Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T14:56:22.940Z Has data issue: false hasContentIssue false

Chapter 13 - Optical coherence tomography and retinal segmentation in neurological diseases

Published online by Cambridge University Press:  05 May 2015

Peter A. Calabresi
Affiliation:
Department of Neurology, Johns Hopkins University Hospital, Baltimore
Laura J. Balcer
Affiliation:
Department of Neurology, NYU Langone Medical Center, New York
Elliot M. Frohman
Affiliation:
Department of Neurology, UT Southwestern Medical Center, Dallas
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Frohman, EM, Fujimoto, JG, Frohman, TC, Calabresi, PA, Cutter, G, Balcer, LJ. Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol 2008; 4:664–75.CrossRefGoogle ScholarPubMed
Debuc, DC. A review of algorithms for segmentation of retinal image data using optical coherence tomography. In: Ho, P-G, editor. Image Segmentation: InTech; 2011.Google Scholar
Cettomai, D, Pulicken, M, Gordon-Lipkin, E, Salter, A, Frohman, TC, Conger, A, et al. Reproducibility of optical coherence tomography in multiple sclerosis. Arch Neurol 2008; 65:1218–22.CrossRefGoogle ScholarPubMed
Syc, SB, Warner, CV, Hiremath, GS, Farrell, SK, Ratchford, JN, Conger, A, et al. Reproducibility of high-resolution optical coherence tomography in multiple sclerosis. Mult Scler 2010; 16:829–39.CrossRefGoogle ScholarPubMed
Saidha, S, Syc, SB, Ibrahim, MA, Eckstein, C, Warner, CV, Farrell, SK, et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 2011; 134:518–33.CrossRefGoogle ScholarPubMed
Seigo, MA, Sotirchos, ES, Newsome, S, Babiarz, A, Eckstein, C, Ford, E, et al. In vivo assessment of retinal neuronal layers in multiple sclerosis with manual and automated optical coherence tomography segmentation techniques. J Neurol 2012; 259:2119–30.CrossRefGoogle ScholarPubMed
Balcer, LJ. Clinical practice. Optic neuritis. N Engl J Med 2006; 354:1273–80.CrossRefGoogle ScholarPubMed
Toussaint, D, Perier, O, Verstappen, A, Bervoets, S. Clinicopathological study of the visual pathways, eyes, and cerebral hemispheres in 32 cases of disseminated sclerosis. J Clin Neuroophthalmol 1983; 3:211–20.Google ScholarPubMed
Ikuta, F, Zimmerman, HM. Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology 1976; 26:26–8.CrossRefGoogle ScholarPubMed
Shindler, KS, Ventura, E, Dutt, M, Rostami, A. Inflammatory demyelination induces axonal injury and retinal ganglion cell apoptosis in experimental optic neuritis. Exp Eye Res 2008; 87:208–13.CrossRefGoogle ScholarPubMed
Kerrison, JB, Flynn, T, Green, WR. Retinal pathologic changes in multiple sclerosis. Retina 1994; 14:445–51.CrossRefGoogle ScholarPubMed
Green, AJ, McQuaid, S, Hauser, SL, Allen, IV, Lyness, R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 2010; 133:1591–601.CrossRefGoogle ScholarPubMed
Papakostopoulos, D, Fotiou, F, Hart, JC, Banerji, NK. The electroretinogram in multiple sclerosis and demyelinating optic neuritis. Electroencephalogr Clin Neurophysiol 1989; 74:110.CrossRefGoogle ScholarPubMed
Forooghian, F, Sproule, M, Westall, C, Gordon, L, Jirawuthiworavong, G, Shimazaki, K, et al. Electroretinographic abnormalities in multiple sclerosis: possible role for retinal autoantibodies. Doc Ophthalmol 2006; 113:123–32.CrossRefGoogle ScholarPubMed
Gundogan, FC, Demirkaya, S, Sobaci, G. Is optical coherence tomography really a new biomarker candidate in multiple sclerosis?–A structural and functional evaluation. Invest Ophthalmol Vis Sci 2007; 48:5773–81.CrossRefGoogle ScholarPubMed
Engell, T, Hvidberg, A, Uhrenholdt, A. Multiple sclerosis: periphlebitis retinalis et cerebro-spinalis. A correlation between periphlebitis retinalis and abnormal technetium brain scintigraphy. Acta Neurol Scand 1984; 69:293–7.CrossRefGoogle ScholarPubMed
