Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T22:37:53.559Z Has data issue: false hasContentIssue false

27 - Skeletal disorders

Published online by Cambridge University Press:  17 August 2009

Alan Wright
Affiliation:
MRC Human Genetics Unit, Edinburgh
Nicholas Hastie
Affiliation:
MRC Human Genetics Unit, Edinburgh
Get access

Summary

Introduction

Recent years have witnessed major advances in our understanding of the genetic basis for many skeletal disorders. In several instances, particularly with the less common Mendelian diseases, the responsible gene has been mapped, mutations identified, and their functional significance determined, contributing significantly to our understanding of the molecular basis for pathogenesis. For more common disorders where susceptibility is complex, a complete picture of the responsible genetic polymorphisms and how they influence pathogenesis has been more difficult to achieve. In this chapter we focus on our current understanding of the genetic basis and pathogenic mechanisms for disorders of bone homeostasis. For readers interested in the genetic basis of developmental disorders of the skeleton, we recommend a recent review (Kornak and Mundlos, 2003).

Bone resorption and bone formation are ongoing processes in both the developing and mature skeleton. Even during growth, where the balance favors bone formation, bone resorption is necessary to remove calcified cartilage prior to the formation of mature bone. In the adult skeleton, there continues to be a dynamic balance between these processes that serves both metabolic and mechanical needs of the individual. Although bone mass continues to increase during childhood, it peaks between the ages of 25 and 35 years, and then begins a steady decline that becomes most prominent after age 50 years when bone formation does not fully compensate bone loss. The delicate balance between bone formation and bone resorption is maintained largely by the coordinated actions of two cell types, osteoblasts and osteoclasts.

Type
Chapter
Information
Genes and Common Diseases
Genetics in Modern Medicine
, pp. 406 - 426
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albagha, O. M., Tasker, P. N., McGuigan, F. E., Reid, D. M. and Ralston, S. H. (2002). Linkage disequilibrium between polymorphisms in the human TNFRSF1B gene and their association with bone mass in perimenopausal women. Hum Mol Genet, 11, 2289–95.CrossRefGoogle ScholarPubMed
Allen, R. L., O'Callaghan, C. A., McMichael, A. J. and Bowness, P. (1999). Cutting edge: HLA-B27 can form a novel beta 2-microglobulin-free heavy chain homodimer structure. J Immunol, 162, 5045–8.Google Scholar
Allen, R. L., Raine, T., Haude, A., Trowsdale, J. and Wilson, M. J. (2001). Leukocyte receptor complex-encoded immunomodulatory receptors show differing specificity for alternative HLA-B27 structures. J Immunol, 167, 5543–7.CrossRefGoogle ScholarPubMed
Andrew, L. J., Brancolini, V., Pena, L. S.et al. (1999). Refinement of the chromosome 5p locus for familial calcium pyrophosphate dihydrate deposition disease. Am J Hum Genet, 64, 136–45.CrossRefGoogle ScholarPubMed
Arden, N. K., Baker, J., Hogg, C., Baan, K. and Spector, T. D. (1996). The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res, 11, 530–4.CrossRefGoogle ScholarPubMed
Balemans, W., Ebeling, M., Patel, N.et al. (2001). Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet, 10, 537–43.CrossRefGoogle Scholar
