Quist, L.et al. (2003). Association of mannose-binding lectin polymorphisms with sepsis and fatal outcome, in patients with systemic inflammatory response syndrome. J Infect Dis, 188, 1394–403.CrossRefGoogle ScholarPubMed
Geijtenbeek, T. B., Kwon, D. S., Torensma, R.et al. (2000 a). DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell, 100, 587–97.CrossRefGoogle ScholarPubMed
Geijtenbeek, T. B., Torensma, R., Vliet, S. J.et al. (2000 b). Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell, 100, 575–85.CrossRefGoogle ScholarPubMed
Goldfeld, A. E., Delgado, J. C., Thim, S.et al. (1998). Association of an HLA-DQ allele with clinical tuberculosis. JAMA, 279, 226–8.CrossRefGoogle ScholarPubMed
Goldgaber, D., Goldfarb, L. G., Brown, P.et al. (1989). Mutations in familial Creutzfeldt-Jakob disease and Gerstmann–Straussler–Scheinker's syndrome. Exp Neurol, 106, 204–6.CrossRefGoogle ScholarPubMed
Gomi, K., Kawasaki, K., Kawai, Y., Shiozaki, M. and Nishijima, M. (2002). Toll-like receptor 4-MD-2 complex mediates the signal transduction induced by flavolipin, an amino acid-containing lipid unique to Flavobacterium meningosepticum. J Immunol, 168, 2939–43.CrossRefGoogle ScholarPubMed
Goueffon, S. and du Saussay, C. (1969). Systematic survey on hemoglobin E and glucose-6-phosphate dehydrogenase in Cambodia (October 1965–June 1966). Bull Soc Pathol Exot Filiales, 62, 1118–32.Google Scholar
Grange, J. M., Davies, P. D., Brown, R. C., Woodhead, J. S. and Kardjito, T. (1985). A study of vitamin D levels in Indonesian patients with untreated pulmonary tuberculosis. Tubercle, 66, 187–91.CrossRefGoogle ScholarPubMed
Grau, G. E., Taylor, T. E., Molyneux, M. E.et al. (1989). Tumor necrosis factor and disease severity in children with falciparum malaria. N Engl J Med, 320, 1586–91.CrossRefGoogle ScholarPubMed
Greenwood, C. M., Fujiwara, T. M., Boothroyd, L. J.et al. (2000). Linkage of tuberculosis to chromosome 2q35 loci, including NRAMP1, in a large aboriginal Canadian family. Am J Hum Genet, 67, 405–16.CrossRefGoogle Scholar
Greiner, J., Schleiermacher, E., Smith, T., Lenhard, V. and Vogel, F. (1978). The HLA system and leprosy in Thailand. Hum Genet, 42, 201–13.CrossRefGoogle ScholarPubMed
Gros, P., Skamene, E. and Forget, A. (1981). Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice. J Immunol, 127, 2417–21.Google ScholarPubMed
Haile, R. W., Iselius, L., Fine, P. E. and Morton, N. E. (1985). Segregation and linkage analyses of 72 leprosy pedigrees. Hum Hered, 35, 43–52.CrossRefGoogle ScholarPubMed
Hajjar, A. M., O'Mahony, D. S., Ozinsky, A.et al. (2001). Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol, 166, 15–19.CrossRefGoogle ScholarPubMed
Haldane, J. B. S. (1949). Disease and evolution. Ric Sci, Suppl A(19), 68–76.Google Scholar
Hamajima, N., Matsuo, K., Saito, T.et al. (2001 a). Interleukin 1 polymorphisms, lifestyle factors, and Helicobacter pylori infection. Jpn J Cancer Res, 92, 383–9.CrossRefGoogle ScholarPubMed
Hamajima, N., Matsuo, K., Suzuki, T.et al. (2001 b). Low expression myeloperoxidase genotype negatively associated with Helicobacter pylori infection. Jpn J Cancer Res, 92, 488–93.CrossRefGoogle ScholarPubMed
Hamblin, M. T. and Di Rienzo, A. (2000). Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am J Hum Genet, 66, 1669–79.CrossRefGoogle ScholarPubMed
Hashimoto, C., Hudson, K. L. and Anderson, K. V. (1988). The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell, 52, 269–79.CrossRefGoogle ScholarPubMed
Hayashi, F., Smith, K. D., Ozinsky, A.et al. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 410, 1099–103.CrossRefGoogle ScholarPubMed
Heil, F., Ahmad-Nejad, P., Hemmi, H.et al. (2003). The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol, 33, 2987–97.CrossRefGoogle ScholarPubMed
Heinzmann, A., Ahlert, I., Kurz, T., Berner, R. and Deichmann, K. A. (2004). Association study suggests opposite effects of polymorphisms within IL8 on bronchial asthma and respiratory syncytial virus bronchiolitis. J Allergy Clin Immunol, 114, 671–6.CrossRefGoogle ScholarPubMed
Hemmi, H., Kaisho, T., Takeuchi, O.et al. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol, 3, 196–200.CrossRefGoogle ScholarPubMed
Hemmi, H., Takeuchi, O., Kawai, T.et al. (2000). A Toll-like receptor recognizes bacterial DNA. Nature, 408, 740–5.CrossRefGoogle ScholarPubMed
