Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T07:32:31.288Z Has data issue: false hasContentIssue false

Chapter 14 - Optical coherence tomography and retinal pathology in neurologic diseases

Published online by Cambridge University Press:  05 May 2015

Peter A. Calabresi
Affiliation:
Department of Neurology, Johns Hopkins University Hospital, Baltimore
Laura J. Balcer
Affiliation:
Department of Neurology, NYU Langone Medical Center, New York
Elliot M. Frohman
Affiliation:
Department of Neurology, UT Southwestern Medical Center, Dallas
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Green, AJ. Mcquaid, S, Hauser, SL, et al Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 2010; 133 (Pt 6): 15911601.CrossRefGoogle ScholarPubMed
Oppenheim, H. Zur pathologie der disseminirten sklerose. Berliner Klinische Wochenschrift 1887; 48:904–7.Google Scholar
Lisch, K. Die Veranderung der peripheren schbahn bei Mulipler Sklerose Arch f. Augehn 1933;107:380.Google Scholar
Gartner, S. Optic neuropathy in multiple sclerosis; optic neuritis. AMA Arch Ophthalmol December 1953;50(6):718–26.CrossRefGoogle ScholarPubMed
Toussaint, D, Périer, O, Verstappen, A, Bervoets, S. Clinicopathological study of the visual pathways, eyes, and cerebral hemispheres in 32 cases of disseminated sclerosis. J Clin Neuroophthalmol September 1983;3(3):211–20.Google ScholarPubMed
Kerrison, JB, Flynn, T, Green, WR. Retinal pathologic changes in multiple sclerosis. Retina 1994;14(5):445–51.CrossRefGoogle ScholarPubMed
Mogensen, PH. Histopathology of anterior parts of the optic pathway in patients with multiple sclerose. Acta Ophthalmol (Copenh) April 1990;68(2):218–20.CrossRefGoogle ScholarPubMed
ter Braak, JWG, van Herwaarden, A. Ophthalmo encephalomyelitis. Klin Monatsbl Augenheilkd 1933;91:316–43.Google Scholar
Rucker, CW. Sheathing of the retinal veins in multiple sclerosis. Review of pertinent literature. Mayo Clin Proc 1972;47:335–40.Google ScholarPubMed
Toussaint, D. Perivenous sheathing in multiple sclerosis. Bull Soc Belge Ophtalmol. November 1983;208 Pt 1:369–74.Google ScholarPubMed
Sanders, MD. Retinal arteritis, retinal vasculitis and autoimmune retinal vasculitis. Eye 1987;1:441–65CrossRefGoogle ScholarPubMed
Arnold, AC, Pepose, JS, Hepler, RS, Foos, RY. Retinal periphlebitis and retinitis in multiple sclerosis. I. Pathologic characteristics. Ophthalmology 1984; 91:255–62.Google ScholarPubMed
Evangelou, N, Konz, D, Esiri, MM, et al. Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain 2001;124:1813–20.CrossRefGoogle ScholarPubMed
Schlamp, CL, Montgomery, AD, Mac Nair, CE, et al. Evaluation of the percentage of ganglion cells in the ganglion cell layer of the rodent retina. Mol Vis June 27, 2013;19:1387–96.Google ScholarPubMed
Wang, L, Cioffi, GA, Cull, G, Dong, J, Fortune, B. Immunohistologic evidence for retinal glial cell changes in human glaucoma. Invest Ophthalmol Vis Sci April 2002;43(4):1088–94.Google ScholarPubMed
Liu, S, Li, ZW, Weinreb, RN, Xu, G, et al. Tracking retinal microgliosis in models of retinal ganglion cell damage. Invest Ophthalmol Vis Sci September 2012;53 (10):6254–62.CrossRefGoogle ScholarPubMed
Anderson, GW, Goebel, HH, Simonati, A. Human pathology in NCL. Biochim Biophys Acta November 2013;1832(11):1807–26.Google ScholarPubMed