Balemans, W., Patel, N., Ebeling, M.et al. (2002). Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet, 39, 91–7.CrossRefGoogle ScholarPubMed
Balemans, W., Ende, J., Freire Paes-Alves, A.et al. (1999). Localization of the gene for sclerosteosis to the van Buchem disease-gene region on chromosome 17q12-q21. Am J Hum Genet, 64, 1661–9.CrossRefGoogle Scholar
Balemans, W., Wesenbeeck, L. and Hul, W. (2005). A clinical and molecular overview of the human osteopetroses. Calcif Tissue Int, 77, 263–74.CrossRefGoogle ScholarPubMed
Ball, J. (1983). The enthesopathy of ankylosing spondylitis. Br J Rheumatol, 22, 25–8.CrossRefGoogle ScholarPubMed
Benichou, O., Cleiren, E., Gram, J.et al. (2001). Mapping of autosomal dominant osteopetrosis type II (Albers–Schonberg disease) to chromosome 16p13.3. Am J Hum Genet, 69, 647–54.CrossRefGoogle Scholar
Boyden, L. M., Mao, J., Belsky, J.et al. (2002). High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med, 346, 1513–21.CrossRefGoogle ScholarPubMed
Boyle, L. H., Goodall, J. C., Opat, S. S. and Gaston, J. S. (2001). The recognition of HLA-B27 by human CD4(+) T lymphocytes. J Immunol, 167, 2619–24.CrossRefGoogle ScholarPubMed
Brewerton, D. A., Hart, F. D., Nicholls, A.et al. (1973). Ankylosing spondylitis and HL-A 27. Lancet, 1, 904–7.CrossRefGoogle ScholarPubMed
Brown, M. A., Kennedy, L. G., MacGregor, A. J.et al. (1997). Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum, 40, 1823–8.CrossRefGoogle ScholarPubMed
Brunkow, M. E., Gardner, J. C., Ness, J.et al. (2001). Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet, 68, 577–89.CrossRefGoogle ScholarPubMed
Chandler, D., Tinschert, S., Lohan, K.et al. (2001). Refinement of the chromosome 5p locus for craniometaphyseal dysplasia. Hum Genet, 108, 394–7.Google ScholarPubMed
Cheung, W. M., Jin, L. Y., Smith, D. K.et al. (2006). A family with osteoporosis pseudoglioma syndrome due to compound heterozygosity of two novel mutations in the LRP5 gene. Bone, 39, 470–6.CrossRefGoogle ScholarPubMed
Cleiren, E., Benichou, O., Hul, E.et al. (2001). Albers–Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet, 10, 2861–7.CrossRefGoogle ScholarPubMed
Cody, J. D., Singer, F. R., Roodman, G. D.et al. (1997). Genetic linkage of Paget disease of the bone to chromosome 18q. Am J Hum Genet, 61, 1117–22.CrossRefGoogle ScholarPubMed
Cooper, G. S. and Umbach, D. M. (1996). Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis. J Bone Miner Res, 11, 1841–9.CrossRefGoogle ScholarPubMed
Cornelis, F., Faure, S., Martinez, M.et al. (1998). New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Proc Natl Acad Sci USA, 95, 10746–50.CrossRefGoogle ScholarPubMed
Cundy, T., Hegde, M., Naot, D.et al. (2002). A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum Mol Genet, 11, 2119–27.CrossRefGoogle ScholarPubMed
Dangoria, N. S., DeLay, M. L.et al. (2002). HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem, 277, 23459–68.CrossRefGoogle ScholarPubMed
Darnay, B. G., Ni, J., Moore, P. A. and Aggarwal, B. B. (1999). Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem, 274, 7724–31.CrossRefGoogle ScholarPubMed
Devoto, M., Specchia, C., Li, H. H.et al. (2001). Variance component linkage analysis indicates a QTL for femoral neck bone mineral density on chromosome 1p36. Hum Mol Genet, 10, 2447–52.CrossRefGoogle ScholarPubMed
