Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T02:13:09.623Z Has data issue: false hasContentIssue false

Chapter 8 - Optical coherence tomography and electrophysiology of the optic nerve head

Published online by Cambridge University Press:  05 May 2015

Peter A. Calabresi
Affiliation:
Department of Neurology, Johns Hopkins University Hospital, Baltimore
Laura J. Balcer
Affiliation:
Department of Neurology, NYU Langone Medical Center, New York
Elliot M. Frohman
Affiliation:
Department of Neurology, UT Southwestern Medical Center, Dallas
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Quigley, HA, Kerrigan–Baumrind, LA, Pease, ME, Kerrigan, DF, Mitchell, RS. The number of retinal ganglion cells in glaucoma eyes compared to threshold visual field data in the same eyes. Invest Ophthalmol Vis Sci 1999;40:S582Google Scholar
Kerrigan-Baumrind, LA, Quigley, HA, Pease, ME, Kerrigan, DF, Mitchell, RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000;41:741748Google ScholarPubMed
Barkhof, F. The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 2002;15:239245CrossRefGoogle ScholarPubMed
Naismith, RT, et al. Optical coherence tomography is less sensitive than visual evoked potentials in optic neuritis. Neurology 2009;73:4652CrossRefGoogle ScholarPubMed
Halliday, AM, McDonald, WI, Mushin, J. Delayed visual evoked response in optic neuritis. Lancet 1972;1:982985CrossRefGoogle ScholarPubMed
Halliday, AM, McDonald, WI, Mushin, J. Visual evoked response in diagnosis of multiple sclerosis. Br Med J 1973;1:661664CrossRefGoogle Scholar
Hood, DC, Odel, JG, Winn, BJ. The multifocal visual evoked potential. J Neuro-Ophthalmol 2003;23:279289CrossRefGoogle ScholarPubMed
Weinstein, GW, Odom, JV, Cavender, S. Visually evoked potentials and electroretinography in neurologic evaluation. Rev Neurol Clin 1991;9:225242CrossRefGoogle ScholarPubMed
Fortune, B, Hood, DC. Conventional pattern-reversal VEPs are not equivalent to summed multifocal VEPs. Invest Ophthalmol Vis Sci 2003;44:13641375CrossRefGoogle Scholar
Halliday, AM, Michael, WF. Changes in pattern-evoked responses in man associated with the vertical and horizontal meridians of the visual field. J Physiol 1970;208:499513CrossRefGoogle ScholarPubMed
Brindley, GS. The variability of the human striate cortex J Physiol 1972;225:1P-3PGoogle ScholarPubMed
Stensaas, SS, Eddington, DK, Dobelle, WH. The topography and variability of the primary visual cortex in man. J Neurosurg 1974;40:747755CrossRefGoogle ScholarPubMed
Victor, JD. Isolation of components due to intracortical processing in the visual evoked potential. Proc Natl Acad Sci USA 1986;83:79847988CrossRefGoogle ScholarPubMed
Srebro, R. The topography of scalp potentials evoked by pattern pulse stimuli. Vision Res 1987;27:901914CrossRefGoogle ScholarPubMed
Schroeder, CE, Tenke, CE, Givre, SJ, et al. Striate cortical contribution to the surface-recorded pattern-reversal VEP in the alert monkey. Vision Res 1991;31:11431157CrossRefGoogle Scholar
Rademacher, J, Caviness, VS Jr, Steinmetz, H, Galaburda, AM. Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 1993;3:313329CrossRefGoogle ScholarPubMed
Givre, SJ, Schroeder, CE, Arezzo, JC. Contribution of extrastriate area v4 to the surface-recorded flash VEP in the awake macaque. Vision Res 1994;34:415428CrossRefGoogle Scholar
Aine, CJ, Supek, S, George, JS, et al. Retinotopic organization of human visual cortex: departures from the classical model. Cereb Cortex 1996;6,354361CrossRefGoogle ScholarPubMed