Seehafer, SS, Pearce, DA. You say lipofuscin, we say ceroid: defining autofluorescent storage material. Neurobiol Aging April 2006;27(4):576–88.CrossRefGoogle ScholarPubMed
Bensaoula, T, Shibuya, H, Katz, ML, Smith, JE, Johnson, GS, John, SK, Milam, AH. Histopathologic and immunocytochemical analysis of the retina and ocular tissues in Batten disease. Ophthalmology September 2000;107(9):1746–53.CrossRefGoogle ScholarPubMed
Goebel, HH, Fix, JD, Zeman, W. The fine structure of the retina in neuronal ceroid-lipofuscinosis. Am J Ophthalmol January 1974;77(1):2539.CrossRefGoogle ScholarPubMed
Cogan, DG. Visual disturbances with focal progressive dementing disease. Am J Ophthalmol July 15, 1985;100(1): 6872.CrossRefGoogle ScholarPubMed
Tzekov, R, Mullan, M. Vision function abnormalities in Alzheimer disease. Surv Ophthalmol October 22, 2013. pii: S0039–6257(13) 00237–3.Google Scholar
Hedges, TR 3rd, Perez Galves, R, Speigelman, D, et al. Retinal nerve fiber layer abnormalities in Alzheimer’s disease. Acta Ophthalmol Scand June 1996;74(3):271–5.CrossRefGoogle ScholarPubMed
Tsai, CS, Ritch, R, Schwartz, B, Lee, SS, et al. Optic nerve head and nerve fiber layer in Alzheimer’s disease. Arch Ophthalmol February 1991;109(2):199204.CrossRefGoogle ScholarPubMed
Lu, Y, Li, Z, Zhang, X, Ming, B, et al. Retinal nerve fiber layer structure abnormalities in early Alzheimer’s disease: evidence in optical coherence tomography. Neurosci Lett August 9, 2010 Aug 9;480(1):6972.CrossRefGoogle ScholarPubMed
Kesler, A, Vakhapova, V, Korczyn, AD, et al. Retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Clin Neurol Neurosurg September 2011;113(7):523–6.CrossRefGoogle ScholarPubMed
Berisha, F, Feke, GT, Trempe, CL, et al. Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci May 2007;48(5):2285–9.CrossRefGoogle ScholarPubMed
Hinton, DR, Sadun, AA, Blanks, JC, Miller, CA. Optic-nerve degeneration in Alzheimer’s disease. N Engl J Med August 21, 1986;315(8):485–7.CrossRefGoogle ScholarPubMed
Blanks, JC, Torigoe, Y, Hinton, DR, Blanks, RH. Retinal degeneration in the macula of patients with Alzheimer’s disease. Ann N Y Acad Sci 1991;640:44–6.CrossRefGoogle ScholarPubMed
Blanks, JC, Torigoe, Y, Hinton, DR, Blanks, RH. Retinal pathology in Alzheimer’s disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol Aging May-June 1996;17(3):377–84.CrossRefGoogle ScholarPubMed
Blanks, JC, Schmidt, SY, Torigoe, Y, et al. Retinal pathology in Alzheimer’s disease. II. Regional neuron loss and glial changes in GCL. Neurobiol Aging. May-June 1996;17(3):385–95.CrossRefGoogle ScholarPubMed
Curcio, CA, Drucker, DN. Retinal ganglion cells in Alzheimer’s disease and aging. Ann Neurol March 1993;33(3):248–57.CrossRefGoogle ScholarPubMed
Hoh Kam, J, Lenassi, E, Jeffery, G. Viewing ageing eyes: diverse sites of amyloid Beta accumulation in the ageing mouse retina and the up-regulation of macrophages. PLoS One October 1, 2010;5(10).CrossRefGoogle ScholarPubMed
Koronyo-Hamaoui, M, Koronyo, Y, Ljubimov, AV, et al. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage January 2011; 54 Suppl 1:S204–17.CrossRefGoogle ScholarPubMed
Koronyo, Y, Salumbides, BC, Black, KL, Koronyo-Hamaoui, M. Alzheimer’s disease in the retina: imaging retinal aβ plaques for early diagnosis and therapy assessment. Neurodegener Dis 2012;10(14):285–93.CrossRefGoogle ScholarPubMed