Hendel, H., Caillat-Zucman, S., Lebuanec, H.et al. (1999). New class I and II HLA alleles strongly associated with opposite patterns of progression to AIDS. J Immunol, 162, 6942–6.Google Scholar
Hendriks, J. C., Medley, G. F., Griensven, G. J.et al. (1993). The treatment-free incubation period of AIDS in a cohort of homosexual men. AIDS, 7, 231–9.CrossRefGoogle Scholar
Henneke, P., Takeuchi, O., Strijp, J. A.et al. (2001). Novel engagement of CD14 and multiple toll-like receptors by group B streptococci. J Immunol, 167, 7069–76.CrossRefGoogle ScholarPubMed
Hennig, B. J., Hellier, S., Frodsham, A. J.et al. (2002). Association of low-density lipoprotein receptor polymorphisms and outcome of hepatitis C infection. Genes Immun, 3, 359–67.CrossRefGoogle ScholarPubMed
Hill, A. V., Allsopp, C. E., Kwiatkowski, D.et al. (1991). Common west African HLA antigens are associated with protection from severe malaria. Nature, 352, 595–600.CrossRefGoogle ScholarPubMed
Hill, A. V., Whitehouse, D. B., Bowden, D. K.et al. (1987). Ahaptoglobinaemia in Melanesia: DNA and malarial antibody studies. Trans R Soc Trop Med Hyg, 81, 573–7.CrossRefGoogle ScholarPubMed
Hobbs, M. R., Udhayakumar, V., Levesque, M. C.et al. (2002). A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children. Lancet, 360, 1468–75.CrossRefGoogle ScholarPubMed
Hoebee, B., Rietveld, E., Bont, L.et al. (2003). Association of severe respiratory syncytial virus bronchiolitis with interleukin-4 and interleukin-4 receptor alpha polymorphisms. J Infect Dis, 187, 2–11.CrossRefGoogle ScholarPubMed
Hoshino, K., Takeuchi, O., Kawai, T.et al. (1999). Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol, 162, 3749–52.Google ScholarPubMed
Huang, Y., Paxton, W. A., Wolinsky, S. M.et al. (1996). The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med, 2, 1240–3.CrossRefGoogle ScholarPubMed
Hull, J., Ackerman, H., Isles, K.et al. (2001). Unusual haplotypic structure of IL8, a susceptibility locus for a common respiratory virus. Am J Hum Genet, 69, 413–19.CrossRefGoogle ScholarPubMed
Hull, J., Rowlands, K., Lockhart, E.et al. (2003). Variants of the chemokine receptor CCR5 are associated with severe bronchiolitis caused by respiratory syncytial virus. J Infect Dis, 188, 904–7.CrossRefGoogle ScholarPubMed
Hull, J., Rowlands, K., Lockhart, E.et al. (2004). Haplotype mapping of the bronchiolitis susceptibility locus near IL8. Hum Genet, 114, 272–9.CrossRefGoogle ScholarPubMed
Hutagalung, R., Wilairatana, P., Looareesuwan, S.et al. (1999). Influence of hemoglobin E trait on the severity of Falciparum malaria. J Infect Dis, 179, 283–6.CrossRefGoogle ScholarPubMed
Jarolim, P., Palek, J., Amato, D.et al. (1991). Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. Proc Natl Acad Sci USA, 88, 11022–6.CrossRefGoogle ScholarPubMed
Jeannet, M., Sztajzel, R., Carpentier, N., Hirschel, B. and Tiercy, J. M. (1989). HLA antigens are risk factors for development of AIDS. J Acquir Immune Defic Syndr, 2, 28–32.Google Scholar
Jeannin, P., Renno, T., Goetsch, L.et al. (2000). OmpA targets dendritic cells, induces their maturation and delivers antigen into the MHC class I presentation pathway. Nat Immunol, 1, 502–9.CrossRefGoogle ScholarPubMed
Jepson, A., Banya, W., Hassan-King, M.et al. (1994). Twin children in The Gambia: evidence for genetic regulation of physical characteristics in the presence of sub-optimal nutrition. Ann Trop Paediatr, 14, 309–13.CrossRefGoogle ScholarPubMed
Jepson, A., Fowler, A., Banya, W.et al. (2001). Genetic regulation of acquired immune responses to antigens of mycobacterium tuberculosis: a study of twins in West Africa. Infect Immun, 69, 3989–94.CrossRefGoogle ScholarPubMed
Jouanguy, E., Altare, F., Lamhamedi, S.et al. (1996). Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. N Engl J Med, 335, 1956–61.CrossRefGoogle Scholar
Kallmann, F. J. and Reisner, D. (1942). Twin studies on the significance of genetic factors in tuberculosis. Am Rev Respir Dis, 479, 549–74.Google Scholar
Kang, T. J., Lee, S. B. and Chae, G. T. (2002). A polymorphism in the toll-like receptor 2 is associated with IL-12 production from monocyte in lepromatous leprosy. Cytokine, 20, 56–62.CrossRefGoogle ScholarPubMed
Karplus, T. M., Jeronimo, S. M., Chang, H.et al. (2002). Association between the tumor necrosis factor locus and the clinical outcome of Leishmania chagasi infection. Infect Immun, 70, 6919–25.CrossRefGoogle ScholarPubMed