Fortune, B, Hood, DC. Conventional pattern-reversal VEPs are not equivalent to summed multifocal VEPs. Invest Ophthalmol Vis Sci 2003;44:13641375CrossRefGoogle Scholar
Sutter, EE. The fast m-transform: a fast computation of cross correlations with binary m-sequences. Soc Ind Appl Math 1991;20:686694Google Scholar
Baseler, HA, Sutter, EE, Klein, SA, et al. The topography of visual evoked response properties across the visual field. Electroencephalogr Clin Neurophysiol 1994;90:6581CrossRefGoogle ScholarPubMed
Baseler, HA, Sutter, EE. M and P components of the VEP and their visual field distribution. Vision Res. 1997;37:675–90CrossRefGoogle ScholarPubMed
Slotnick, SD, Klein, SA, Carney, T, Sutter, E, Dastmalchi, S. Using multi-stimulus VEP source localization to obtain a retinotopic map of human primary visual cortex. Clin Neurophysiol 1999;110:17931800CrossRefGoogle ScholarPubMed
Grover, LK, Hood, DC, Ghadiali, Q, et al. A comparison of multifocal and conventional visual evoked potential techniques in patients with optic neuritis/multiple sclerosis. Doc Ophthalmol 2008;117:121128CrossRefGoogle ScholarPubMed
Hood, DC, Greenstein, VC. Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Prog Retin Eye Res 2003;22:201251CrossRefGoogle Scholar
Hood, DC, Greenstein, VC, Odel, JG, et al. Visual field defects and multifocal visual evoked potentials: evidence of a linear relationship. Arch Ophthalmol 2002;120:16721681CrossRefGoogle ScholarPubMed
Hood, DC, Zhang, X, Greenstein, VC, et al. An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. Invest Ophthalmol Vis Sci 2000;411:5801587Google Scholar
Frishman, LJ. Origins of the electroretinogram. In: Heckenlively, John R. and Arden, Geoffrey B., editors. Principles and practice of clinical electrophysiology of vision. 2nd ed. Cambridge, Massachusetts and London, England: Massachusetts Institute of Technology (MIT); 2006.Google Scholar
Hood, DC, Odel, JG, Chen, CS, Winn, BJ. The multifocal electroretinogram. J Neuroophthalmol 2003;23:225235CrossRefGoogle ScholarPubMed
Young, B, Eggenberger, E, Kaufman, D. Current electrophysiology in ophthalmology: a review. Curr Opin Ophthalmol 2012;23:497505CrossRefGoogle ScholarPubMed
Marmor, M, Fulton, A, Holder, G, et al. ISCEV standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 2008;118:6977CrossRefGoogle Scholar
Hood, DC, Greenstein, V, Frishman, L, et al. Identifying inner retinal contributions to the human multifocal ERG. Vision Res 1999;39:22852291CrossRefGoogle Scholar
Hare, WA, Ton, H, Ruiz, G, et al. Characterization of retinal injury using ERG measures obtained with both conventional and multifocal methods in chronic ocular hypertensive primates. Invest Ophthalmol Vis Sci 2001;42:127136Google ScholarPubMed
Graham, SL, Klistorner, A. Electrophysiology: a review of signal origins and applications to investigating glaucoma. Aust N Z J Ophthalmol 1998;26:7185CrossRefGoogle Scholar
Holder, GE. Electrophysiological assessment of optic nerve disease. Eye 2004;18:11331143CrossRefGoogle ScholarPubMed
Maffei, L, Fiorentini, A. Electroretinographic responses to alternating gratings in the cat. Exp Brain Res 1982;48:327334CrossRefGoogle ScholarPubMed
Maffei, L, Fiorentini, A, Bisti, S, Hollander, H. Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res 1985;59:423425CrossRefGoogle Scholar
Sieving, PA, Steinberg, RH. Proximal retinal contribution to the intraretinal 8-Hz pattern ERG of cats. J Neurophysiol 1987;57:104120CrossRefGoogle Scholar
Baker, CL, Hess, RR, Olsen, BT, Zrenner, E. Current source density analysis of linear and non-linear components of the primate electroretinogram. J Physiol 1988;407:155176CrossRefGoogle ScholarPubMed
