Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T15:07:25.760Z Has data issue: false hasContentIssue false

22 - Genetics of chronic disease: obesity

Published online by Cambridge University Press:  17 August 2009

Alan Wright
Affiliation:
MRC Human Genetics Unit, Edinburgh
Nicholas Hastie
Affiliation:
MRC Human Genetics Unit, Edinburgh
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genes and Common Diseases
Genetics in Modern Medicine
, pp. 328 - 343
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, D. B., Kaprio, J., Korkeila, M.et al. (1996). The heritability of body mass index among an international sample of monozygotic twins reared apart. Int J Obes Relat Metab Disord, 20, 501–6.Google ScholarPubMed
Ansley, S. J., Badano, J. L., Blacque, O. E.et al. (2003). Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome. Nature, 425, 628–33.CrossRefGoogle ScholarPubMed
Badano, J. L., Ansley, S. J., Leitch, C. C.et al. (2003). Identification of a novel Bardet–Biedl syndrome protein, BBS7, that shares structural features with BBS1 and BBS2. Am J Hum Genet, 72, 650–8.CrossRefGoogle ScholarPubMed
Barsh, G. S., Farooqi, I. S. and O'Rahilly, S. (2000). Genetics of body–weight regulation. Nature, 404, 644–51.CrossRefGoogle ScholarPubMed
Bouchard, C. and Tremblay, A. (1990). Genetic effects in human energy expenditure components. Int J Obes, 14 Suppl 1, 49–55; discussion 55–8.Google ScholarPubMed
Bouchard, C., Tremblay, A., Despres, J. P.et al. (1996). Overfeeding in identical twins: 5-year postoverfeeding results. Metabolism, 45, 1042–50.CrossRefGoogle ScholarPubMed
Bouchard, C., Tremblay, A., Despres, J. P.et al. (1990). The response to long-term overfeeding in identical twins. N Engl J Med, 322, 1477–82.CrossRefGoogle ScholarPubMed
Boutin, P., Dina, C., Vasseur, F.et al. (2003). GAD2 on chromosome 10p12 is a candidate gene for human obesity. PLoS Biol, 1, E68.CrossRefGoogle ScholarPubMed
Carrel, A. L., Myers, S. E., Whitman, B. Y. and Allen, D. B. (1999). Growth hormone improves body composition, fat utilization, physical strength and agility, and growth in Prader–Willi syndrome: a controlled study. J Pediatr, 134, 215–21.CrossRefGoogle ScholarPubMed
Carrozzo, R., Rossi, E., Christian, S. L.et al. (1997). Inter- and intrachromosomal rearrangements are both involved in the origin of 15q11–q13 deletions in Prader–Willi syndrome. Am J Hum Genet, 61, 228–31.CrossRefGoogle ScholarPubMed
Challis, B. G., Pritchard, L. E., Creemers, J. W.et al. (2002). A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Hum Mol Genet, 11, 1997–2004.CrossRefGoogle ScholarPubMed
Chung, W. K., Belfi, K., Chua, M.et al. (1998). Heterozygosity for Lep(ob) or Lep(rdb) affects body composition and leptin homeostasis in adult mice. Am J Physiol, 274, R985–90.Google ScholarPubMed
Clement, K., Vaisse, C., Lahlou, N.et al. (1998). A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature, 392, 398–401.CrossRefGoogle ScholarPubMed
Comuzzie, A. G. (2002). The emerging pattern of the genetic contribution to human obesity. Best Pract Res Clin Endocrinol Metab, 16, 611–21.CrossRefGoogle ScholarPubMed
Comuzzie, A. G., Hixson, J. E., Almasy, L.et al. (1997). A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2. Nat Genet, 15, 273–6.CrossRefGoogle Scholar
Comuzzie, A. G., Williams, J. T., Martin, L. J. and Blangero, J. (2001). Searching for genes underlying normal variation in human adiposity. J Mol Med, 79, 57–70.CrossRefGoogle ScholarPubMed
