Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T13:36:52.745Z Has data issue: false hasContentIssue false

Chapter 19 - Future technological advances in optical coherence tomography

Published online by Cambridge University Press:  05 May 2015

Peter A. Calabresi
Affiliation:
Department of Neurology, Johns Hopkins University Hospital, Baltimore
Laura J. Balcer
Affiliation:
Department of Neurology, NYU Langone Medical Center, New York
Elliot M. Frohman
Affiliation:
Department of Neurology, UT Southwestern Medical Center, Dallas
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sander, , , B., Larsen, M., Thrane, L., et al., Enhanced optical coherence tomography imaging by multiple scan averaging. Br J Ophthalmol 2005; 89(2): 207–12.CrossRefGoogle ScholarPubMed
Sakamoto, , , A., Hangai, M., and Yoshimura, N., Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases. Ophthalmology, 2008;115(6): 10711078 e7.CrossRefGoogle ScholarPubMed
Pappuru, , , R.R., Briceno, C., Ouyang, Y., et al., Clinical significance of B-scan averaging with SD-OCT. Ophthalmic Surg Lasers Imaging, 2012;43(1): 63–8.CrossRefGoogle ScholarPubMed
Jorgensen, , , T.M., Thomadsen, J., Christensen, U., et al., Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration–method and clinical examples. J Biomed Opt, 2007;12(4): p. 041208.CrossRefGoogle ScholarPubMed
Wu, , , W., Tan, O., Pappuru, R.R., et al., Assessment of frame-averaging algorithms in OCT image analysis. Ophthalmic Surg Lasers Imaging Retina, 2013;44(2): 168–75.CrossRefGoogle ScholarPubMed
Chin, , , E.K., Sedeek, R.W., Li, Y., et al., Reproducibility of macular thickness measurement among five OCT instruments: effects of image resolution, image registration, and eye tracking. Ophthalmic Surg Lasers Imaging, 2012; 43(2) 97108.CrossRefGoogle ScholarPubMed
Drexler, , , W. and Fujimoto, J.G., Optical Coherence Tomography: Technology and Applications. 2008. New York:Springer.CrossRefGoogle Scholar
Blatter, , , C., Klein, T., Grajciar, B., et al., Ultrahigh-speed non-invasive widefield angiography. J Biomed Opt, 2012. 17(7): 070505.CrossRefGoogle ScholarPubMed
Goda, , , K., Fard, A., Malik, O., et al., High-throughput optical coherence tomography at 800 nm. Opt Express, 2012. 20(18): 19612–7.CrossRefGoogle Scholar
Klein, , , T., Wieser, W., Eigenwillig, C.M., et al., Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. Opt Express, 2011. 19(4): 3044–62.CrossRefGoogle ScholarPubMed
Potsaid, , , B., Baumann, B., Huang, D., et al., Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express, 2010. 18(19): 20029–48.CrossRefGoogle Scholar
Zawadzki, , , R.J., Choi, S.S., Jones, S.M., et al., Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions. J Opt Soc Am A Opt Image Sci Vis, 2007. 24(5): 1373–83.CrossRefGoogle ScholarPubMed
Zawadzki, , , R.J., Choi, S.S., Fuller, A.R., et al., Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography. Opt Express, 2009. 17(5): 4084–94.CrossRefGoogle ScholarPubMed
Ragazzoni, , , R., Marchetti, E., and Valente, G., Adaptive-optics corrections available for the whole sky. Nature, 2000. 403(6765): 54–6.CrossRefGoogle ScholarPubMed
Miller, , , D.T., Kocaoglu, O.P., Wang, Q., et al., Adaptive optics and the eye (super resolution OCT). Eye (Lond), 2011. 25(3): 321–30.CrossRefGoogle ScholarPubMed
Kocaoglu, , , O.P., Lee, S., Jonnal, R.S., et al., Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics. Biomed Opt Express, 2011. 2(4): 748–63.CrossRefGoogle ScholarPubMed
Yannuzzi, , , L.A., Rohrer, K.T., Tindel, L.J., et al., Fluorescein angiography complication survey. Ophthalmology, 1986. 93(5): 611–7.CrossRefGoogle ScholarPubMed
Hope-Ross, , , M., Yannuzzi, L.A., Gragoudas, E.S., et al., Adverse reactions due to indocyanine green. Ophthalmology, 1994. 101(3): 529–33.CrossRefGoogle ScholarPubMed