Kaslow, R. A., Carrington, M., Apple, R.et al. (1996). Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat Med, 2, 405–11.CrossRefGoogle ScholarPubMed
Kaur, G., Sachdeva, G., Bhutani, L. K. and Bamezai, R. (1997). Association of polymorphism at COL3A and CTLA4 loci on chromosome 2q31–33 with the clinical phenotype and in-vitro CMI status in healthy and leprosy subjects: a preliminary study. Hum Genet, 100, 43–50.CrossRefGoogle ScholarPubMed
Keet, I. P., Tang, J., Klein, M. R.et al. (1999). Consistent associations of HLA class I and II and transporter gene products with progression of human immunodeficiency virus type 1 infection in homosexual men. J Infect Dis, 180, 299–309.CrossRefGoogle Scholar
Kim, H. S., Park, M. H., Song, E. Y.et al. (2005). Association of HLA-DR and HLA-DQ genes with susceptibility to pulmonary tuberculosis in Koreans: preliminary evidence of associations with drug resistance, disease severity, and disease recurrence. Hum Immunol, 66, 1074–81.CrossRefGoogle ScholarPubMed
Knight, J. C., Udalova, I., Hill, A. V.et al. (1999). A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nat Genet, 22, 145–50.CrossRefGoogle ScholarPubMed
Koch, O., Awomoyi, A., Usen, S.et al. (2002). IFNGR1 gene promoter polymorphisms and susceptibility to cerebral malaria. J Infect Dis, 185, 1684–7.CrossRefGoogle ScholarPubMed
Koppel, E. A., Saeland, E., Cooker, D. J., Kooyk, Y. and Geijtenbeek, T. B. (2005). DC-SIGN specifically recognizes Streptococcus pneumoniae serotypes 3 and 14. Immunobiology, 210, 203–10.CrossRefGoogle ScholarPubMed
Kostrikis, L. G., Huang, Y., Moore, J. P.et al. (1998). A chemokine receptor CCR2 allele delays HIV-1 disease progression and is associated with a CCR5 promoter mutation. Nat Med, 4, 350–3.CrossRefGoogle ScholarPubMed
Kouriba, B., Chevillard, C., Bream, J. H.et al. (2005). Analysis of the 5q31-q33 locus shows an association between IL13-1055C/T IL-13-591A/G polymorphisms and Schistosoma haematobium infections. J Immunol, 174, 6274–81.CrossRefGoogle ScholarPubMed
Krutzik, S. R., Ochoa, M. T., Sieling, P. A.et al. (2003). Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med, 9, 525–32.CrossRefGoogle ScholarPubMed
Kun, J. F., Mordmuller, B., Lell, B.et al. (1998). Polymorphism in promoter region of inducible nitric oxide synthase gene and protection against malaria. Lancet, 351, 265–6.CrossRefGoogle ScholarPubMed
Kun, J. F., Mordmuller, B., Perkins, D. J.et al. (2001). Nitric oxide synthase 2 (Lambarene) (G-954C), increased nitric oxide production, and protection against malaria. J Infect Dis, 184, 330–6.CrossRefGoogle Scholar
Kuroda, Y., Kaneoka, H., Shibasaki, H., Kume, S. and Yamaguchi, M. (1986). HLA study of Japanese patients with Creutzfeldt-Jakob disease: significant association with HLA-DQw3. Ann Neurol, 20, 356–9.CrossRefGoogle ScholarPubMed
Kurt-Jones, E. A., Popova, L., Kwinn, L.et al. (2000). Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol, 1, 398–401.CrossRefGoogle ScholarPubMed
Levin, M., Newport, M. J., D'Souza, S.et al. (1995). Familial disseminated atypical mycobacterial infection in childhood: a human mycobacterial susceptibility gene?Lancet, 345, 79–83.CrossRefGoogle ScholarPubMed
Li, C. M., Campbell, S. J., Kumararatne, D. S.et al. (2002). Association of a polymorphism in the P2X7 gene with tuberculosis in a Gambian population. J Infect Dis, 186, 1458–62.CrossRefGoogle Scholar
Lin, T. M., Chen, C. J., Wu, M. M.et al. (1989). Hepatitis B virus markers in Chinese twins. Anticancer Res, 9, 737–41.Google ScholarPubMed
Lindesmith, L., Moe, C., Marionneau, S.et al. (2003). Human susceptibility and resistance to Norwalk virus infection. Nat Med, 9, 548–53.CrossRefGoogle ScholarPubMed
Lio, D., Caruso, C., Di Stefano, R.et al. (2003). IL-10 and TNF-alpha polymorphisms and the recovery from HCV infection. Hum Immunol, 64, 674–80.CrossRefGoogle ScholarPubMed
Lio, D., Marino, V., Serauto, A.et al. (2002). Genotype frequencies of the +874T–>A single nucleotide polymorphism in the first intron of the interferon-gamma gene in a sample of Sicilian patients affected by tuberculosis. Eur J Immunogenet, 29, 371–4.CrossRefGoogle Scholar
Liu, R., Paxton, W. A., Choe, S.et al. (1996). Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell, 86, 367–77.CrossRefGoogle ScholarPubMed