Doherty, M., Hamilton, E., Henderson, J., Misra, H. and Dixey, J. (1991). Familial chondrocalcinosis due to calcium pyrophosphate dihydrate crystal deposition in English families. Br J Rheumatol, 30, 10–15.CrossRefGoogle ScholarPubMed
Duncan, E. L., Brown, M. A., Sinsheimer, J.et al. (1999). Suggestive linkage of the parathyroid receptor type 1 to osteoporosis. J Bone Miner Res, 14, 1993–9.CrossRefGoogle ScholarPubMed
Edwards, J. C., Bowness, P. and Archer, J. R. (2000). Jekyll and Hyde: the transformation of HLA–B27. Immunol Today, 21, 256–60.CrossRefGoogle ScholarPubMed
Ferrari, S. L., Deutsch, S., Choudhury, U.et al. (2004). Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet, 74, 866–75.CrossRefGoogle ScholarPubMed
Firestein, G. S. (2003). Evolving concepts of rheumatoid arthritis. Nature, 423, 356–61.CrossRefGoogle ScholarPubMed
Frattini, A., Orchard, P. J., Sobacchi, C.et al. (2000). Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet, 25, 343–6.CrossRefGoogle ScholarPubMed
Garcia-Giralt, N., Nogues, X., Enjuanes, A.et al. (2002). Two new single-nucleotide polymorphisms in the COL1A1 upstream regulatory region and their relationship to bone mineral density. J Bone Miner Res, 17, 384–93.CrossRefGoogle ScholarPubMed
Garnero, P., Arden, N. K., Griffiths, G., Delmas, P. D. and Spector, T. D. (1996). Genetic influence on bone turnover in postmenopausal twins. J Clin Endocrinol Metab, 81, 140–6.Google Scholar
Geetha, T. and Wooten, M. W. (2002). Structure and functional properties of the ubiquitin binding protein p62. FEBS Lett, 512, 19–24.CrossRefGoogle ScholarPubMed
Gelb, B. D., Edelson, J. G. and Desnick, R. J. (1995). Linkage of pycnodysostosis to chromosome 1q21 by homozygosity mapping. Nat Genet, 10, 235–7.CrossRefGoogle ScholarPubMed
Gelb, B. D., Shi, G. P., Chapman, H. A. and Desnick, R. J. (1996). Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science, 273, 1236–8.CrossRefGoogle ScholarPubMed
Gerritsen, E. J., Vossen, J. M., Loo, I. H.et al. (1994). Autosomal recessive osteopetrosis: variability of findings at diagnosis and during the natural course. Pediatrics, 93, 247–53.Google ScholarPubMed
Ghadami, M., Makita, Y., Yoshida, K.et al. (2000). Genetic mapping of the Camurati–Engelmann disease locus to chromosome 19q13.1-q13.3. Am J Hum Genet, 66, 143–7.CrossRefGoogle ScholarPubMed
Goldring, S. R. and Gravallese, E. M. (2000). Mechanisms of bone loss in inflammatory arthritis: diagnosis and therapeutic implications. Arthritis Res, 2, 33–7.CrossRefGoogle ScholarPubMed
Gong, Y., Slee, R. B., Fukai, N.et al. (2001). LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell, 107, 513–23.CrossRefGoogle ScholarPubMed
Gong, Y., Vikkula, M., Boon, L.et al. (1996). Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12–13. Am J Hum Genet, 59, 146–51.Google ScholarPubMed
Grant, S. F., Reid, D. M., Blake, G.et al. (1996). Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nat Genet, 14, 203–5.CrossRefGoogle ScholarPubMed
Gravallese, E. M. (2002). Bone destruction in arthritis. Ann Rheum Dis, 61 Suppl 2, ii84–86.CrossRefGoogle ScholarPubMed
Gravallese, E. M., Manning, C., Tsay, A.et al. (2000). Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum, 43, 250–8.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Haagerup, A., Hertz, J. M., Christensen, M. F., Binderup, H. and Kruse, T. A. (2000). Cathepsin K gene mutations and 1q21 haplotypes in AT patients with pycnodysostosis in an outbred population. Eur J Hum Genet, 8, 431–6.CrossRefGoogle Scholar