Drexler, , , W. and Fujimoto, J.G., State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res, 2008. 27(1):4588.CrossRefGoogle ScholarPubMed
Wehbe, , , H., Ruggeri, M., Jiao, S., et al., Automatic retinal blood flow calculation using spectral domain optical coherence tomography. Opt Express, 2007. 15(23): 15193–206.CrossRefGoogle ScholarPubMed
Makita, , , S., Fabritius, T., and Yasuno, Y., Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography. Opt Lett, 2008. 33(8): 836–8.CrossRefGoogle ScholarPubMed
Wang, , , Y., Bower, B.A., Izatt, J.A., et al., Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt, 2008. 13(6): 064003.CrossRefGoogle ScholarPubMed
Szkulmowska, , , A., Szkulmowski, M., Szlag, D., et al., Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography. Opt Express, 2009. 17(13): 10584–98.CrossRefGoogle ScholarPubMed
Makita, , , S., Hong, Y., Yamanari, M., et al., Optical coherence angiography. Opt Express, 2006. 14(17): 7821–40.CrossRefGoogle ScholarPubMed
An, , , L. and Wang, R.K., In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt Express, 2008. 16(15): 11438–52.CrossRefGoogle ScholarPubMed
Kim, , , D.Y., Fingler, J., Werner, J.S., et al., In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography. Biomed Opt Express, 2011. 2(6): 1504–13.CrossRefGoogle ScholarPubMed
Makita, , , S., Jaillon, F., Yamanari, M., et al., Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography. Opt Express, 2011. 19(2): 1271–83.CrossRefGoogle ScholarPubMed
Miura, , , M., Makita, S., Iwasaki, T., et al., Three-dimensional visualization of ocular vascular pathology by optical coherence angiography in vivo. Invest Ophthalmol Vis Sci, 2011. 52(5): 2689–95.CrossRefGoogle ScholarPubMed
Hwang, , , J.C., Konduru, R., Zhang, X., et al., Relationship among visual field, blood flow, and neural structure measurements in glaucoma. Invest Ophthalmol Vis Sci, 2012. 53(6): 3020–6.CrossRefGoogle ScholarPubMed
Adhi, , , M. and Duker, J.S., Optical coherence tomography–current and future applications. Curr Opin Ophthalmol, 2013. 24(3): 213–21.CrossRefGoogle ScholarPubMed
Pircher, , , M., Goetzinger, E., Leitgeb, R., et al., Transversal phase resolved polarization sensitive optical coherence tomography. Phys Med Biol, 2004. 49(7): 1257–63.CrossRefGoogle ScholarPubMed
Pircher, , , M., Gotzinger, E., Leitgeb, R., et al., Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT. Opt Express, 2004. 12(24): 5940–51.CrossRefGoogle ScholarPubMed
Gotzinger, , , E., Pircher, M., and Hitzenberger, C.K., High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Opt Express, 2005. 13(25): 10217–29.Google ScholarPubMed
Zotter, , , S., Pircher, M., Gotzinger, E., et al., Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT. Invest Ophthalmol Vis Sci, 2013. 54(1): 7284.CrossRefGoogle ScholarPubMed
Gotzinger, , , E., Pircher, M., Baumann, B., et al., Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina. Opt Express, 2009. 17(5): 4151–65.CrossRefGoogle ScholarPubMed
Windisch, , , B.K., Harasymowycz, P.J., See, J.L., et al., Comparison between confocal scanning laser tomography, scanning laser polarimetry and optical coherence tomography on the ability to detect localised retinal nerve fibre layer defects in glaucoma patients. Br J Ophthalmol, 2009. 93(2): 225–30.CrossRefGoogle ScholarPubMed
Ferreras, , , A., Pablo, L.E., Pajarin, A.B., et al., Scanning laser polarimetry: logistic regression analysis for perimetric glaucoma diagnosis. Eye (Lond), 2009. 23(3): 593600.CrossRefGoogle ScholarPubMed
Yamanari, , , M., Miura, M., Makita, S., et al., Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry. J Biomed Opt, 2008. 13(1): 014013.CrossRefGoogle ScholarPubMed