Cummings, D. E., Clement, K., Purnell, J. Q.et al. (2002). Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med, 8, 643–4.CrossRefGoogle ScholarPubMed
Driscoll, D. J., Waters, M. F., Williams, C. A.et al. (1992). A DNA methylation imprint, determined by the sex of the parent, distinguishes the Angelman and Prader–Willi syndromes. Genomics, 13, 917–24.CrossRefGoogle ScholarPubMed
Farooqi, I. S., Jebb, S. A., Langmack, G.et al. (1999). Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med, 341, 879–84.CrossRefGoogle Scholar
Farooqi, I. S., Keogh, J. M., Kamath, S.et al. (2001). Partial leptin deficiency and human adiposity. Nature, 414, 34–5.CrossRefGoogle ScholarPubMed
Farooqi, I. S., Keogh, J. M., Yeo, G. S.et al. (2003). Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med, 348, 1085–95.CrossRefGoogle ScholarPubMed
Farooqi, I. S., Matarese, G., Lord, G. M.et al. (2002). Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest, 110, 1093–103.CrossRefGoogle ScholarPubMed
Hager, J., Dina, C., Francke, S.et al. (1998). A genome-wide scan for human obesity genes reveals a major susceptibility locus on chromosome 10. Nat Genet, 20, 304–8.CrossRefGoogle Scholar
Halaas, J. L., Gajiwala, K. S., Maffei, M.et al. (1995). Weight-reducing effects of the plasma protein encoded by the obese gene. Science, 269, 543–6.CrossRefGoogle ScholarPubMed
Hanson, R. L., Ehm, M. G., Pettitt, D. J.et al. (1998). An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Am J Hum Genet, 63, 1130–8.CrossRefGoogle ScholarPubMed
Haqq, A. M., Farooqi, I. S., O'Rahilly, S.et al. (2003). Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader–Willi syndrome. J Clin Endocrinol Metab, 88, 174–8.CrossRefGoogle ScholarPubMed
Hara, K., Okada, T., Tobe, K.et al. (2000). The Pro12Ala polymorphism in PPAR gamma2 may confer resistance to type 2 diabetes. Biochem Biophys Res Commun, 271, 212–16.CrossRefGoogle ScholarPubMed
Hixson, J. E., Almasy, L., Cole, S.et al. (1999). Normal variation in leptin levels in associated with polymorphisms in the proopiomelanocortin gene, POMC. J Clin Endocrinol Metab, 84, 3187–91.Google ScholarPubMed
Huszar, D., Lynch, C. A., Fairchild-Huntress, V.et al. (1997). Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell, 88, 131–41.CrossRefGoogle ScholarPubMed
Jackson, R. S., Creemers, J. W., Farooqi, I. S.et al. (2003). Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J Clin Invest, 112, 1550–60.CrossRefGoogle ScholarPubMed
Jackson, R. S., Creemers, J. W., Ohagi, S.et al. (1997). Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet, 16, 303–6.CrossRefGoogle ScholarPubMed
Kaplan, G., Kung, M., McClure, M. and Cronister, A. (1994). Direct mutation analysis of 495 patients for fragile X carrier status/proband diagnosis. Am J Med Genet, 51, 501–2.CrossRefGoogle ScholarPubMed
Katsanis, N., Ansley, S. J., Badano, J. L.et al. (2001 a). Triallelic inheritance in Bardet–Biedl syndrome, a Mendelian recessive disorder. Science, 293, 2256–9.CrossRefGoogle ScholarPubMed
Katsanis, N., Beales, P. L., Woods, M. O.et al. (2000). Mutations in MKKS cause obesity, retinal dystrophy and renal malformations associated with Bardet–Biedl syndrome. Nat Genet, 26, 67–70.Google ScholarPubMed
Katsanis, N., Lupski, J. R. and Beales, P. L. (2001 b). Exploring the molecular basis of Bardet–Biedl syndrome. Hum Mol Genet, 10, 2293–9.CrossRefGoogle ScholarPubMed
Kissebah, A. H., Sonnenberg, G. E., Myklebust, J.et al. (2000). Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc Natl Acad Sci USA, 97, 14478–83.CrossRefGoogle ScholarPubMed