Hamersma, H., Gardner, J. and Beighton, P. (2003). The natural history of sclerosteosis. Clin Genet, 63, 192–7.CrossRefGoogle ScholarPubMed
Harney, S. M., Newton, J. L. and Wordsworth, B. P. (2003). Molecular genetics of rheumatoid arthritis. Curr Opin Pharmacol, 3, 280–5.CrossRefGoogle ScholarPubMed
Haslam, S. I., Hul, W., Morales-Piga, A.et al. (1998). Paget's disease of bone: evidence for a susceptibility locus on chromosome 18q and for genetic heterogeneity. J Bone Miner Res, 13, 911–17.CrossRefGoogle ScholarPubMed
Haugeberg, G., Orstavik, R. E. and Kvien, T. K. (2003). Effects of rheumatoid arthritis on bone. Curr Opin Rheumatol, 15, 469–75.CrossRefGoogle ScholarPubMed
Ho, A. M., Johnson, M. D. and Kingsley, D. M. (2000). Role of the mouse ank gene in control of tissue calcification and arthritis. Science, 289, 265–70.CrossRefGoogle ScholarPubMed
Ho, N., Punturieri, A., Wilkin, D.et al. (1999). Mutations of CTSK result in pycnodysostosis via a reduction in cathepsin K protein. J Bone Miner Res, 14, 1649–53.CrossRefGoogle Scholar
Hocking, L. J., Herbert, C. A., Nicholls, R. K.et al. (2001). Genomewide search in familial Paget disease of bone shows evidence of genetic heterogeneity with candidate loci on chromosomes 2q36, 10p13, and 5q35. Am J Hum Genet, 69, 1055–61.CrossRefGoogle ScholarPubMed
Hocking, L. J., Lucas, G. J., Daroszewska, A.et al. (2002). Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget's disease. Hum Mol Genet, 11, 2735–9.CrossRefGoogle ScholarPubMed
Hughes, A. E., Ralston, S. H., Marken, J.et al. (2000). Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet, 24, 45–8.CrossRefGoogle ScholarPubMed
Hughes, A. E., Shearman, A. M., Weber, J. L.et al. (1994). Genetic linkage of familial expansile osteolysis to chromosome 18q. Hum Mol Genet, 3, 359–61.CrossRefGoogle ScholarPubMed
Janssens, K., Gershoni-Baruch, R., Guanabens, N.et al. (2000). Mutations in the gene encoding the latency-associated peptide of TGF-beta 1 cause Camurati–Engelmann disease. Nat Genet, 26, 273–5.CrossRefGoogle ScholarPubMed
Janssens, K., ten Dijke, P., Ralston, S. H., Bergmann, C. and Hul, W. (2003). Transforming growth factor-beta 1 mutations in Camurati–Engelmann disease lead to increased signaling by altering either activation or secretion of the mutant protein. J Biol Chem, 278, 7718–24.CrossRefGoogle ScholarPubMed
Janssens, K. and Hul, W. (2002). Molecular genetics of too much bone. Hum Mol Genet, 11, 2385–93.CrossRefGoogle ScholarPubMed
Jawaheer, D., Seldin, M. F., Amos, C. I.et al. (2003). Screening the genome for rheumatoid arthritis susceptibility genes: a replication study and combined analysis of 512 multicase families. Arthritis Rheum, 48, 906–16.CrossRefGoogle ScholarPubMed
Johnson, M. L., Gong, G., Kimberling, W.et al. (1997). Linkage of a gene causing high bone mass to human chromosome 11 (11q12–13). Am J Hum Genet, 60, 1326–32.CrossRefGoogle Scholar
Kannus, P., Palvanen, M., Kaprio, J., Parkkari, J. and Koskenvuo, M. (1999). Genetic factors and osteoporotic fractures in elderly people: prospective 25 year follow up of a nationwide cohort of elderly Finnish twins. Bmj, 319, 1334–7.CrossRefGoogle ScholarPubMed
Kato, M., Patel, M. S., Levasseur, R.et al. (2002). Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol, 157, 303–14.CrossRefGoogle ScholarPubMed
