Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-22T15:31:16.225Z Has data issue: false hasContentIssue false

13 - Developmental disorders

Published online by Cambridge University Press:  17 August 2009

Alan Wright
Affiliation:
MRC Human Genetics Unit, Edinburgh
Nicholas Hastie
Affiliation:
MRC Human Genetics Unit, Edinburgh
Get access

Summary

An understanding of the complex processes that underlie the transition from zygote to newborn infant remains one of the major unsolved challenges in human biology. Failure of key steps in early embryogenesis leads to arrested development and embryonic wastage in a substantial proportion of conceptions (Wilcox et al., 1999). Interference with later developmental pathways which mediate the processes of morphogenesis and organogenesis can also lead to fetal demise but equally can produce a phenotypic effect evident at term. This chapter discusses, with selected examples, our current understanding of the influence that genetic and environmental factors have on these complex developmental processes in humans.

The medical significance of developmental disorders

Developmental disorders in humans are diverse in nature and individually relatively rare, but as a group constitute a “common disease”. Improvements in their recognition and pathogenesis, both as isolated entities and as components of syndromes, have been greatly aided by advances in the clinical speciality of dysmorphology and the construction of clinical databases which catalogue rare associations of phenotypic features (Donnai and Read, 2003).

The overall birth prevalence of disorders which are primarily considered to be due to defective morphogenesis is estimated to be between 2 and 3% (Kalter and Warnaky, 1983). If malformations associated with still births and abnormalities which do not present a requirement for significant medical intervention are included in this estimate, the figure rises to ∼ 5%.

