Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T18:38:45.321Z Has data issue: false hasContentIssue false

Global longitudinal strain is a surrogate marker for time constant of isovolumic relaxation in post-Fontan operation patients with single right ventricle and preserved ejection fraction

Published online by Cambridge University Press:  10 October 2024

Kota Suzuki*
Affiliation:
Department of Pediatrics, Yamagata University Hospital, Yamagata, Japan
Masaki Nii
Affiliation:
Department of Pediatric Cardiology, Shizuoka Children’s Hospital, Shizuoka, Japan
Takehiro Tanabe
Affiliation:
Department of Pediatric Cardiology, Shizuoka Children’s Hospital, Shizuoka, Japan
Mizuhiko Ishigaki
Affiliation:
Department of Pediatric Cardiology, Shizuoka Children’s Hospital, Shizuoka, Japan
Keisuke Sato
Affiliation:
Department of Pediatric Cardiology, Shizuoka Children’s Hospital, Shizuoka, Japan
Jun Yoshimoto
Affiliation:
Department of Pediatric Cardiology, Shizuoka Children’s Hospital, Shizuoka, Japan
Sung-Hae Kim
Affiliation:
Department of Pediatric Cardiology, Shizuoka Children’s Hospital, Shizuoka, Japan
Norie Mitsushita
Affiliation:
Department of Pediatric Cardiology, Shizuoka Children’s Hospital, Shizuoka, Japan
Yasuhiko Tanaka
Affiliation:
Department of Pediatric Cardiology, Shizuoka Children’s Hospital, Shizuoka, Japan
*
Corresponding author: Kota Suzuki; Email: bellwood04411055@yahoo.co.jp

Abstract

Background:

The time constant of isovolumic relaxation is an established index of ventricular relaxation, a major component of diastolic function, even in a single right ventricle. However, the specific echocardiographic parameters for estimating diastolic dysfunction are insufficient for a single right ventricle. This study aimed to investigate the echocardiographic indices associated with time constant of isovolumic relaxation in post-Fontan operation patients with a single right ventricle.

Methods:

We included 39 patients with hypoplastic left heart syndrome after Fontan operation with an ejection fraction ≥45% and preserved valve function. First, the correlation between echocardiographic parameters and time constant of isovolumic relaxation was examined, and partial correlation coefficients were calculated using age and heart rate as covariates. Next, univariate regression analysis was performed using time constant of isovolumic relaxation as the objective variable and echocardiographic parameters as independent variables, followed by multivariate regression analysis incorporating parameters with p < 0.10.

Results:

Among the echocardiographic parameters, global longitudinal strain correlated most strongly with time constant of isovolumic relaxation (r = 0.778, p < 0.001). This was consistent with the partial correlation coefficients (r = 0.707, p < 0.001). Using stepwise multivariate regression analysis, only global longitudinal strain was found to be an independent predictor of time constant of isovolumic relaxation (adjusted R2 = 0.551).

Conclusions:

Global longitudinal strain could be used as a surrogate marker of time constant of isovolumic relaxation, an invasive indicator of relaxation impairment, in post-Fontan operation patients with a single right ventricle, preserved ejection fraction, and valve function.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Newburger, JW, Sleeper, LA, Gaynor, JW et al. Transplant-free survival and interventions at 6 years in the single ventricle reconstruction trial. Circulation 2018; 137: 22462253.10.1161/CIRCULATIONAHA.117.029375CrossRefGoogle Scholar
Anderson, PA, Sleeper, LA, Mahony, L et al. Contemporary outcomes after the Fontan procedure: a Pediatric Heart Network multicenter study. J Am Coll Cardiol 2008; 52: 8598.10.1016/j.jacc.2008.01.074CrossRefGoogle ScholarPubMed
Friedberg, MK, Redington, AN. Right versus left ventricular failure: differences, similarities, and interactions. Circulation 2014; 129: 10331044.10.1161/CIRCULATIONAHA.113.001375CrossRefGoogle ScholarPubMed
Modesti, PA, Vanni, S, Bertolozzi, I et al. Different growth factor activation in the right and left ventricles in experimental volume overload. Hypertension 2004; 43: 101108.10.1161/01.HYP.0000104720.76179.18CrossRefGoogle ScholarPubMed
Files, MD, Arya, B. Pathophysiology, adaptation, and imaging of the right ventricle in Fontan circulation. Am J Physiol Heart Circ Physiol 2018; 315: 17791788.10.1152/ajpheart.00336.2018CrossRefGoogle ScholarPubMed
Altmann, K, Printz, BF, Solowiejczyk, DE et al. Two-dimensional echocardiographic assessment of right ventricular function as a predictor of outcome in hypoplastic left heart syndrome. Am J Cardiol 2000; 86: 964968.10.1016/S0002-9149(00)01131-0CrossRefGoogle ScholarPubMed
Chowdhury, SM, Bultts, RJ, Buckley, J et al. Comparison of pressure-volume loop and echocardiographic measures of diastolic function in patients with single ventricle physiology. Pediatr Cardiol 2014; 35: 9981006.10.1007/s00246-014-0888-4CrossRefGoogle ScholarPubMed
Stout, KK, Daniels, CJ, Aboulhosn, JA et al. AHA/ACC guideline for the management of adults with congenital heart disease: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. J Am Coll Cardiol 2018; 73: 81192.10.1016/j.jacc.2018.08.1029CrossRefGoogle Scholar
Forsha, D, Joseph, Li L, Kutty, N, Friedberg, S, MK. Association of left ventricular size with regional right ventricular mechanics in hypoplastic left heart syndrome. Int J Cardiol 2020; 298: 6671.10.1016/j.ijcard.2019.07.090CrossRefGoogle ScholarPubMed
Weiss, JL, Frederiksen, JW, Weisfeldt, ML. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest 1976; 58: 751760.10.1172/JCI108522CrossRefGoogle ScholarPubMed
Hayabuchi, Y, Ono, A, Homma, Y, Kagami, S. Analysis of right ventricular myocardial stiffness and relaxation components in children and adolescents with pulmonary arterial hypertension. J Am Heart Assoc 2018; 19: e008670.10.1161/JAHA.118.008670CrossRefGoogle Scholar
Erenberg, FG, Banerjee, A. Systolic and diastolic properties of univentricular hearts in children: insights from physiologic indices that reflect calcium cycling. Pediatr Res 2003; 54: 885891.10.1203/01.PDR.0000090930.17613.D8CrossRefGoogle ScholarPubMed
Goudar, SP, Zak, V, Atz, AM et al. Comparison of echocardiographic measurements to invasive measurements of diastolic function in infants with single ventricle physiology: a report from the pediatric heart network infant single ventricle trial. Cardiol Young 2019; 29: 12481256.10.1017/S1047951119001859CrossRefGoogle ScholarPubMed
Border, WL, Syed, AU, Michelfelder, EC et al. Impaired systemic ventricular relaxation affects postoperative short-term outcome in Fontan patients. J Thoracic Cardiovasc Surg 2003; 126: 17601764.10.1016/j.jtcvs.2003.06.006CrossRefGoogle ScholarPubMed
Ito, H, Ishida, M, Makino, W et al. Cardiovascular magnetic resonance feature tracking for characterization of patients with heart failure with preserved ejection fraction. J Cardiovasc Magn Reason 2020; 22: 42.10.1186/s12968-020-00636-wCrossRefGoogle ScholarPubMed
D’Souza, R, Wang, Y, Calderon-Anyosa, RJC et al. Decreased right ventricular longitudinal strain in children with hypoplastic left heart syndrome during staged repair and follow-up: does it have implications in clinically stable patients? Int J Cardiovasc Imaging 2020; 36: 16671677.10.1007/s10554-020-01870-0CrossRefGoogle Scholar
Kanngiesser, LM, Freitag-Wolf, S, Boroni Grazioli, S et al. Serial assessment of right ventricular deformation in patients with hypoplastic left heart syndrome a cardiovascular magnetic resonance feature tracking study. J Am Heart Assoc 2022; 11: e025332.10.1161/JAHA.122.025332CrossRefGoogle ScholarPubMed
Kuwata, S, Saiki, H, Takanashi, M et al. Venous properties in a Fontan patient with successful remission of protein-losing enteropathy. Int Heart J 2021; 62: 710714.10.1536/ihj.20-687CrossRefGoogle Scholar
Averin, K, Hirsch, R, Seckeler, MD et al. Diagnosis of occult diastolic dysfunction late after the Fontan procedure using a rapid volume expansion technique. Heart 2016; 102: 11091114.10.1136/heartjnl-2015-309042CrossRefGoogle ScholarPubMed
Khoo, NS, Smallhorn, JF, Kaneko, S et al. The assessment of atrial function in single ventricle hearts from birth to Fontan: a speckle-tracking study by using strain and strain rate. J Am Soc Echocardiogr 2013; 26: 756764.10.1016/j.echo.2013.04.005CrossRefGoogle Scholar
Husain, N, Gokhale, J, Nicholson, L et al. Noninvasive estimation of ventricular filling pressures in patients with single right ventricles. J Am Soc Echocardiogr 2013; 26: 13301336.10.1016/j.echo.2013.08.002CrossRefGoogle ScholarPubMed
Cua, CL, Moore-Clingenpeel, M, Husain, N et al. Systolic/diastolic ratio correlates with end diastolic pressures in pediatric patients with single right ventricles. Congenit Heart Dis 2019; 14: 609613.10.1111/chd.12755CrossRefGoogle ScholarPubMed