Khare, S. D., Luthra, H. S. and David, C. S. (1995). Spontaneous inflammatory arthritis in HLA-B27 transgenic mice lacking beta 2-microglobulin: a model of human spondyloarthropathies. J Exp Med, 182, 1153–8.CrossRefGoogle ScholarPubMed
Kinoshita, A., Saito, T., Tomita, H.et al. (2000). Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease. Nat Genet, 26, 19–20.CrossRefGoogle ScholarPubMed
Koay, M. A., Woon, P. Y., Zhang, Y.et al. (2004). Influence of LRP5 polymorphisms on normal variation in BMD. J Bone Miner Res, 19, 1619–27.CrossRefGoogle ScholarPubMed
Koller, D. L., Econs, M. J., Morin, P. A.et al. (2000). Genome screen for QTLs contributing to normal variation in bone mineral density and osteoporosis. J Clin Endocrinol Metab, 85, 3116–20.Google ScholarPubMed
Koller, D. L., Ichikawa, S., Johnson, M. L.et al. (2005). Contribution of the LRP5 gene to normal variation in peak BMD in women. J Bone Miner Res, 20, 75–80.CrossRefGoogle ScholarPubMed
Kong, Y. Y., Feige, U., Sarosi, I.et al. (1999). Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature, 402, 304–9.CrossRefGoogle ScholarPubMed
Kornak, U., Kasper, D., Bosl, M. R.et al. (2001). Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell, 104, 205–15.CrossRefGoogle ScholarPubMed
Kornak, U. and Mundlos, S. (2003). Genetic disorders of the skeleton: a developmental approach. Am J Hum Genet, 73, 205–15.CrossRefGoogle ScholarPubMed
Kotake, S., Udagawa, N., Hakoda, M.et al. (2001). Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum, 44, 1003–12.3.0.CO;2-#>CrossRefGoogle Scholar
Kusu, N., Laurikkala, J., Imanishi, M.et al. (2003). Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligand specificity. J Biol Chem, 278, 24113–17.CrossRefGoogle ScholarPubMed
Laurin, N., Brown, J. P., Lemainque, A.et al. (2001). Paget disease of bone: mapping of two loci at 5q35-qter and 5q31. Am J Hum Genet, 69, 528–43.CrossRefGoogle ScholarPubMed
Laurin, N., Brown, J. P., Morissette, J. and Raymond, V. (2002). Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet, 70, 1582–8.CrossRefGoogle Scholar
Laval, S. H., Timms, A., Edwards, S.et al. (2001). Whole-genome screening in ankylosing spondylitis: evidence of non-MHC genetic-susceptibility loci. Am J Hum Genet, 68, 918–26.CrossRefGoogle ScholarPubMed
Little, R. D., Carulli, J. P., Del Mastro, R. G.et al. (2002). A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet, 70, 11–19.CrossRefGoogle ScholarPubMed
Liu, Y. Z., Liu, Y. J., Recker, R. R. and Deng, H. W. (2003). Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol, 177, 147–96.CrossRefGoogle ScholarPubMed
MacGregor, A. J., Snieder, H., Rigby, A. S.et al. (2000). Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum, 43, 30–7.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
MacKay, K., Eyre, S., Myerscough, A.et al. (2002). Whole-genome linkage analysis of rheumatoid arthritis susceptibility loci in 252 affected sibling pairs in the United Kingdom. Arthritis Rheum, 46, 632–9.CrossRefGoogle ScholarPubMed
Mann, V., Hobson, E. E., Li, B.et al. (2001). A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest, 107, 899–907.CrossRefGoogle ScholarPubMed
McGonagle, D., Marzo-Ortega, H., O'Connor, P.et al. (2002 a). Histological assessment of the early enthesitis lesion in spondyloarthropathy. Ann Rheum Dis, 61, 534–7.CrossRefGoogle ScholarPubMed