Type
Chapter
Information
Genes and Common Diseases
Genetics in Modern Medicine
, pp. 201 - 212
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amiel, J. and Lyonnet, S. (2001). Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet, 38, 729–39.CrossRefGoogle ScholarPubMed
Badner, J. A., Sieber, W. K., Garver, K. L. and Chakravarti, A. (1990). A genetic study of Hirschsprung disease. Am J Hum Genet, 46, 568–80.Google ScholarPubMed
Barbera, J. P., Rodriguez, T. A., Greene, N. D.et al. (2002). Folic acid prevents exencephaly in Cited2 deficient mice. Hum Mol Genet, 11, 283–93.CrossRefGoogle ScholarPubMed
Belloni, E., Martucciello, G., Verderio, D.et al. (2000). Involvement of the HLXB9 homeobox gene in Currarino syndrome. Am J Hum Genet, 66, 312–19.CrossRefGoogle ScholarPubMed
Berry, R. J., Li, Z., Erickson, J. D.et al. (1999). Prevention of neural-tube defects with folic acid in China. N Engl J Med, 341, 1485–90.CrossRefGoogle Scholar
Bodian, M. and Carter, C. O. (1963). A family study of Hirschsprung's disease. Ann Hum Genet, 26, 261–77.CrossRefGoogle Scholar
Bolk-Gabriel, S., Salomon, R., Pelet, A.et al. (2002). Segregation at three loci explains familial and population risk in Hirschsprung disease. Nature Genet, 31, 89–93.CrossRefGoogle Scholar
Bosi, G., Garani, G., Scorrano, M., Calzolari, E. and IMER Working Party. (2003). Temporal variability in birth prevalence of congenital heart defects as recorded by a general birth defects registry. J Pediatr, 142, 690–8.CrossRefGoogle ScholarPubMed
Botto, L. D., Moore, C. A., Khoury, M. J. and Erickson, J. D. (1999). Neural-tube defects. N Engl J Med, 341, 1509–19.CrossRefGoogle ScholarPubMed
Botto, L. D., Mulinare, J. and Erickson, J. D. (2002). Occurrence of omphalocele in relation to maternal multivitamin use: a population-based study. Pediatrics, 109, 904–8.CrossRefGoogle ScholarPubMed
Carter, C. O. and Evans, K. A. (1969). Inheritance of congenital pyloric stenosis. J Med Genet, 6, 233–54.CrossRefGoogle ScholarPubMed
Carter, M., Ulrich, S., Oofuji, Y., Williams, D. A. and Ross, M. E. (1999). Crooked tail (Cd) models human folate-responsive neural tube defects. Hum Molec Genet, 8, 2199–204.CrossRefGoogle ScholarPubMed
Carrasquillo, M. M., McCallion, A. S., Puffenberger, E. G.et al. (2002). Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nat Genet, 32, 237–44.CrossRefGoogle ScholarPubMed
Castilla, E. E., Lopez-Camelo, J. S., Campana, H. and Rittler, M. (2001). Epidemiological methods to assess the correlation between industrial contaminants and rates of congenital anomalies. Mutat Res, 489, 123–45.CrossRefGoogle ScholarPubMed
Chambers, C. D. and Jones, K. L. (2002). Is genotype important in predicting the fetal alcohol syndrome?J Pediatr, 141, 751–2.CrossRefGoogle ScholarPubMed
Cohen, M. M. (1997). The child with multiple birth defects. 2nd edn. Oxford, New York: Oxford University Press.Google Scholar
Correa, A., Botto, L., Liu, Y., Mulinare, J. and Erickson, J. D. (2003). Do multivitamin supplements attenuate the risk for diabetes-associated birth defects?Pediatrics, 111, 1146–51.Google ScholarPubMed
Czeizel, A. E. and Dudás, I. (1992). Prevention of the first occurrence of neural tube defects by periconceptual vitamin supplementation. N Engl J Med, 327, 1832–5.CrossRefGoogle Scholar
Donnai, D. and Read, A. P. (2003). How clinicians add to knowledge of development. Lancet, 362, 477–84.CrossRefGoogle ScholarPubMed
Duncan, S., Mercho, S., Lopes-Cendes, I.et al. (2001). Repeated neural tube defects and valproate monotherapy suggest a pharmacogenetic abnormality. Epilepsia, 42, 750–3.CrossRefGoogle ScholarPubMed
Edwards, J. H. (1960). The simulation of Mendelism. Acta Genet, 10, 63–70.Google ScholarPubMed
Edwards, M. J., Saunders, R. D., Shiota, K. (2003). Effects of heat on embryos and foetuses. Int J Hyperthermia, 19, 295–324.CrossRefGoogle ScholarPubMed
Falconer, D. S. (1965). The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann Hum Genet, 29, 51–71.CrossRefGoogle Scholar
Fleming, A. and Copp, A. J. (1998). Embryonic folate metabolism and mouse neural tube defects. Science, 280, 2107–8.CrossRefGoogle ScholarPubMed
Fraser, F.C. and Gwyn, A. (1998). Seasonal variation in birth date of children with cleft lip. Teratology, 57, 93–5.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Frey, L. and Hauser, W. A. (2003). Epidemiology of neural tube defects. Epilepsia, 44, Suppl 3, 4–13.CrossRefGoogle ScholarPubMed
Garver, K.L., Law, J. C. and Garver, B. (1985). Hirschsprung disease: a genetic study. Clin Genet, 28, 503–8.CrossRefGoogle ScholarPubMed
