Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-18T18:55:15.188Z Has data issue: false hasContentIssue false

Control of Flaxleaf Fleabane (Conyza bonariensis) in Wheat and Sorghum

Published online by Cambridge University Press:  20 January 2017

Hanwen Wu*
Affiliation:
Queensland Primary Industries & Fisheries, P.O. Box 2282, Toowoomba, Queensland 4350, Australia
Steve Walker
Affiliation:
Queensland Primary Industries & Fisheries, P.O. Box 2282, Toowoomba, Queensland 4350, Australia
Geoff Robinson
Affiliation:
Queensland Primary Industries and Fisheries, P.O. Box 102, Toowoomba, Queensland 4350, Australia
Neil Coombes
Affiliation:
Wagga Wagga Agricultural Institute, Industry & Investment New South Wales, PMB, Wagga Wagga, New South Wales 2650, Australia
*
Corresponding author's E-mail: hanwen.wu@dpi.nsw.gov.au.

Abstract

Flaxleaf fleabane is a difficult-to-control weed in dryland minimum tillage farming systems in the northeast grains region of Australia. Experiments were conducted between 2003 and 2005 to identify effective control strategies on flaxleaf fleabane in wheat and sorghum. A preplant application of chlorsulfuron at 15 g ai/ha in wheat controlled flaxleaf fleabane ≥ 90%. The efficacy of early postemergent applications of metsulfuron–methyl at 4.2 g ai/ha varied between years. However, the flaxleaf fleabane was controlled > 85% with metsulfuron–methyl at 4.2 g ai/ha plus MCPA at 420 g ae/ha plus picloram at 26 g ae/ha, or metsulfuron–methyl followed by late postemergent 2,4-D amine at 300 g ae/ha. In sorghum, a preplant application of glyphosate at 900 g ae/ha plus 2,4-D amine at 900 g ae/ha or dicamba at 500 g ae/ha at 1 mo before sorghum planting provided ≥ 95% control. Preplant atrazine at 2,000 g ai/ha controlled flaxleaf fleabane 83 to 100% in sorghum. At-planting atrazine at 2,000 or 1,000 g ai/ha can be applied to control new emergence of flaxleaf fleabane and grasses, depending on the weed pressure and spectrum. Flaxleaf fleabane reduced sorghum yield 65 to 98% if not controlled.

La Conyza bonariensis es una maleza difícil de controlar en tierra seca con un sistema de labranza mínima en la región productora de granos del noreste de Australia. Se llevaron al cabo experimentos entre 2003 y 2005 para identificar las estrategias de control más efectivas para Conyza bonariensis en trigo y sorgo. Una aplicación en pre-siembra de chlorosulfuron a 15 g ia/ha en el trigo, controló Conyza bonariensis ≥ 90%. La eficacia de las aplicaciones tempranas post-siembra de metsulfuron-methyl a 4.2 g ia/ha varió de un año a otro. Sin embargo, la Conyza bonariensis fue controlada >85% con metsulfuron-methyl a 4.2 g ia/ha más MCPA a 420 g ea/ha más picloram a 26 g ea/ha, o metsulfuron-methyl fb LPOST 2,4-D amine a 300 g ea/ha. En el caso del sorgo, una aplicación de glifosato en pre-siembra a 900 g ea/ha más 2,4-D amine a 900 g ea/ha o dicamba a 500 g ea/ha un mes antes de la siembra proporcionó ≥ 95% de control. En el cultivo de sorgo, la aplicación de atrazine en pre-siembra a 2000 g ia/ha controló la Conyza bonariensis de 83 al 100%. La aplicación de atrazine en la siembra a 2000 o 1000 g ia/ha puede ser usada para controlar nueva emergencia de la Conyza bonariensis y otros zacates, dependiendo de la presión y el espectro de la maleza. La Conyza bonariensis redujo el rendimiento del sorgo entre un 65 y un 98% cuando no se controló.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Senior Research Scientist, EH Graham Centre for Agricultural Innovation (Industry & Investment NSW and Charles Sturt University), Wagga Wagga Agricultural Institute, PMB, Wagga Wagga, New South Wales 2650, Australia.