McGonagle, D., Marzo-Ortega, H., O'Connor, P.et al. (2002 b). The role of biomechanical factors and HLA-B27 in magnetic resonance imaging-determined bone changes in plantar fascia enthesopathy. Arthritis Rheum, 46, 489–93.CrossRefGoogle ScholarPubMed
McGowan, N. W., MacPherson, H., Janssens, K.et al. (2003). A mutation affecting the latency-associated peptide of TGFbeta1 in Camurati–Engelmann disease enhances osteoclast formation in vitro. J Clin Endocrinol Metab, 88, 3321–6.CrossRefGoogle ScholarPubMed
Mear, J. P., Schreiber, K. L., Munz, C.et al. (1999). Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol, 163, 6665–70.Google ScholarPubMed
Miyao, M., Morita, H., Hosoi, T.et al. (2000). Association of methylenetetrahydrofolate reductase (MTHFR) polymorphism with bone mineral density in postmenopausal Japanese women. Calcif Tissue Int, 66, 190–4.CrossRefGoogle ScholarPubMed
Mizuguchi, T., Furuta, I., Watanabe, Y.et al. (2004). LRP5, low-density-lipoprotein-receptor-related protein 5, is a determinant for bone mineral density. J Hum Genet, 49, 80–6.CrossRefGoogle ScholarPubMed
Morales-Piga, A. A., Rey-Rey, J. S., Corres-Gonzalez, J.et al. (1995). Frequency and characteristics of familial aggregation of Paget's disease of bone. J Bone Miner Res, 10, 663–70.CrossRefGoogle ScholarPubMed
Nishimura, G., Nishimura, H., Tanaka, Y.et al. (2002). Camurati-Engelmann disease type II: progressive diaphyseal dysplasia with striations of the bones. Am J Med Genet, 107, 5–11.CrossRefGoogle ScholarPubMed
Niu, T., Chen, C., Cordell, H.et al. (1999). A genome-wide scan for loci linked to forearm bone mineral density. Hum Genet, 104, 226–33.CrossRefGoogle ScholarPubMed
Nurnberg, P., Thiele, H., Chandler, D.et al. (2001). Heterozygous mutations in ANKH, the human ortholog of the mouse progressive ankylosis gene, result in craniometaphyseal dysplasia. Nat Genet, 28, 37–41.CrossRefGoogle ScholarPubMed
Nurnberg, P., Tinschert, S., Mrug, M.et al. (1997). The gene for autosomal dominant craniometaphyseal dysplasia maps to chromosome 5p and is distinct from the growth hormone-receptor gene. Am J Hum Genet, 61, 918–23.CrossRefGoogle ScholarPubMed
Patel, M. S. and Karsenty, G. (2002). Regulation of bone formation and vision by LRP5. N Engl J Med, 346, 1572–4.CrossRefGoogle ScholarPubMed
Pendleton, A., Johnson, M. D., Hughes, A., Gurley, K. A., Ho, A. M., Doherty, M., Dixey, J., Gillet, P., Loeuille, D., McGrath, R.et al. (2002). Mutations in ANKH cause chondrocalcinosis. Am J Hum Genet, 71, 933–40.CrossRefGoogle ScholarPubMed
Ralston, S. H. (2003). Genetic determinants of susceptibility to osteoporosis. Curr Opin Pharmacol, 3, 286–90.CrossRefGoogle ScholarPubMed
Ralston, S. H. (2005). Genetic determinants of osteoporosis. Curr Opin Rheumatol, 17, 475–9.CrossRefGoogle Scholar
Reddy, S. V., Kurihara, N., Menaa, C. and Roodman, G. D. (2001). Paget's disease of bone: a disease of the osteoclast. Rev Endocr Metab Disord, 2, 195–201.CrossRefGoogle ScholarPubMed
Redlich, K., Hayer, S., Maier, A.et al. (2002). Tumor necrosis factor alpha-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum, 46, 785–92.CrossRefGoogle ScholarPubMed
Rehakova, Z., Capkova, J., Stepankova, R.et al. (2000). Germ-free mice do not develop ankylosing enthesopathy, a spontaneous joint disease. Hum Immunol, 61, 555–8.CrossRefGoogle Scholar
Reichenberger, E., Tiziani, V., Watanabe, S.et al. (2001). Autosomal dominant craniometaphyseal dysplasia is caused by mutations in the transmembrane protein ANK. Am J Hum Genet, 68, 1321–6.CrossRefGoogle ScholarPubMed