Kopelman, P. G. (2000). Obesity as a medical problem. Nature, 404, 635–43.CrossRefGoogle ScholarPubMed
Krude, H., Biebermann, H., Luck, W.et al. (1998). Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet, 19, 155–7.CrossRefGoogle ScholarPubMed
Stunff, C., Fallin, D. and Bougneres, P. (2001). Paternal transmission of the very common class I INS VNTR alleles predisposes to childhood obesity. Nat Genet, 29, 96–9.CrossRefGoogle Scholar
Leibel, R. L., Chung, W. K. and Chua, S. C. Jr. (1997). The molecular genetics of rodent single gene obesities. J Biol Chem, 272, 31937–40.CrossRefGoogle ScholarPubMed
Lindi, V. I., Uusitupa, M. I., Lindstrom, J.et al. (2002). Association of the Pro12Ala polymorphism in the PPAR-gamma2 gene with 3-year incidence of type 2 diabetes and body weight change in the Finnish Diabetes Prevention Study. Diabetes, 51, 2581–6.CrossRefGoogle ScholarPubMed
Maes, H. H., Neale, M. C. and Eaves, L. J. (1997). Genetic and environmental factors in relative body weight and human adiposity. Behav Genet, 27, 325–51.CrossRefGoogle ScholarPubMed
Martin, L. J., Cole, S. A., Hixson, J. E.et al. (2002). Genotype by smoking interaction for leptin levels in the San Antonio Family Heart Study. Genet Epidemiol, 22, 105–15.CrossRefGoogle ScholarPubMed
Meirhaeghe, A., Fajas, L., Helbecque, N.et al. (1998). A genetic polymorphism of the peroxisome proliferator-activated receptor gamma gene influences plasma leptin levels in obese humans. Hum Mol Genet, 7, 435–40.CrossRefGoogle ScholarPubMed
Meirhaeghe, A., Helbecque, N., Cottel, D. and Amouyel, P. (1999). Beta2-adrenoceptor gene polymorphism, body weight, and physical activity. Lancet, 353, 896.CrossRefGoogle ScholarPubMed
Meirhaeghe, A., Luan, J., Selberg-Franks, P.et al. (2001). The effect of the Gly16Arg polymorphism of the beta(2)-adrenergic receptor gene on plasma free fatty acid levels is modulated by physical activity. J Clin Endocrinol Metab, 86, 5881–7.Google ScholarPubMed
Mitchell, B. D., Cole, S. A., Comuzzie, A. G.et al. (1999). A quantitative trait locus influencing BMI maps to the region of the beta-3 adrenergic receptor. Diabetes, 48, 1863–7.CrossRefGoogle ScholarPubMed
Montague, C. T., Farooqi, I. S., Whitehead, J. P.et al. (1997). Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature, 387, 903–8.CrossRefGoogle ScholarPubMed
Mykytyn, K., Braun, T., Carmi, R.et al. (2001). Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Nat Genet, 28, 188–91.CrossRefGoogle ScholarPubMed
Mykytyn, K., Nishimura, D. Y., Searby, C. C.et al. (2002). Identification of the gene (BBS1) most commonly involved in Bardet–Biedl syndrome, a complex human obesity syndrome. Nat Genet, 31, 435–8.CrossRefGoogle ScholarPubMed
Nishimura, D. Y., Searby, C. C., Carmi, R.et al. (2001). Positional cloning of a novel gene on chromosome 16q causing Bardet–Biedl syndrome (BBS2). Hum Mol Genet, 10, 865–74.CrossRefGoogle Scholar
Norman, R. A., Tataranni, P. A., Pratley, R.et al. (1998). Autosomal genomic scan for loci linked to obesity and energy metabolism in Pima Indians. Am J Hum Genet, 62, 659–68.CrossRefGoogle ScholarPubMed
O'Rahilly, S., Gray, H., Humphreys, P. J.et al. (1995). Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N Engl J Med, 333, 1386–90.CrossRefGoogle ScholarPubMed
Ohman, M., Oksanen, L., Kaprio, J.et al. (2000). Genome-wide scan of obesity in Finnish sibpairs reveals linkage to chromosome Xq24. J Clin Endocrinol Metab, 85, 3183–90.Google ScholarPubMed