Wang, J, Cheng, H, Hu, Y, et al. The photopic negative response of the flash electroretinogram in multiple sclerosis. Invest Ophthalmol Vis Sci 2011;53:13151323CrossRefGoogle Scholar
Froehlich, J, Kaufman, DI. The pattern electroretinogram: N95 amplitudes in normal subjects and optic neuritis patients. Electroencephalogr Clin Neurophysiol 1993;88:8391CrossRefGoogle ScholarPubMed
Holder, GE. The incidence of abnormal pattern electroretinography in optic nerve demyelination. Electroencephalogr Clin Neurophysiol 1991;78:1826CrossRefGoogle ScholarPubMed
Vaegan, Sutter EE. Fundamental differences between the nonlinearities of pattern and focal electroretinograms. Doc Ophthalmol 1990;76:1325CrossRefGoogle ScholarPubMed
Lawwill, T. The bar-pattern electroretinogram for clinical evaluation of the central retina. Am J Ophthalmol 1974;78:121126CrossRefGoogle ScholarPubMed
Arden, GB, Carter, RM, Macfarlan, A. Pattern and Ganzfeld electroretinograms in macular disease. Br J Ophthalmol 1984;68:878884CrossRefGoogle ScholarPubMed
Viswanathan, S, Frishman, LJ, Robson, JG, Harwerth, RS, Smith, EL, III The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 1999;40:11241136Google Scholar
Thompson, DA, Feather, S, Stanescu, HC, et al. Altered electroretinograms in patients with KCNJ10 mutations and EAST syndrome. J Physiol 2011;589:16811689CrossRefGoogle ScholarPubMed
Viswanathan, S, Frishman, LJ, Robson, JG, Walters, JW. The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 2001;42:514522Google ScholarPubMed
Rangaswamy, NV, Frishman, LJ, Dorotheo, EU, et al. Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Invest Ophthalmol Vis Sci. 2004;45:38273837CrossRefGoogle ScholarPubMed
Gotoh, Y, Machida, S, Tazawa, Y. Selective loss of the photopic negative response in patients with optic nerve atrophy. Arch Ophthalmol 2004;122:341346CrossRefGoogle ScholarPubMed
Miyata, K, Nakamura, M, Kondo, M, et al. Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations. Invest Ophthalmol Vis Sci 2007;48:820824CrossRefGoogle ScholarPubMed
Machida, S, Gotoh, Y, Tanaka, M, Tazawa, Y. Predominant loss of the photopic negative response in central retinal artery occlusion. Am J Ophthalmol 2004;137:938940CrossRefGoogle ScholarPubMed
Shinoda, K, Yamada, K, Matsumoto, CS, Kimoto, K, Nakatsuka, K. Changes in retinal thickness are correlated with alterations of electroretinogram in eyes with central retinal artery occlusion. Graefes Arch Clin Exp Ophthalmol 2008;246:949954CrossRefGoogle ScholarPubMed
Sutter, EE, Tran, D. The field topography of ERG components in man – I. The photopic luminance response. Vision Res 1992;32:433446CrossRefGoogle ScholarPubMed
Bearse, MA, Sutter, EE. Imaging localized retinal dysfunction with the multifocal electroretinogram. J Opt Soc Am A Opt Image Sci Vis 1996;13:634640CrossRefGoogle ScholarPubMed
Sutter, EE, Bearse, MA The optic nerve head component of the human ERG. Vision Res 1999;39:419436CrossRefGoogle ScholarPubMed
Shimada, Y, Bearse, MA, Sutter, EE. Multifocal electroretinograms combined with periodic flashes: direct responses and induced components. Graefes Arch Clin Exp Ophthalmol 2005;243:132141CrossRefGoogle ScholarPubMed
Luo, X, Patel, NB, Harwerth, RS, Frishman, LJ. Loss of the low-frequency component of the global-flash multifocal electroretinogram in primate eyes with experimental glaucoma. Invest Ophthalmol Vis Sci 2011;52:37923804CrossRefGoogle ScholarPubMed