Ho, CY, Troncoso, JC, Knox, D, et al. Beta-amyloid, phospho-tau and alpha-synuclein deposits similar to those in the brain are not identified in the eyes of Alzheimer’s and Parkinson’s disease patients. Brain Pathol January 2014;24(1):2532.CrossRefGoogle Scholar
Alexandrov, PN, Pogue, A, Bhattacharjee, S, Lukiw, WJ. Retinal amyloid peptides and complement factor H in transgenic models of Alzheimer’s disease. Neuroreport August 24, 2011;22(12):623–7CrossRefGoogle ScholarPubMed
Fortuna, F, Barboni, P, Liguori, R, et al. Visual system involvement in patients with Friedreich’s ataxia. Brain January 2009;132(Pt 1):116–23.CrossRefGoogle ScholarPubMed
Noval, S, Contreras, I, Sanz-Gallego, I, et al. Ophthalmic features of Friedreich ataxia. Eye (Lond) February 2012;26(2):315–20.CrossRefGoogle ScholarPubMed
Tatton, WG, Kwan, MM, Verrier, MC, et al. MPTP produces reversible disappearance of tyrosine hydroxylase-containing retinal amacrine cells. Brain Res September 10, 1990;527(1):2131.CrossRefGoogle ScholarPubMed
Archibald, NK, Clarke, MP, Mosimann, UP, Burn, DJ. The retina in Parkinson’s disease. Brain May 2009;132 (Pt 5):1128–45.CrossRefGoogle ScholarPubMed
Maurage, CA, Ruchoux, MM, de Vos, R, et al. Retinal involvement in dementia with Lewy bodies: a clue to hallucinations? Ann Neurol October 2003;54(4):542–7.CrossRefGoogle ScholarPubMed
Paulus, W, Schwarz, G, Werner, A, et al. Impairment of retinal increment thresholds in Huntington’s disease. Ann Neurol October 1993;34(4):574–8CrossRefGoogle ScholarPubMed
Petrasch-Parwez, E, Saft, C, Schlichting, A, et al. Is the retina affected in Huntington disease? Acta Neuropathol November 2005;110(5):523–5.CrossRefGoogle ScholarPubMed
Jackson, GR, Salecker, I, Dong, X, et al Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron September 1998;21(3):633–42.CrossRefGoogle ScholarPubMed
Martin, JJ, Van Regemorter, N, Krols, L, et al. On an autosomal dominant form of retinal-cerebellar degeneration: an autopsy study of five patients in one family. Acta Neuropathol 1994;88(4):277–86.CrossRefGoogle Scholar
Agamanolis, DP, Chester, EM, Victor, M, et al. Neuropathology of experimental vitamin B12 deficiency in monkeys. Neurology October 1976;26(10):905–14.CrossRefGoogle ScholarPubMed
Smiddy, WE, Green, WR. Nutritional amblyopia. A histopathologic study with retrospective clinical correlation. Graefes Arch Clin Exp Ophthalmol 1987;225 (5):321–4.Google ScholarPubMed
Victor, M, Dreyfus, PM. Tobacco-alcohol amblyopia. Further comments on its pathology. Arch Ophthalmol. November 1965;74(5):649–57.Google ScholarPubMed
Sharpe, JA, Hostovsky, M, Bilbao, JM, Rewcastle, NB. Methanol optic neuropathy: a histopathological study. Neurology October 1982;32(10):1093–100.CrossRefGoogle ScholarPubMed
Curcio, CA. Photoreceptor topography in ageing and age-related maculopathy. Eye(Lond) June 2001;15(Pt 3):376–83.Google ScholarPubMed
Pitts, DG. The effects of aging on selected visual functions: dark adaptation, visual acuity, stereopsis and brightness contrast. In: Sekuler, R, Kline, DW, Dismukes, K, editors. Aging and Human Visual Function. New York: 1982; p. 131159.Google Scholar
Leger, F, Fernagut, PO, Canron, MH, et al. Protein aggregation in the aging retina. J Neuropathol Exp Neurol January 2011;70(1):63–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×