Lopez-Maderuelo, D., Arnalich, F., Serantes, R.et al. (2003). Interferon-gamma and interleukin-10 gene polymorphisms in pulmonary tuberculosis. Am J Respir Crit Care Med, 167, 970–5.CrossRefGoogle ScholarPubMed
Luoni, G., Verra, F., Arca, B.et al. (2001). Antimalarial antibody levels and IL-4 polymorphism in the Fulani of West Africa. Genes Immun, 2, 411–14.CrossRefGoogle ScholarPubMed
Maas, J., Roda Husman, A. M., Brouwer, M.et al. (1998). Presence of the variant mannose-binding lectin alleles associated with slower progression to AIDS. Amsterdam Cohort Study. Aids, 12, 2275–80.CrossRefGoogle ScholarPubMed
Maier, A. G., Duraisingh, M. T., Reeder, J. C.et al. (2003). Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat Med, 9, 87–92.CrossRefGoogle ScholarPubMed
Malik, S., Abel, L., Tooker, H.et al. (2005). Alleles of the NRAMP1 gene are risk factors for pediatric tuberculosis disease. Proc Natl Acad Sci USA, 102, 12183–8.CrossRefGoogle ScholarPubMed
Malik, S., Arias, M., Di Flumeri, C., Garcia, L. F. and Schurr, E. (2003). Absence of association between mannose-binding lectin gene polymorphisms and HIV-1 infection in a Colombian population. Immunogenetics, 55, 49–52.Google Scholar
Malik, S., Greenwood, C. M., Eguale, T.et al. (2006). Variants of the SFTPA1 and SFTPA2 genes and susceptibility to tuberculosis in Ethiopia. Hum Genet, 118, 752–9.CrossRefGoogle ScholarPubMed
Marquet, S., Abel, L., Hillaire, D.et al. (1996). Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31-q33. Nat Genet, 14, 181–4.CrossRefGoogle ScholarPubMed
Martin, M. P., Dean, M., Smith, M. W.et al. (1998). Genetic acceleration of AIDS progression by a promoter variant of CCR5. Science, 282, 1907–11.CrossRefGoogle ScholarPubMed
Massari, P., Henneke, P., Ho, Y.et al. (2002). Cutting edge: immune stimulation by neisserial porins is Toll-like receptor 2 and MyD88 dependent. J Immunol, 168, 1533–7.CrossRefGoogle ScholarPubMed
McGuire, W., Hill, A. V., Allsopp, C. E., Greenwood, B. M. and Kwiatkowski, D. (1994). Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature, 371, 508–10.CrossRefGoogle ScholarPubMed
McGuire, W., Knight, J. C., Hill, A. V.et al. (1999). Severe malarial anemia and cerebral malaria are associated with different tumor necrosis factor promoter alleles. J Infect Dis, 179, 287–90.CrossRefGoogle ScholarPubMed
Mead, S., Mahal, S. P., Beck, J.et al. (2001). Sporadic – but not variant – Creutzfeldt-Jakob disease is associated with polymorphisms upstream of PRNP exon 1. Am J Hum Genet, 69, 1225–35.CrossRefGoogle Scholar
Mead, S., Stumpf, M. P., Whitfield, J.et al. (2003). Balancing selection at the prion protein gene consistent with prehistoric kurulike epidemics. Science, 300, 640–3.CrossRefGoogle ScholarPubMed
Means, T. K., Wang, S., Lien, E.et al. (1999). Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol, 163, 3920–7.Google ScholarPubMed
Mehra, N. K., Rajalingam, R., Mitra, D. K., Taneja, V. and Giphart, M. J. (1995). Variants of HLA-DR2/DR51 group haplotypes and susceptibility to tuberculoid leprosy and pulmonary tuberculosis in Asian Indians. Int J Lepr Other Mycobact Dis, 63, 241–8.Google ScholarPubMed
Meisner, S. J., Mucklow, S., Warner, G., Sow, S. O., Lienhardt, C. and Hill, A. V. (2001). Association of NRAMP1 polymorphism with leprosy type but not susceptibility to leprosy per se in west Africans. Am J Trop Med Hyg, 65, 733–5.CrossRefGoogle ScholarPubMed
Mgone, C. S., Koki, G., Paniu, M. M.et al. (1996). Occurrence of the erythrocyte band 3 (AE1) gene deletion in relation to malaria endemicity in Papua New Guinea. Trans R Soc Trop Med Hyg, 90, 228–31.CrossRefGoogle ScholarPubMed
Michaud, C. M., Murray, C. J. and Bloom, B. R. (2001). Burden of disease – implications for future research. JAMA, 285, 535–9.CrossRefGoogle ScholarPubMed
Migueles, S. A., Sabbaghian, M. S., Shupert, W. L.et al. (2000). HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci USA, 97, 2709–14.CrossRefGoogle Scholar
Miller, L. H., Mason, S. J., Dvorak, J. A., McGinniss, M. H. and Rothman, I. K. (1975). Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science, 189, 561–3.CrossRefGoogle ScholarPubMed
Mira, J. P., Cariou, A., Grall, F.et al. (1999). Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA, 282, 561–8.CrossRefGoogle ScholarPubMed