Moon, , , B.G., Sung, K.R., Cho, J.W., et al., Glaucoma progression detection by retinal nerve fiber layer measurement using scanning laser polarimetry: event and trend analysis. Korean J Ophthalmol, 2012. 26(3): 174–81.CrossRefGoogle ScholarPubMed
Hoffmann, , , E.M. and Schulze, A., [Glaucoma diagnosis using scanning laser polarimetry]. Ophthalmologe, 2009. 106(8): 696–8, 700–1.Google ScholarPubMed
Gotzinger, , , E., Pircher, M., Baumann, B., et al., Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison. J Biophotonics, 2008. 1(2): 129–39.CrossRefGoogle ScholarPubMed
Fortune, , , B., Wang, L., Cull, G., et al., Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness. Invest Ophthalmol Vis Sci, 2008. 49(1): 255–61.CrossRefGoogle ScholarPubMed
Zaveri, , , M.S., Conger, A., Salter, A., et al., Retinal imaging by laser polarimetry and optical coherence tomography evidence of axonal degeneration in multiple sclerosis. Arch Neurol, 2008. 65(7): 924–8.CrossRefGoogle ScholarPubMed
Bagga, , , H., Greenfield, D.S., Feuer, W., et al., Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in normal and glaucomatous eyes. Am J Ophthalmol, 2003. 135(4): 521–9.CrossRefGoogle ScholarPubMed
Sehi, , , M., Ume, S., and Greenfield, D.S., Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci, 2007. 48(5): 2099–104.CrossRefGoogle ScholarPubMed
Michels, , , S., Pircher, M., Geitzenauer, W., et al., Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium. Br J Ophthalmol, 2008. 92(2): 204–9.CrossRefGoogle ScholarPubMed
Merchant, , , K.Y., Su, D., Park, S.C., et al., Enhanced depth imaging optical coherence tomography of optic nerve head Drusen. Ophthalmology, 2013.CrossRefGoogle Scholar
Hedels, , , C. and Krohn, J., Enhanced depth imaging optical coherence tomography of optic disc maculopathy without a visible optic pit. Clin Experiment Ophthalmol, 2013.CrossRefGoogle Scholar
Skondra, , , D., Papakostas, T., and Vavvas, D.G., Enhanced depth imaging optical coherence tomography in age-related macular degeneration. Semin Ophthalmol, 2012. 27(5–6): 209–12.CrossRefGoogle ScholarPubMed
Rahman, , , W., Chen, F.K., Yeoh, J., et al., Enhanced depth imaging of the choroid in patients with neovascular age-related macular degeneration treated with anti-VEGF therapy versus untreated patients. Graefes Arch Clin Exp Ophthalmol, 2013. 251(6): 1483–8.CrossRefGoogle ScholarPubMed
da Silva, , , F.T., Sakata, V.M., Nakashima, A., et al., Enhanced depth imaging optical coherence tomography in long-standing Vogt-Koyanagi-Harada disease. Br J Ophthalmol, 2013. 97(1): 70–4.CrossRefGoogle ScholarPubMed
Nakayama, , , M., Keino, H., Okada, A.A., et al., Enhanced depth imaging optical coherence tomography of the choroid in Vogt-Koyanagi-Harada disease. Retina, 2012. 32(10): 2061–9.CrossRefGoogle ScholarPubMed
Querques, , , G., Lattanzio, R., Querques, L., et al., Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci, 2012. 53(10): 6017–24.CrossRefGoogle ScholarPubMed
Shields, , , C.L., Kaliki, S., Rojanaporn, D., et al., Enhanced depth imaging optical coherence tomography of small choroidal melanoma: comparison with choroidal nevus. Arch Ophthalmol, 2012. 130(7): 850–6.CrossRefGoogle ScholarPubMed
Shah, , , S.U., Kaliki, S., Shields, C.L., et al., Enhanced depth imaging optical coherence tomography of choroidal nevus in 104 cases. Ophthalmology, 2012. 119(5): 1066–72.CrossRefGoogle ScholarPubMed
Park, , , H.Y., Jeon, S.H., and Park, C.K., Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology, 2012. 119(1): 1020.CrossRefGoogle ScholarPubMed
Park, , , S.C., De Moraes, C.G., Teng, C.C., et al., Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. Ophthalmology, 2012. 119(1): 39.CrossRefGoogle ScholarPubMed
Wong, , , I.Y., Koizumi, H., and Lai, W.W., Enhanced depth imaging optical coherence tomography. Ophthalmic Surg Lasers Imaging, 2011. 42 Suppl: S7584.CrossRefGoogle ScholarPubMed