Roodman, G. D. and Windle, J. J. (2005). Paget disease of bone. J Clin Invest, 115, 200–8.CrossRefGoogle ScholarPubMed
Saito, T., Kinoshita, A., Yoshiura, K.et al. (2001). Domain-specific mutations of a transforming growth factor (TGF)-beta 1 latency-associated peptide cause Camurati–Engelmann disease because of the formation of a constitutively active form of TGF-beta 1. J Biol Chem, 276, 11469–72.CrossRefGoogle Scholar
Sanz, L., Diaz-Meco, M. T., Nakano, H. and Moscat, J. (2000). The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. Embo J, 19, 1576–86.CrossRefGoogle ScholarPubMed
Sanz, L., Sanchez, P., Lallena, M. J., Diaz-Meco, M. T. and Moscat, J. (1999). The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. Embo J, 18, 3044–53.CrossRefGoogle ScholarPubMed
Schlosstein, L., Terasaki, P. I., Bluestone, R. and Pearson, C. M. (1973). High association of an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med, 288, 704–6.CrossRefGoogle ScholarPubMed
Shigeyama, Y., Pap, T., Kunzler, P.et al. (2000). Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum, 43, 2523–30.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Sims, A. M., Wordsworth, B. P. and Brown, M. A. (2004). Genetic susceptibility to ankylosing spondylitis. Curr Mol Med, 4, 13–20.CrossRefGoogle ScholarPubMed
Siris, E. S., Ottman, R., Flaster, E. and Kelsey, J. L. (1991). Familial aggregation of Paget's disease of bone. J Bone Miner Res, 6, 495–500.CrossRefGoogle ScholarPubMed
Sly, W. S., Whyte, M. P., Sundaram, V.et al. (1985). Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med, 313, 139–45.CrossRefGoogle ScholarPubMed
Sparks, A. B., Peterson, S. N., Bell, C.et al. (2001). Mutation screening of the TNFRSF11A gene encoding receptor activator of NF kappa B (RANK) in familial and sporadic Paget's disease of bone and osteosarcoma. Calcif Tissue Int, 68, 151–5.CrossRefGoogle ScholarPubMed
Spotila, L. D., Rodriguez, H., Koch, M.et al. (2000). Association of a polymorphism in the TNFR2 gene with low bone mineral density. J Bone Miner Res, 15, 1376–83.CrossRefGoogle ScholarPubMed
Staehling-Hampton, K., Proll, S., Paeper, B. W.et al. (2002). A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet, 110, 144–52.CrossRefGoogle ScholarPubMed
Takayanagi, H., Iizuka, H., Juji, T.et al. (2000). Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum, 43, 259–69.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Tasker, P. N., Albagha, O. M., Masson, C. B.et al. (2004). Association between TNFRSF1B polymorphisms and bone mineral density, bone loss and fracture. Osteoporos Int, 15, 903–8.CrossRefGoogle Scholar
Taurog, J. D., Maika, S. D., Satumtira, N.et al. (1999). Inflammatory disease in HLA-B27 transgenic rats. Immunol Rev, 169, 209–23.Google ScholarPubMed
Timms, A. E., Zhang, Y., Bradbury, L., Wordsworth, B. P. and Brown, M. A. (2003). Investigation of the role of ANKH in ankylosing spondylitis. Arthritis Rheum, 48, 2898–902.CrossRefGoogle ScholarPubMed
Tran, T. M., Dorris, M. L., Satumtira, N.et al. (2006). Additional human beta2-microglobulin curbs HLA-B27 misfolding and promotes arthritis and spondylitis without colitis in male HLA-B27-transgenic rats. Arthritis Rheum, 54, 1317–27.CrossRefGoogle ScholarPubMed
Tran, T. M., Satumtira, N., Dorris, M. L.et al. (2004). HLA-B27 in transgenic rats forms disulfide-linked heavy chain oligomers and multimers that bind to the chaperone BiP. J Immunol, 172, 5110–19.CrossRefGoogle ScholarPubMed