Sepulcre, J, Murie-Fernandez, M, Salinas-Alaman, A, Garcia-Layana, A, Bejarano, B, Villoslada, P. Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS. Neurology 2007; 68:1488–94.CrossRefGoogle ScholarPubMed
Petzold, A, de Boer, JF, Schippling, S, Vermersch, P, Kardon, R, Green, A, et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2010; 9:921–32.CrossRefGoogle ScholarPubMed
Walter, SD, Ishikawa, H, Galetta, KM, Sakai, RE, Feller, DJ, Henderson, SB, et al. Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology 2012; 119:1250–7.CrossRefGoogle ScholarPubMed
Warner, CV, Syc, SB, Stankiewicz, AM, Hiremath, G, Farrell, SK, Crainiceanu, CM, et al. The impact of utilizing different optical coherence tomography devices for clinical purposes and in multiple sclerosis trials. PLoS ONE 2011; 6:e22947.CrossRefGoogle ScholarPubMed
Henderson, AP, Altmann, DR, Trip, AS, Kallis, C, Jones, SJ, Schlottmann, PG, et al. A serial study of retinal changes following optic neuritis with sample size estimates for acute neuroprotection trials. Brain 2010; 133:2592–602.CrossRefGoogle ScholarPubMed
Syc, SB, Saidha, S, Newsome, SD, Ratchford, JN, Levy, M, Ford, E, et al. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain 2012; 135:521–33.CrossRefGoogle ScholarPubMed
Saidha, S, Syc, SB, Durbin, MK, Eckstein, C, Oakley, JD, Meyer, SA, et al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Mult Scler 2011; 17:1449–63.CrossRefGoogle ScholarPubMed
Saidha, S, Sotirchos, ES, Oh, J, Syc, SB, Seigo, MA, Shiee, N, et al. Relationships between retinal axonal and neuronal measures and global central nervous system pathology in multiple sclerosis. JAMA Neurol 2013; 70:3443.CrossRefGoogle ScholarPubMed
Zimmermann, H, Freing, A, Kaufhold, F, Gaede, G, Bohn, E, Bock, M, et al. Optic neuritis interferes with optical coherence tomography and magnetic resonance imaging correlations. Mult Scler 2013; 19:443–50.CrossRefGoogle ScholarPubMed
Talman, LS, Bisker, ER, Sackel, DJ, Long, DA, Jr., Galetta, KM, Ratchford, JN, et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol 2010; 67:749–60.CrossRefGoogle ScholarPubMed
Garcia-Martin, E, Pueyo, V, Almarcegui, C, Martin, J, Ara, JR, Sancho, E, et al. Risk factors for progressive axonal degeneration of the retinal nerve fibre layer in multiple sclerosis patients. Br J Ophthalmol 2011; 95:1577–82.CrossRefGoogle ScholarPubMed
Henderson, AP, Trip, SA, Schlottmann, PG, Altmann, DR, Garway-Heath, DF, Plant, GT, et al. A preliminary longitudinal study of the retinal nerve fiber layer in progressive multiple sclerosis. J Neurol 2010; 257:1083–91.CrossRefGoogle ScholarPubMed
Serbecic, N, Aboul-Enein, F, Beutelspacher, SC, Vass, C, Kristoferitsch, W, Lassmann, H, et al. High resolution spectral domain optical coherence tomography (SD-OCT) in multiple sclerosis: the first follow up study over two years. PLoS ONE 2011; 6:e19843.CrossRefGoogle ScholarPubMed
Ratchford, JN, Saidha, S, Sotirchos, ES, Oh, JA, Seigo, MA, Eckstein, C, et al. Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning. Neurology 2013; 80:4754.CrossRefGoogle ScholarPubMed
Gelfand, JM, Nolan, R, Schwartz, DM, Graves, J, Green, AJ. Microcystic macular edema in multiple sclerosis is associated with disease severity. Brain 2012; 135:1786–93.CrossRefGoogle ScholarPubMed
Saidha, S, Sotirchos, ES, Ibrahim, MA, Crainiceanu, CM, Gelfand, JM, Sepah, YJ, et al. Microcystic macular edema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol 2012; 11:963–72.CrossRefGoogle ScholarPubMed
Sotirchos, ES, Saidha, S, Byraiah, G, Mealy, MA, Ibrahim, MA, Sepah, YJ, et al. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology 2013; 80:1406–14.CrossRefGoogle ScholarPubMed
Gelfand, JM, Cree, BA, Nolan, R, Arnow, S, Green, AJ. Microcystic inner nuclear layer abnormalities and neuromyelitis optica. JAMA Neurol 2013; 70:629–33.CrossRefGoogle ScholarPubMed