References

Literature Cited

Andersen, M. 1992. An analysis of variability in seed settling velocities of several wind- dispersed Asteraceae. Am. J. Bot 79:10871091.Google Scholar
Bruce, J. A. and Kells, J. J. 1990. Horseweed (Conyza canadensis) control in no-tillage soybeans (Glycine max) with preplant and preemergence herbicides. Weed Technol 4:642647.Google Scholar
Felton, W. L., Wicks, G. A., and Welsby, S. M. 1994. A survey of fallow practices and weed floras in wheat stubble and grain sorghum in northern New South Wales. Aust. J. Exp. Agric 34:229236.Google Scholar
Keeling, J. W., Henniger, C. G., and Abernathy, J. R. 1989. Horseweed (Conyza canadensis) control in conservation tillage cotton (Gossypium hirsutum). Weed Technol 3:399401.Google Scholar
Kempen, H. M. and Graf, J. 1981. Weed seed production. Proc. West. Soc. Weed Sci 34:7881.Google Scholar
Martin, R. J., McMillan, M. G., and Cook, J. B. 1988. Survey of farm management practices of the northern wheat belt of New South Wales. Aust. J. Exp. Agric 28:499509.Google Scholar
Michael, P. W. 1977. Some weedy species of Amaranthus (amaranths) and Conyza/Erigeron (fleabanes) naturalised in the Asian-Pacific region. Pages 8795. in Proceedings of the 6th Asian-Pacific Weed Science Society Conference, Indonesia.Google Scholar
Moseley, C. M. and Hagood, E. S. Jr. 1990. Horseweed (Conyza canadensis) control in full-season no-till soyabeans (Glycine max). Weed Technol 4:814818.Google Scholar
Osten, V. A., Walker, S. R., Storrie, A., Widderick, M., Moylan, P., Robinson, G. R., and Galea, K. 2007. Survey of weed flora and management relative to cropping practices in the north-eastern grain region of Australia. Aust. J. Exp. Agric 47:5770.Google Scholar
Procopio, S. O., Ferreira, E. A., Silva, E. A. M., Silva, A. A., Rufino, R. J. N., and Santos, J. B. 2003. Leaf anatomical studies in weed species widely common in Brazil. III—Galinsoga parviflora, Crotalaria incana, Conyza bonariensis and Ipomoea cairica . Planta Daninha 21:19.Google Scholar
Urbano, J. M., Borrego, A., Torres, V., Leon, J. M., Jimenez, C., Dinelli, G., and Barnes, J. 2007. Glyphosate-resistant hairy fleabane (Conyza Bonariensis) in Spain. Weed Technol 21:396401.Google Scholar
VanGessel, M. J., Ayeni, A. O., and Majek, B. A. 2001. Glyphosate in full-season no-till glyphosate-resistant soybean: role of preplant applications and residual herbicides. Weed Technol 15:714724.Google Scholar
Walker, S., Widderick, M., and Wu, H. 2004. Proceedings of Weeds CRC and Cotton CRC workshop on fleabane, March 2004 Toowoomba, QLD, Australia. http://www.weedscrc.org.au/publications/wshop_proceedings.html. Accessed: March 7, 2010.Google Scholar
Walker, S. R., Taylor, I. N., Milne, G., Osten, V. A., Hoque, Z., and Farquharson, R. J. 2005. A survey of management and economic impact of weeds in dryland cotton cropping systems of sub-tropical Australia. Aust. J. Exp. Agric 45:7991.Google Scholar
Wicks, G. A., Felton, W. L., Murison, R. D., and Martin, R. J. 2000. Changes in fallow weed species in continuous wheat in northern New South Wales, 1981–90. Aust. J. Exp. Agric 40:831842.Google Scholar
Wiese, A. F., Salisbury, C. D., and Bean, B. W. 1995. Downy brome (Bromus tectorum), jointed goatgrass (Aegilops cylindrica) and horseweed (Conyza canadensis) control in fallow. Weed Technol 9:249254.Google Scholar
Wilson, J. S. and Worsham, A. D. 1988. Combinations of nonselective herbicides for difficult to control weeds in no-till corn, Zea mays, and soybeans, Glycine max . Weed Sci 36:648652.Google Scholar
Wu, H., Walker, S., and Robinson, G. 2008. Control of flaxleaf fleabane (Conyza bonariensis L. Cronq.) in winter fallows. Plant Prot. Q 23:162165.Google Scholar
Wu, H., Walker, S., Rollin, M. J., Tan, D. K. Y., and Werth, G. 2007. Germination, persistence and emergence of flaxleaf fleabane (Conyza bonariensis L. Cronq.). Weed Biol. Manag 7:192199.Google Scholar
Zinzolker, A., Kigel, J., and Rubin, B. 1985. Effects of environmental factors on the germination and flowering of Conyza albida, C. bonariensis and C. canadensis . Phytoparasitica 13:229230.Google Scholar