Tsui, F. W., Tsui, H. W., Cheng, E. Y.et al. (2003). Novel genetic markers in the 5′-flanking region of ANKH are associated with ankylosing spondylitis. Arthritis Rheum, 48, 791–7.CrossRefGoogle ScholarPubMed
Tsui, H. W., Inman, R. D., Paterson, A. D., Reveille, J. D. and Tsui, F. W. (2005). ANKH variants associated with ankylosing spondylitis: gender differences. Arthritis Res Ther, 7, R513–525.CrossRefGoogle ScholarPubMed
Turner, M. J., Sowders, D. P., DeLay, M. L.et al. (2005). HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J Immunol, 175, 2438–48.CrossRefGoogle ScholarPubMed
Bezooijen, R. L., ten Dijke, P., Papapoulos, S. E. and Lowik, C. W. (2005). SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev, 16, 319–27.CrossRefGoogle ScholarPubMed
Hul, W., Balemans, W., Hul, E.et al. (1998). Van Buchem disease (hyperostosis corticalis generalisata) maps to chromosome 17q12-q21. Am J Hum Genet, 62, 391–9.Google ScholarPubMed
Wesenbeeck, L., Cleiren, E., Gram, J.et al. (2003). Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet, 72, 763–71.CrossRefGoogle ScholarPubMed
Wallace, S. E., Lachman, R. S., Mekikian, P. B.et al. (2004). Marked phenotypic variability in progressive diaphyseal dysplasia (Camurati–Engelmann disease): report of a four-generation pedigree, identification of a mutation in TGFB1, and review. Am J Med Genet A, 129, 235–47.CrossRefGoogle Scholar
Whyte, M. P. and Hughes, A. E. (2002). Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res, 17, 26–9.CrossRefGoogle ScholarPubMed
Whyte, M. P., Mills, B. G., Reinus, W. R.et al. (2000). Expansile skeletal hyperphosphatasia: a new familial metabolic bone disease. J Bone Miner Res, 15, 2330–44.CrossRefGoogle ScholarPubMed
Whyte, M. P., Obrecht, S. E., Finnegan, P. M.et al. (2002). Osteoprotegerin deficiency and juvenile Paget's disease. N Engl J Med, 347, 175–84.CrossRefGoogle ScholarPubMed
Williams, C. J., Pendleton, A., Bonavita, G.et al. (2003). Mutations in the amino terminus of ANKH in two US families with calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum, 48, 2627–31.CrossRefGoogle ScholarPubMed
Williams, C. J., Zhang, Y., Timms, A.et al. (2002). Autosomal dominant familial calcium pyrophosphate dihydrate deposition disease is caused by mutation in the transmembrane protein ANKH. Am J Hum Genet, 71, 985–91.CrossRefGoogle ScholarPubMed
Wilson, S. G., Reed, P. W., Bansal, A.et al. (2003). Comparison of genome screens for two independent cohorts provides replication of suggestive linkage of bone mineral density to 3p21 and 1p36. Am J Hum Genet, 72, 144–55.CrossRefGoogle ScholarPubMed
Winkler, D. G., Sutherland, M. K., Geoghegan, J. C.et al. (2003). Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. Embo J, 22, 6267–76.CrossRefGoogle ScholarPubMed
Wuyts, W., Wesenbeeck, L., Morales-Piga, A.et al. (2001). Evaluation of the role of RANK and OPG genes in Paget's disease of bone. Bone, 28, 104–7.CrossRefGoogle ScholarPubMed
Zhang, G., Luo, J., Bruckel, J.et al. (2004). Genetic studies in familial ankylosing spondylitis susceptibility. Arthritis Rheum, 50, 2246–54.CrossRefGoogle ScholarPubMed
Zhang, X., Aubin, J. E. and Inman, R. D. (2003). Molecular and cellular biology of new bone formation: insights into the ankylosis of ankylosing spondylitis. Curr Opin Rheumatol, 15, 387–93.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×