Lalonde, MR, Chauhan, BC, Tremblay, F. Retinal ganglion cell activity from the multifocal electroretinogram in pig: optic nerve section, anesthesia and intravitreal tetrodotoxin. J Physiol 2006;570:325338CrossRefGoogle ScholarPubMed
Ng, YF, Chan, HH, Chu, PH, et al. Pharmacologically defined components of the normal porcine multifocal ERG. Doc Ophthalmol 2008;116:165176CrossRefGoogle ScholarPubMed
Hood, DC, Bearse, MA, Sutter, EE, Viswanathan, S, Frishman, LJ. The optic nerve head component of the monkey’s (Macaca mulatta) multifocal electroretinogram (mERG). Vision Res 2001;41:20292041CrossRefGoogle ScholarPubMed
Hood, DC, Frishman, LJ, Viswanathan, S, et al. Evidence for a ganglion cell contribution to the primate electroretinogram (ERG): effects of TTX on the multifocal ERG in macaque. Vis Neurosci 1999;16:411416CrossRefGoogle Scholar
Frishman, LJ, Saszik, S, Harwerth, RS, et al. Effects of experimental glaucoma in macaques on the multifocal ERG. Multifocal ERG in laser-induced glaucoma. Doc Ophthalmol 2000;100:231251Google ScholarPubMed
Fortune, B, Cull, G, Wang, L, Van Buskirk, EM, Cioffi, GA. Factors affecting the use of multifocal electroretinography to monitor function in a primate model of glaucoma. Doc Ophthalmol 2002;105:151178CrossRefGoogle Scholar
Frohman, TC, Beh, SC, Saidha, S, et al. Optic nerve head component responses of the multifocal electroretinogram in MS. Neurology 2013;81:545551CrossRefGoogle ScholarPubMed
Stanford, LR. Conduction velocity variations minimize conduction time differences among retinal ganglion cell axons. Science 1987;25:225231Google Scholar
Fukuda, Y, Watanabe, M, Wakakuwa, K, Sawai, H, Morigawa, K. Intraretinal axons of ganglion cells in the Japanese monkey (Macaca fuscata): conduction velocity and diameter distribution. Neuroscience Research 1988;6:5371CrossRefGoogle ScholarPubMed
Ogden, TE, Miller, RF. Studies of the optic nerve of the rhesus monkey: nerve fiber spectrum and physiological properties. Vision Res 1966;6:485506CrossRefGoogle ScholarPubMed
Ogden, TE. Nerve fiber layer of the primate retina: morphometric analysis. Invest Ophthalmol Vis Sci 1984;25:1929Google ScholarPubMed
Hebel, R, Hollander, H. Size and distribution of ganglion cells in the human retina. Anat Embryol (Berl) 1983;168:125136CrossRefGoogle ScholarPubMed
Roedick, RW, Binmoeller, KF, Dineen, J. Parsaol and midget ganglion cells of the human retina. J Comp Neurol 1985;233:115132CrossRefGoogle Scholar
Fitzgibbon, T, Taylor, SF. Mean retinal ganglion cell axon diameter varies with location in the human retina. Jpn J Ophthalmol 2012;56:631637CrossRefGoogle ScholarPubMed
Curcio, CA, Allen, KA. Topography of ganglion cells in human retina. J Comp Neurol 1990;300:525CrossRefGoogle ScholarPubMed
Wali, N, Leguire, LE. Fundus pigmentation and the dark-adapted electroretinogram. Doc Ophthalmol 1992;80:111CrossRefGoogle ScholarPubMed
Westall, CA, Dhaliwal, HS, Panton, CM, et al. Values of electroretinogram responses according to axial length. Doc Ophthalmol 2001;102:115130CrossRefGoogle ScholarPubMed
Fortune, B, Johnson, CA, Cioffi, GA. The topographic relationship between multifocal electroretinographic and behavioral perimetric measures of function in glaucoma. Optom Vis Sci 2001;78:206214CrossRefGoogle ScholarPubMed
Sadun, AA, Salomao, SR, Berezovsky, A, et al. Subclinical carriers and conversions in Leber hereditary optic neuropathy: a prospective psychophysical study. Trans Am Ophthalmol Soc 2006;104:5161Google ScholarPubMed
Klopstock, T, Yu-Wai-Man, P, Dimitriadis, K, et al. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain 2011;134:26772686CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×