Mira, M. T., Alcais, A., Nguyen, V. T.et al. (2004). Susceptibility to leprosy is associated with PARK2 and PACRG. Nature, 427, 636–40.CrossRefGoogle ScholarPubMed
Mira, M. T., Alcais, A., Thuc, N.et al. (2003). Chromosome 6q25 is linked to susceptibility to leprosy in a Vietnamese population. Nat Genet, 33, 412–15.CrossRefGoogle Scholar
Miyanaga, K., Juji, T., Maeda, H., Nakajima, S. and Kobayashi, S. (1981). Tuberculoid leprosy and HLA in Japanese. Tissue Antigens, 18, 331–4.CrossRefGoogle ScholarPubMed
Modiano, D., Luoni, G., Sirima, B. S.et al. (2001). Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature, 414, 305–8.CrossRefGoogle ScholarPubMed
Modiano, D., Petrarca, V., Sirima, B. S.et al. (1996). Different response to Plasmodium falciparum malaria in west African sympatric ethnic groups. Proc Natl Acad Sci USA, 93, 13206–11.CrossRefGoogle ScholarPubMed
Mohamed, H. S., Ibrahim, M. E., Miller, E. N.et al. (2003). Genetic susceptibility to visceral leishmaniasis in the Sudan: linkage and association with IL4 and IFNGR1. Genes Immun, 4, 351–5.CrossRefGoogle ScholarPubMed
Mohamed, H. S., Ibrahim, M. E., Miller, E. N.et al. (2004). SLC11A1 (formerly NRAMP1) and susceptibility to visceral leishmaniasis in the Sudan. Eur J Hum Genet, 12, 66–74.CrossRefGoogle ScholarPubMed
Mummidi, S., Ahuja, S. S., Gonzalez, E.et al. (1998). Genealogy of the CCR5 locus and chemokine system gene variants associated with altered rates of HIV-1 disease progression. Nat Med, 4, 786–93.CrossRefGoogle ScholarPubMed
Nagase, H., Okugawa, S., Ota, Y.et al. (2003). Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J Immunol, 171, 3977–82.CrossRefGoogle ScholarPubMed
Nakayama, E. E., Hoshino, Y., Xin, X.et al. (2000). Polymorphism in the interleukin-4 promoter affects acquisition of human immunodeficiency virus type 1 syncytium-inducing phenotype. J Virol, 74, 5452–9.CrossRefGoogle ScholarPubMed
Newport, M. J., Huxley, C. M., Huston, S.et al. (1996). A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med, 335, 1941–9.CrossRefGoogle ScholarPubMed
Ohashi, K., Burkart, V., Flohe, S. and Kolb, H. (2000). Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J Immunol, 164, 558–61.CrossRefGoogle ScholarPubMed
Omi, K., Ohashi, J., Patarapotikul, J.et al. (2002). Fcgamma receptor IIA and IIIB polymorphisms are associated with susceptibility to cerebral malaria. Parasitol Int, 51, 361–6.CrossRefGoogle ScholarPubMed
Omi, K., Ohashi, J., Patarapotikul, J.et al. (2003). CD36 polymorphism is associated with protection from cerebral malaria. Am J Hum Genet, 72, 364–74.CrossRefGoogle ScholarPubMed
Opitz, B., Schroder, N. W., Spreitzer, I.et al. (2001). Toll-like receptor-2 mediates Treponema glycolipid and lipoteichoic acid-induced NF-kappaB translocation. J Biol Chem, 276, 22041–7.CrossRefGoogle ScholarPubMed
Owen, F., Poulter, M., Lofthouse, R.et al. (1989). Insertion in prion protein gene in familial Creutzfeldt-Jakob disease. Lancet, 1, 51–2.CrossRefGoogle ScholarPubMed
Ozinsky, A., Underhill, D. M., Fontenot, J. D.et al. (2000). The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci USA, 97, 13766–71.CrossRefGoogle ScholarPubMed
Patel, S. S., Mehlotra, R. K., Kastens, W.et al. (2001). The association of the glycophorin C exon 3 deletion with ovalocytosis and malaria susceptibility in the Wosera, Papua New Guinea. Blood, 98, 3489–91.CrossRefGoogle ScholarPubMed
Petersen, D. C., Glashoff, R. H., Shrestha, S.et al. (2005). Risk for HIV-1 infection associated with a common CXCL12 (SDF1) polymorphism and CXCR4 variation in an African population. J Acquir Immune Defic Syndr, 40, 521–6.CrossRefGoogle Scholar
Picard, C., Fieschi, C., Altare, F.et al. (2002). Inherited interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds. Am J Hum Genet, 70, 336–48.CrossRefGoogle ScholarPubMed
Poltorak, A., He, X., Smirnova, I.et al. (1998 a). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282, 2085–8.CrossRefGoogle ScholarPubMed
Poltorak, A., Smirnova, I., He, X.et al. (1998 b). Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis, 24, 340–55.CrossRefGoogle ScholarPubMed
Pravica, V., Perrey, C., Stevens, A., Lee, J. H. and Hutchinson, I. V. (2000). A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production. Hum Immunol, 61, 863–6.CrossRefGoogle ScholarPubMed