Graham, J. M. Jr. and Edwards, M. J. (1998). Teratogen update: gestational effects of maternal hyperthermia due to febrile illnesses and resultant patterns of defects in humans. Teratology, 58, 209–21.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Greene, N. D. and Copp, A. J. (1997). Inositol prevents folate resistant neural tube defects in the mouse. Nature Med, 3, 60–6.CrossRefGoogle ScholarPubMed
Hall, J. G. (1996). Twinning: mechanisms and genetic implications. Curr Opin Genet Dev, 6, 343–7.CrossRefGoogle ScholarPubMed
Hoffman, J. I. and Kaplan, S. (2002). The incidence of congenital heart disease. J Am Coll Cardiol, 39, 1890–900.CrossRefGoogle ScholarPubMed
Holmes, L. B. (2002). Teratogen-induced limb defects. Am J Med Genet, 112, 297–303.CrossRefGoogle ScholarPubMed
Inoue, K. and Lupski, J. R. (2002). Molecular mechanisms for genomic disorders. Annu Rev Genomics Hum Genet, 3, 199–242.CrossRefGoogle ScholarPubMed
Jurlioff, D. M. and Harris, M. J. (2000). Mouse models for neural tube defects. Hum Molec Genet, 9, 993–1000.CrossRefGoogle Scholar
Kalter, H. and Warnaky, J. (1983). Medical progress. Congenital malformations: etiologic factors and their role in prevention. N Engl J Med, 308, 424–31.CrossRefGoogle ScholarPubMed
Kalter, H.The non-teratogenicity of gestational diabetes (1998). Paediatr Perinat Epidemiol, 12, 456–8.CrossRefGoogle ScholarPubMed
Katsanis, N., Ansley, S. J., Badano, J. L.et al. (2001). Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science, 293, 2256–9.CrossRefGoogle ScholarPubMed
Khoury, M. J., Beaty, T. H. and Cohen, B. H. (1991). Applications of the concept of attributable fraction in medical genetics. Am J Med Genet, 40, 177–82.CrossRefGoogle ScholarPubMed
Kouseff, B. (1999). Gestational diabetes mellitus (class A): a human teratogen?Am J Med Genet, 83, 402–8.3.0.CO;2-F>CrossRefGoogle Scholar
Kurnit, D. M., Layton, W. M. and Matthysse, S. (1987). Genetics, chance and morphogenesis. Am J Hum Genet, 41, 979–95.Google ScholarPubMed
Li, E. (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet, 3, 662–73.CrossRefGoogle ScholarPubMed
Little, J. (1993). The Chernobyl accident, congenital anomalies and other reproductive outcomesPaediatr Perinat Epidemiol, 7, 121–51.CrossRefGoogle ScholarPubMed
Martinez-Frias, M. L. (1994). Epidemiological analysis of outcomes of pregnancy in diabetic mothers: identification of the most characteristic and most frequent congenital anomalies. Am J Med Genet, 51, 108–13.CrossRefGoogle ScholarPubMed
May, P. A. and Gossage, J. P. (2001). Estimating the prevalence of fetal alcohol syndrome. A summary. Alcohol Res Health, 25, 159–67.Google ScholarPubMed
Miller, E., Hare, J. W., Cloherty, J. P.et al. (1981). Elevated maternal hemoglobin A1c in early pregnancy and major congenital anomalies in infants of diabetic mothers. N Engl J Med, 304, 1331–4.CrossRefGoogle ScholarPubMed
Ming, J. E. and Muenke, M. (2002). Multiple hits during early embryonic development: digenic diseases and holoprosencephaly. Am J Hum Genet, 71, 1017–32.CrossRefGoogle ScholarPubMed
MRC Vitamin Study Research Group. (1991). Prevention of neural tube defects: results of the Medical Research Council vitamin study. Lancet, 338, 131–7.CrossRef
Nadeau, J. H. (2003). Modifier genes and protective alleles in humans and mice. Curr Opin Genet Dev, 13, 290–5.CrossRefGoogle ScholarPubMed
Pani, L., Horal, M. and Loeken, M. R. (2002). Polymorphic susceptibility to the molecular causes of neural tube defects during diabetic embryopathy. Diabetes, 51, 2871–4.CrossRefGoogle ScholarPubMed
Paulsen, M. and Ferguson-Smith, A. C. (2001). DNA methylation in genomic imprinting, development and disease. J Pathol, 195, 97–110.CrossRefGoogle ScholarPubMed
Polizzi, A., Huson, S. M. and Vincent, A. (2000). Teratogen update: maternal myasthenia gravis as a cause of congenital arthrogryposis. Teratology, 62, 332–41.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Prentice, A. and Goldberg, G. (1996). Maternal obesity increases congenital malformations. Nutr Rev, 54, 146–50.CrossRefGoogle ScholarPubMed
Qu, S., Tucker, S. C., Ehrlich, J. S.et al. (1998). Mutations in mouse Aristaless-like4 cause Strong's luxoid polydactyly. Development, 125, 2711–21.Google ScholarPubMed
Ray, J. G., Meier, C., Vermeulen, M. J.et al. (2002). Association of neural tube defects and folic acid food fortification in Canada. Lancet, 360, 2047–8.CrossRefGoogle Scholar
Ray, J. G., O'Brien, T. E. and Chan, W. S. (2001). Preconception care and the risk of congenital anomalies in the offspring of women with diabetes mellitus: a meta-analysis. QJM, 94, 435–44.CrossRefGoogle ScholarPubMed
Reece, E. A., Homko, C. J. and Wu, Y. K. (1996). Multifactorial basis of the syndrome of diabetic embryopathy. Teratology, 54, 171–82.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Roessler, E. and Muenke, M. (2003). How a hedgehog might see holoprosencephaly. Hum Mol Genet. 12, R15–R25.CrossRefGoogle ScholarPubMed