Balk, LJ, Killestein, J, Polman, CH, Uitdehaag, BM, Petzold, A. Microcystic macular edema confirmed, but not specific for multiple sclerosis. Brain 2012; 135:e226.CrossRefGoogle Scholar
Abegg, M, Zinkernagel, M, Wolf, S. Microcystic macular degeneration from optic neuropathy. Brain 2012; 135:e225.CrossRefGoogle ScholarPubMed
Barboni, P, Carelli, V, Savini, G, Carbonelli, M, La Morgia, C, Sadun, AA. Microcystic macular degeneration from optic neuropathy: not inflammatory, not trans-synaptic degeneration. Brain 2013; 136:e239.CrossRefGoogle Scholar
Kisimbi, J, Shalchi, Z, Mahroo, OA, Mhina, C, Sanyiwa, AJ, Mabey, D, et al. Macular spectral domain optical coherence tomography findings in Tanzanian endemic optic neuropathy. Brain 2013.CrossRefGoogle Scholar
Kaushik, M, Wang, CY, Barnett, MH, Garrick, R, Parratt, J, Graham, SL, et al. Inner Nuclear Layer Thickening Is Inversley Proportional to Retinal Ganglion Cell Loss in Optic Neuritis. PLoS ONE 2013; 8:e78341.CrossRefGoogle ScholarPubMed
Levin, MH, Bennett, JL, Verkman, AS. Optic neuritis in neuromyelitis optica. Prog Retin Eye Res 2013.CrossRefGoogle Scholar
Lucchinetti, CF, Mandler, RN, McGavern, D, Bruck, W, Gleich, G, Ransohoff, RM, et al. A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 2002; 125:1450–61.CrossRefGoogle ScholarPubMed
Naismith, RT, Tutlam, NT, Xu, J, Klawiter, EC, Shepherd, J, Trinkaus, K, et al. Optical coherence tomography differs in neuromyelitis optica compared with multiple sclerosis. Neurology 2009; 72:1077–82.CrossRefGoogle ScholarPubMed
Ratchford, JN, Quigg, ME, Conger, A, Frohman, T, Frohman, E, Balcer, LJ, et al. Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology 2009; 73:302–8.CrossRefGoogle ScholarPubMed
Green, AJ, Cree, BA. Distinctive retinal nerve fibre layer and vascular changes in neuromyelitis optica following optic neuritis. J Neurol Neurosurg Psychiatry 2009; 80:1002–5.CrossRefGoogle ScholarPubMed
Schneider, E, Zimmermann, H, Oberwahrenbrock, T, Kaufhold, F, Kadas, EM, Petzold, A, et al. Optical coherence tomography reveals distinct patterns of retinal damage in neuromyelitis optica and multiple sclerosis. PLoS ONE 2013; 8:e66151.CrossRefGoogle ScholarPubMed
de Seze, J, Blanc, F, Jeanjean, L, Zephir, H, Labauge, P, Bouyon, M, et al. Optical coherence tomography in neuromyelitis optica. Arch Neurol 2008; 65:920–3.CrossRefGoogle ScholarPubMed
Merle, H, Olindo, S, Donnio, A, Richer, R, Smadja, D, Cabre, P. Retinal peripapillary nerve fiber layer thickness in neuromyelitis optica. Invest Ophthalmol Vis Sci 2008; 49:4412–7.CrossRefGoogle ScholarPubMed
Monteiro, ML, Fernandes, DB, Apostolos-Pereira, SL, Callegaro, D. Quantification of retinal neural loss in patients with neuromyelitis optica and multiple sclerosis with or without optic neuritis using optical coherence tomography. Invest Ophthalmol Vis Sci 2012.CrossRefGoogle Scholar
Ikram, MK, Cheung, CY, Wong, TY, Chen, CP. Retinal pathology as biomarker for cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2012; 83:917–22.CrossRefGoogle ScholarPubMed
He, XF, Liu, YT, Peng, C, Zhang, F, Zhuang, S, Zhang, JS. Optical coherence tomography assessed retinal nerve fiber layer thickness in patients with Alzheimer’s disease: a meta-analysis. Int J Ophthalmol 2012; 5:401–5.Google ScholarPubMed
Archibald, NK, Clarke, MP, Mosimann, UP, Burn, DJ. The retina in Parkinson’s disease. Brain 2009; 132:1128–45.CrossRefGoogle ScholarPubMed
Archibald, NK, Clarke, MP, Mosimann, UP, Burn, DJ. Retinal thickness in Parkinson’s disease. Parkinsonism Relat Disord 2011; 17:431–6.CrossRefGoogle ScholarPubMed
Roth, NM, Saidha, S, Zimmermann, H, Brandt, AU, Oberwahrenbrock, T, Maragakis, NJ, et al. Optical coherence tomography does not support optic nerve involvement in amyotrophic lateral sclerosis. Eur J Neurol 2013; 20:1170–6.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×