Puthothu, B., Krueger, M., Heinze, J., Forster, J. and Heinzmann, A. (2006). Impact of IL8 and IL8-Receptor alpha polymorphisms on the genetics of bronchial asthma and severe RSV infections. Clin Mol Allergy, 4, 2.CrossRefGoogle ScholarPubMed
Quaye, I. K., Ekuban, F. A., Goka, B. Q.et al. (2000). Haptoglobin 1–1 is associated with susceptibility to severe Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg, 94, 216–19.CrossRefGoogle ScholarPubMed
Rad, R., Prinz, C., Neu, B.et al. (2003). Synergistic effect of Helicobacter pylori virulence factors and interleukin-1 polymorphisms for the development of severe histological changes in the gastric mucosa. J Infect Dis, 188, 272–81.CrossRefGoogle ScholarPubMed
Rajalingam, R., Mehra, N. K. and Singal, D. P. (2000). Polymorphism in heat-shock protein 70-1 (HSP70-1) gene promoter region and susceptibility to tuberculoid leprosy and pulmonary tuberculosis in Asian Indians. Indian J Exp Biol, 38, 658–62.Google ScholarPubMed
Rajalingam, R., Singal, D. P. and Mehra, N. K. (1997). Transporter associated with antigen-processing (TAP) genes and susceptibility to tuberculoid leprosy and pulmonary tuberculosis. Tissue Antigens, 49, 168–72.CrossRefGoogle ScholarPubMed
Ramaley, P. A., French, N., Kaleebu, P.et al. (2002). HIV in Africa (Communication arising): chemokine-receptor genes and AIDS risk. Nature, 417, 140.CrossRefGoogle ScholarPubMed
Rani, R., Zaheer, S. A. and Mukherjee, R. (1992). Do human leukocyte antigens have a role to play in differential manifestation of multibacillary leprosy: a study on multibacillary leprosy patients from north India. Tissue Antigens, 40, 124–7.CrossRefGoogle ScholarPubMed
Rea, T. H., Levan, N. E. and Terasaki, P. I. (1976). Histocompatibility antigens in patients with leprosy. J Infect Dis, 134, 615–18.CrossRefGoogle ScholarPubMed
Reiling, N., Holscher, C., Fehrenbach, A.et al. (2002). Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol, 169, 3480–4.CrossRefGoogle ScholarPubMed
Rihet, P., Abel, L., Traore, Y.et al. (1998 a). Human malaria: segregation analysis of blood infection levels in a suburban area and a rural area in Burkina Faso. Genet Epidemiol, 15, 435–50.3.0.CO;2-#>CrossRefGoogle Scholar
Rihet, P., Traore, Y., Abel, L.et al. (1998 b). Malaria in humans: Plasmodium falciparum blood infection levels are linked to chromosome 5q31-q33. Am J Hum Genet, 63, 498–505.CrossRefGoogle ScholarPubMed
Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A. and Bazan, J. F. (1998). A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA, 95, 588–93.CrossRefGoogle ScholarPubMed
Rougemont, A., Quilici, M., Delmont, J. and Ardissone, J. P. (1980). Is the HpO phenomenon in tropical populations really genetic?Hum Hered, 30, 201–3.CrossRefGoogle ScholarPubMed
Rossouw, M., Nel, H. J., Cooke, G. S., Helden, P. D. and Hoal, E. G. (2003). Association between tuberculosis and a polymorphic NFkappaB binding site in the interferon gamma gene. Lancet, 361, 1871–2.CrossRefGoogle Scholar
Roy, S., Frodsham, A., Saha, B.et al. (1999). Association of vitamin D receptor genotype with leprosy type. J Infect Dis, 179, 187–91.CrossRefGoogle ScholarPubMed
Roy, S., McGuire, W., Mascie-Taylor, C. G.et al. (1997). Tumor necrosis factor promoter polymorphism and susceptibility to lepromatous leprosy. J Infect Dis, 176, 530–2.CrossRefGoogle ScholarPubMed
Ruwende, C. and Hill, A. (1998). Glucose-6-phosphate dehydrogenase deficiency and malaria. J Mol Med, 76, 581–8.CrossRefGoogle ScholarPubMed
Ruwende, C., Khoo, S. C., Snow, R. W.et al. (1995). Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature, 376, 246–9.CrossRefGoogle ScholarPubMed
Sabeti, P. C., Reich, D. E., Higgins, J. M.et al. (2002). Detecting recent positive selection in the human genome from haplotype structure. Nature, 419, 832–7.CrossRefGoogle ScholarPubMed
Saiki, R. K., Scharf, S., Faloona, F.et al. (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230, 1350–4.CrossRefGoogle ScholarPubMed
Sakai, T., Matsuoka, M., Aoki, M., Nosaka, K. and Mitsuya, H. (2001). Missense mutation of the interleukin-12 receptor beta1 chain-encoding gene is associated with impaired immunity against Mycobacterium avium complex infection. Blood, 97, 2688–94.CrossRefGoogle ScholarPubMed
Sakuntabhai, A., Turbpaiboon, C., Casademont, I.et al. (2005). A variant in the CD209 promoter is associated with severity of dengue disease. Nat Genet, 37, 507–13.CrossRefGoogle ScholarPubMed