Schinzel, A. A., Smith, D. W. and Miller, J. R. (1979). Monozygotic twinning and structural defects. J Pediatr, 95, 921–30.CrossRefGoogle ScholarPubMed
Schwartz, R. and Teramo, K. A. (2000). Effects of diabetic pregnancy on the fetus and newborn. Semin Perinatol, 24, 120–35.CrossRefGoogle Scholar
Sells, C. J., Robinson, N. M., Brown, Z. and Knopp, R. H. (1994). Long-term developmental follow-up of infants of diabetic mothers. J Pediatr, 125, S9–S17.CrossRefGoogle ScholarPubMed
Shaw, G. M., Lammer, E. J., Wasserman, C. R., O'Malley, C. D. and Tolarova, M. M. (1995). Risks of orofacial clefts in children born to women using multivitamins containing folic acid periconceptionally. Lancet, 346, 393–6.CrossRefGoogle ScholarPubMed
Sheffield, J. S., Butler-Koster, E. L., Casey, B. M., McIntire, D. D. and Leveno, K. J. (2002). Maternal diabetes mellitus and infant malformations. Obstet Gynecol, 100, 925–30.Google ScholarPubMed
Shields, D. C., Kirke, P. N., Mills, J. L.et al. (1999). The “thermolabile” variant of methylenetetrahydrofolate reductase and neural tube defects: an evaluation of genetic risk and the relative importance of the genotypes of the embryo and the mother. Am J Hum Genet, 64, 1045–55.CrossRefGoogle Scholar
Sibilia, M. and Wagner, E. F. (1995). Strain-dependent epithelial defects in mice lacking the EGF receptor. Science, 269, 234–8.CrossRefGoogle ScholarPubMed
Slavotinek, A. and Biesecker, L. G. (2003). Genetic modifiers in human development and malformation syndromes, including chaperone proteins. Hum Mol Genet, 12, R45–R50.CrossRefGoogle ScholarPubMed
Smithells, R. W. (1973). Defects and disabilities of thalidomide children. Br Med J, 1(5848), 269–72.CrossRefGoogle ScholarPubMed
Sorensen, H. T., Norgard, B., Pedersen, L., Larsen, H. and Johnsen, S. P. (2002). Maternal smoking and risk of hypertrophic infantile pyloric stenosis: 10 year population based cohort study. BMJ, 325, 1011–12.CrossRefGoogle ScholarPubMed
Southard-Smith, E. M., Angrist, M., Ellison, J. S.et al. (1999). The Sox10 (Dom) mouse: modeling the genetic variation of Waardenburg-Shah (WS4) syndrome. Genome Res, 3, 215–25.Google Scholar
Spranger, J., Benirschke, K. and Hall, J. G.et al. (1982). Errors of morphogenesis: concepts and terms. J Pediatr, 100, 160–5.CrossRefGoogle ScholarPubMed
Stearns, S. C. (2002). Progress on canalization. Proc Natl Acad Sci USA, 99, 10229–30.CrossRefGoogle ScholarPubMed
Stevenson, R. E. (1993 a). The genetic basis of human anomalies. In Stevenson, R. E., Hall, J. G. and Goodman, R. M. eds., Human malformations and related anomalies, vol 1. New York: Oxford University Press, pp. 115–35.Google Scholar
Stevenson, R. E. (1993 b). The Environmental Basis of Human Anomalies. In Stevenson, R. E., Hall, J. G. and Goodman, R. M. eds., Human malformations and related anomalies, vol 1. New York: Oxford University Press, pp. 137–68.Google Scholar
Stoler, J. M., Ryan, L. M. and Holmes, L. B. (2002). Alcohol dehydrogenase 2 genotypes, maternal alcohol use, and infant outcome. J Pediatr, 141, 780–5.CrossRefGoogle ScholarPubMed
Thilly, W. G. (2003). Have environmental mutagens caused oncomutations in people?Nat Genet, 34, 255–9.CrossRefGoogle ScholarPubMed
Threadgill, D. W., Dlugosz, A. A., Hansen, L. A.et al. (1995). Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science, 269, 230–4.CrossRefGoogle ScholarPubMed
Essien, F. B. and Wannberg, S. L. (1993). Methionine but not folinic acid or vitamin B-12 alters the frequency of neural tube defects in Axd mutant mice. J Nutrition, 123, 27–34.CrossRefGoogle ScholarPubMed
Watkins, M. L., Rasmussen, S. A., Honein, M. A., Botto, L. D. and Moore, C. A. (2003). Maternal obesity and risk for birth defects. Pediatrics, 111, 1152–8.Google ScholarPubMed
Whitehead, A. S., Gallagher, P., Mills, J. L.et al. (1995). A genetic defect in 5,10 methylene tetrahydrofolate reductase in neural tube defects. Q J Med, 88, 763–6.Google ScholarPubMed
Wilcox, A. J., Baird, D. D. and Weinberg, C. R. (1999). Time of implantation of the conceptus and loss of pregnancy. N Engl J Med, 340, 1796–9.CrossRefGoogle ScholarPubMed
Yang, Q., Khoury, M. J. and Mannino, D. (1997). Trends and patterns of mortality associated with birth defects and genetic diseases in the United States, 1979–1992: an analysis of multiple-cause mortality data. Genet Epidemiol, 14, 493–505.3.0.CO;2-2>CrossRef
Zhao, Q., Behringer, R. R. and Crombrugghe, B. (1996). Prenatal folic acid treatment suppresses acrania and meroanencephaly in mice mutant for the Cart1 homeobox gene. Nature Genet, 13, 275–83.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×