Ikuno, , , Y., Maruko, I., Yasuno, Y., et al., Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci, 2011. 52(8): 5536–40.CrossRefGoogle ScholarPubMed
Imamura, , , Y., Iida, T., Maruko, I., et al., Enhanced depth imaging optical coherence tomography of the sclera in dome-shaped macula. Am J Ophthalmol, 2011. 151(2): 297302.CrossRefGoogle ScholarPubMed
Margolis, , , R. and Spaide, R.F., A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol, 2009. 147(5): 811–5.CrossRefGoogle ScholarPubMed
Spaide, , , R.F., Enhanced depth imaging optical coherence tomography of retinal pigment epithelial detachment in age-related macular degeneration. Am J Ophthalmol, 2009. 147(4): 644–52.CrossRefGoogle ScholarPubMed
Spaide, , , R.F., Koizumi, H., and Pozzoni, M.C., Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol, 2008. 146(4): 496500.CrossRefGoogle ScholarPubMed
Hale, , , G.M. and Querry, M.R., Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. Appl Opt, 1973. 12(3): 555–63.CrossRefGoogle ScholarPubMed
de Bruin, , , D.M., Burnes, D.L., Loewenstein, J., et al., In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm. Invest Ophthalmol Vis Sci, 2008. 49(10): 4545–52.CrossRefGoogle Scholar
Lee, , , E.C., de Boer, J.F., Mujat, M., et al., In vivo optical frequency domain imaging of human retina and choroid. Opt Express, 2006. 14(10): 4403–11.CrossRefGoogle ScholarPubMed
Yasuno, , , Y., Miura, M., Kawana, K., et al., Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci, 2009. 50(1): 405–13.CrossRefGoogle ScholarPubMed
Maruko, , , I., Iida, T., Sugano, Y., et al., Morphologic analysis in pathologic myopia using high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci, 2012. 53(7): 3834–8.CrossRefGoogle ScholarPubMed
Nagase, , , S., Miura, M., Makita, S., et al., High-penetration optical coherence tomography with enhanced depth imaging of polypoidal choroidal vasculopathy. Ophthalmic Surg Lasers Imaging, 2012. 43 Online: p. e59.CrossRefGoogle Scholar
Usui, , , S., Ikuno, Y., Miki, A., et al., Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normal-tension glaucoma. Am J Ophthalmol, 2012. 153(1): 10–6 e1.CrossRefGoogle ScholarPubMed
Jaillon, , , F., Makita, S., Min, E.J., et al., Enhanced imaging of choroidal vasculature by high-penetration and dual-velocity optical coherence angiography. Biomed Opt Express, 2011. 2(5): 1147–58.CrossRefGoogle ScholarPubMed
Nakai, , , K., Gomi, F., Ikuno, Y., et al., Choroidal observations in Vogt-Koyanagi-Harada disease using high-penetration optical coherence tomography. Graefes Arch Clin Exp Ophthalmol, 2012. 250(7): 1089–95.CrossRefGoogle ScholarPubMed
Chung, , , S.E., Kang, S.W., Lee, J.H., et al., Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology, 2011. 118(5): p. 840–5.CrossRefGoogle ScholarPubMed
Hong, , , Y.J., Miura, M., Makita, S., et al., Noninvasive investigation of deep vascular pathologies of exudative macular diseases by high-penetration optical coherence angiography. Invest Ophthalmol Vis Sci, 2013. 54(5): 3621–31.CrossRefGoogle ScholarPubMed
Koizumi, , , H., Yamagishi, T., Yamazaki, T., et al., Subfoveal choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol, 2011. 249(8): 1123–8.CrossRefGoogle ScholarPubMed
Rishi, , , P., Rishi, E., Mathur, G., et al., Ocular perfusion pressure and choroidal thickness in eyes with polypoidal choroidal vasculopathy, wet-age-related macular degeneration, and normals. Eye (Lond), 2013.CrossRefGoogle Scholar
Klein, , , T., Andre, R., Wieser, W., et al., Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT. Biomed Opt Express, 2013. 4(4): 619–34.CrossRefGoogle ScholarPubMed
Wax, , , A., Yang, C., and Izatt, J.A., Fourier-domain low-coherence interferometry for light-scattering spectroscopy. Opt Lett, 2003. 28(14): 1230–2.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×