Salkowitz, J. R., Bruse, S. E., Meyerson, H.et al. (2003). CCR5 promoter polymorphism determines macrophage CCR5 density and magnitude of HIV-1 propagation in vitro. Clin Immunol, 108, 234–40.CrossRefGoogle ScholarPubMed
Samson, M., Libert, F., Doranz, B. J.et al. (1996). Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature, 382, 722–5.CrossRefGoogle ScholarPubMed
Sanguansermsri, T., Flatz, S. D. and Flatz, G. (1987). The hemoglobin E belt at the Thailand–Kampuchea border: ethnic and environmental determinants of hemoglobin E and beta-thalassemia gene frequencies. Gene Geogr, 1, 155–61.Google ScholarPubMed
Saunders, M. A., Hammer, M. F. and Nachman, M. W. (2002). Nucleotide variability at G6pd and the signature of malarial selection in humans. Genetics, 162, 1849–61.Google ScholarPubMed
Schauf, V., Ryan, S., Scollard, D.et al. (1985). Leprosy associated with HLA-DR2 and DQw1 in the population of northern Thailand. Tissue Antigens, 26, 243–7.CrossRefGoogle ScholarPubMed
Schroder, N. W., Morath, S., Alexander, C.et al. (2003). Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem, 278, 15587–94.CrossRefGoogle Scholar
Serjeantson, S. W. (1983). HLA and susceptibility to leprosy. Immunol Rev, 70, 89–112.CrossRefGoogle ScholarPubMed
Serrano-Gomez, D., Leal, J. A. and Corbi, A. L. (2005). DC-SIGN mediates the binding of Aspergillus fumigatus and keratinophylic fungi by human dendritic cells. Immunobiology, 210, 175–83.CrossRefGoogle ScholarPubMed
Shaffer, N., Grau, G. E., Hedberg, K.et al. (1991). Tumor necrosis factor and severe malaria. J Infect Dis, 163, 96–101.CrossRefGoogle ScholarPubMed
Shaw, M. A., Donaldson, I. J., Collins, A.et al. (2001). Association and linkage of leprosy phenotypes with HLA class II and tumour necrosis factor genes. Genes Immun, 2, 196–204.CrossRefGoogle ScholarPubMed
Shi, Y. P., Nahlen, B. L., Kariuki, S.et al. (2001). Fcgamma receptor IIa (CD32) polymorphism is associated with protection of infants against high-density Plasmodium falciparum infection. VII. Asembo Bay Cohort Project. J Infect Dis, 184, 107–11.CrossRefGoogle ScholarPubMed
Shin, H. D., Winkler, C., Stephens, J. C.et al. (2000). Genetic restriction of HIV-1 pathogenesis to AIDS by promoter alleles of IL10. Proc Natl Acad Sci USA, 97, 14467–72.CrossRefGoogle ScholarPubMed
Siddiqui, M. R., Meisner, S., Tosh, K.et al. (2001). A major susceptibility locus for leprosy in India maps to chromosome 10p13. Nat Genet, 27, 439–41.CrossRefGoogle Scholar
Singh, S. P., Mehra, N. K., Dingley, H. B., Pande, J. N. and Vaidya, M. C. (1983). Human leukocyte antigen (HLA)-linked control of susceptibility to pulmonary tuberculosis and association with HLA-DR types. J Infect Dis, 148, 676–81.CrossRefGoogle ScholarPubMed
Sjoberg, K., Lepers, J. P., Raharimalala, L.et al. (1992). Genetic regulation of human anti-malarial antibodies in twins. Proc Natl Acad Sci USA, 89, 2101–4.CrossRefGoogle ScholarPubMed
Smith, M. W., Dean, M., Carrington, M.et al. (1997). Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science, 277, 959–65.CrossRefGoogle ScholarPubMed
Smolnikova, M. V. and Konenkov, V. I. (2002). Association of IL2, TNFA, IL4 and IL10 promoter gene polymorphisms with the rate of progression of the HIV infection. Russ J Immunol, 7, 349–56.Google ScholarPubMed
Sorensen, T. I., Nielsen, G. G., Andersen, P. K. and Teasdale, T. W. (1988). Genetic and environmental influences on premature death in adult adoptees. N Engl J Med, 318, 727–32.CrossRefGoogle ScholarPubMed
Takeuchi, O., Kawai, T., Muhlradt, P. F.et al. (2001). Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol, 13, 933–40.CrossRefGoogle ScholarPubMed
Tal, G., Mandelberg, A., Dalal, I.et al. (2004). Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J Infect Dis, 189, 2057–63.CrossRefGoogle ScholarPubMed
Tang, G. J., Huang, S. L., Yien, H. W.et al. (2000). Tumor necrosis factor gene polymorphism and septic shock in surgical infection. Crit Care Med, 28, 2733–6.CrossRefGoogle ScholarPubMed
Tang, J., Costello, C., Keet, I. P.et al. (1999). HLA class I homozygosity accelerates disease progression in human immunodeficiency virus type 1 infection. AIDS Res Hum Retroviruses, 15, 317–24.CrossRefGoogle Scholar
Thursz, M. R., Kwiatkowski, D., Allsopp, C. E.et al. (1995). Association between an MHC class II allele and clearance of hepatitis B virus in The Gambia. N Engl J Med, 332, 1065–9.CrossRefGoogle ScholarPubMed