Ozata, M., Ozdemir, I. C. and Licinio, J. (1999). Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab, 84, 3686–95.CrossRefGoogle Scholar
Price, R. A. and Gottesman, II (1991). Body fat in identical twins reared apart: roles for genes and environment. Behav Genet, 21, 1–7.CrossRefGoogle ScholarPubMed
Samaras, K., Kelly, P. J., Chiano, M. N., Spector, T. D. and Campbell, L. V. (1999). Genetic and environmental influences on total-body and central abdominal fat: the effect of physical activity in female twins. Ann Intern Med, 130, 873–82.CrossRefGoogle ScholarPubMed
Schwartz, M. W., Woods, S. C., Porte, D. Jr., Seeley, R. J. and Baskin, D. G. (2000). Central nervous system control of food intake. Nature, 404, 661–71.CrossRefGoogle ScholarPubMed
Seidell, J. C. (2000). Obesity, insulin resistance and diabetes–a worldwide epidemic. Br J Nutr, 83 Suppl 1, S5–8.CrossRefGoogle ScholarPubMed
Sheffield, V. C., Carmi, R., Kwitek-Black, A.et al. (1994). Identification of a Bardet–Biedl syndrome locus on chromosome 3 and evaluation of an efficient approach to homozygosity mapping. Hum Mol Genet, 3, 1331–5.CrossRefGoogle ScholarPubMed
Slavotinek, A. M., Stone, E. M., Mykytyn, K.et al. (2000). Mutations in MKKS cause Bardet–Biedl syndrome. Nat Genet, 26, 15–16.Google ScholarPubMed
Sorensen, T. I., Price, R. A., Stunkard, A. J. and Schulsinger, F. (1989). Genetics of obesity in adult adoptees and their biological siblings. Br Med J, 298, 87–90.CrossRefGoogle ScholarPubMed
Strobel, A., Issad, T., Camoin, L., Ozata, M. and Strosberg, A. D. (1998). A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet, 18, 213–15.CrossRefGoogle ScholarPubMed
Stunkard, A. J., Foch, T. T. and Hrubec, Z. (1986). A twin study of human obesity. Jama, 256, 51–4.CrossRefGoogle ScholarPubMed
Stunkard, A. J., Harris, J. R., Pedersen, N. L. and McClearn, G. E. (1990). The body-mass index of twins who have been reared apart. N Engl J Med, 322, 1483–7.CrossRefGoogle ScholarPubMed
Suviolahti, E., Oksanen, L. J., Ohman, M.et al. (2003). The SLC6A14 gene shows evidence of association with obesity. J Clin Invest, 112, 1762–72.CrossRefGoogle ScholarPubMed
Hart, L. M., Fritsche, A., Rietveld, I.et al. (2004). Genetic factors and insulin secretion: gene variants in the IGF genes. Diabetes, 53 Suppl 1, S26–30.CrossRefGoogle ScholarPubMed
Tartaglia, L. A. (1997). The leptin receptor. J Biol Chem, 272, 6093–6.CrossRefGoogle ScholarPubMed
Vionnet, N., Hani El, H., Dupont, S.et al. (2000). Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am J Hum Genet, 67, 1470–80.CrossRefGoogle ScholarPubMed
Wade, J., Milner, J. and Krondl, M. (1981). Evidence for a physiological regulation of food selection and nutrient intake in twins. Am J Clin Nutr, 34, 143–7.CrossRefGoogle ScholarPubMed
Weinstein, L. S., Chen, M. and Liu, J. (2002). Gs(alpha) mutations and imprinting defects in human disease. Ann N Y Acad Sci, 968, 173–97.CrossRefGoogle ScholarPubMed
Yeo, G. S., Lank, E. J., Farooqi, I. S.et al. (2003). Mutations in the human melanocortin-4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms. Hum Mol Genet, 12, 561–74.CrossRefGoogle ScholarPubMed
Young, T. L., Penney, L., Woods, M. O.et al. (1999). A fifth locus for Bardet–Biedl syndrome maps to chromosome 2q31. Am J Hum Genet, 64, 900–4.CrossRefGoogle ScholarPubMed
Zhang, Y., Proenca, R., Maffei, M.et al. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature, 372, 425–32.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×