Tomiyama, H., Miwa, K., Shiga, H.et al. (1997). Evidence of presentation of multiple HIV-1 cytotoxic T lymphocyte epitopes by HLA-B*3501 molecules that are associated with the accelerated progression of AIDS. J Immunol, 158, 5026–34.Google Scholar
Tosh, K., Meisner, S., Siddiqui, M. R.et al. (2002). A region of chromosome 20 is linked to leprosy susceptibility in a South Indian population. J Infect Dis, 186, 1190–3.CrossRefGoogle Scholar
Tournamille, C., Colin, Y., Cartron, J. P. and Van Kim, C. (1995). Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet, 10, 224–8.CrossRefGoogle ScholarPubMed
Trembath, R. C., Clough, R. L., Rosbotham, J. L.et al. (1997). Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet, 6, 813–20.CrossRefGoogle Scholar
Tso, H. W., Ip, W. K., Chong, W. P.et al. (2005). Association of interferon gamma and interleukin 10 genes with tuberculosis in Hong Kong Chinese. Genes Immun, 6, 358–63.CrossRefGoogle ScholarPubMed
Underhill, D. M., Ozinsky, A., Hajjar, A. M.et al. (1999a). The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature, 401, 811–15.Google Scholar
Underhill, D. M., Ozinsky, A., Smith, K. D. and Aderem, A. (1999 b). Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA, 96, 14459–63.CrossRefGoogle ScholarPubMed
Everbroeck, B., Croes, E. A., Pals, P.et al. (2001). Influence of the prion protein and the apolipoprotein E genotype on the Creutzfeldt-Jakob Disease phenotype. Neurosci Lett, 313, 69–72.CrossRefGoogle ScholarPubMed
Verhagen, C. E., Boer, T., Smits, H. H.et al. (2000). Residual type 1 immunity in patients genetically deficient for interleukin 12 receptor beta1 (IL-12Rbeta1): evidence for an IL-12Rbeta1-independent pathway of IL-12 responsiveness in human T cells. J Exp Med, 192, 517–28.CrossRefGoogle ScholarPubMed
Vidal, S. M., Malo, D., Vogan, K., Skamene, E. and Gros, P. (1993). Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell, 73, 469–85.CrossRefGoogle ScholarPubMed
Wagener, D. K., Schauf, V., Nelson, K. E.et al. (1988). Segregation analysis of leprosy in families of northern Thailand. Genet Epidemiol, 5, 95–105.CrossRefGoogle ScholarPubMed
Wallace, C., Clayton, D. and Fine, P. (2003). Estimating the relative recurrence risk ratio for leprosy in Karonga District, Malawi. Lepr Rev, 74, 133–40.Google ScholarPubMed
Wang, L. M., Kimura, A., Satoh, M. and Mineshita, S. (1999). HLA linked with leprosy in southern China: HLA-linked resistance alleles to leprosy. Int J Lepr Other Mycobact Dis, 67, 403–8.Google ScholarPubMed
Wibawa, T., Soebono, H. and Matsuo, M. (2002). Association of a missense mutation of the laminin alpha2 gene with tuberculoid type of leprosy in Indonesian patients. Trop Med Int Health, 7, 631–6.CrossRefGoogle ScholarPubMed
Wilkinson, R. J., Llewelyn, M., Toossi, Z.et al. (2000). Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. (See comments.) Lancet, 355, 618–21.Google Scholar
Williams, T. N., Wambua, S., Uyoga, S.et al. (2005). Both heterozygous and homozygous {alpha}+thalassemia protect against severe and fatal Plasmodium falciparum malaria on the coast of Kenya. Blood, 106, 368–71.CrossRefGoogle ScholarPubMed
Wilson, J., Rowlands, K., Rockett, K.et al. (2005). Genetic variation at the IL10 gene locus is associated with severity of respiratory syncytial virus bronchiolitis. J Infect Dis, 191, 1705–9.CrossRefGoogle ScholarPubMed
Winkler, C., Modi, W., Smith, M. W.et al. (1998). Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC). Science, 279, 389–93.CrossRefGoogle Scholar
Wyllie, D. H., Kiss-Toth, E., Visintin, A.et al. (2000). Evidence for an accessory protein function for Toll-like receptor 1 in anti-bacterial responses. J Immunol, 165, 7125–32.CrossRefGoogle ScholarPubMed
Yoon, S. K., Han, J. Y., Pyo, C. W.et al. (2005). Association between human leukocytes antigen alleles and chronic hepatitis C virus infection in the Korean population. Liver Int, 25, 1122–7.CrossRefGoogle ScholarPubMed
Yoshimura, A., Lien, E., Ingalls, R. R.et al. (1999). Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol, 163, 1–5.Google ScholarPubMed
Yoshizawa, K., Ota, M., Saito, S.et al. (2003). Long-term follow-up of hepatitis C virus infection: HLA class II loci influences the natural history of the disease. Tissue Antigens, 61, 159–65.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×