Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-01T21:11:30.635Z Has data issue: false hasContentIssue false

Efficacy of Preemergence Herbicides for Controlling a Dinitroaniline-Resistant Goosegrass (Eleusine indica) in Georgia

Published online by Cambridge University Press:  20 January 2017

Patrick E. McCullough*
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223
Jialin Yu
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223
Diego Gómez de Barreda
Affiliation:
Universitat Politècnica de València, Camino de Vera s/n, Edificio 3P, 46022 Valencia, Spain
*
Corresponding author's E-mail: pmccull@uga.edu

Abstract

Goosegrass is a problematic weed in turfgrass, and overuse of dinitroaniline (dna) herbicides has resulted in evolution of resistant populations. The objectives of this research were to (1) evaluate responses of a susceptible (S) goosegrass compared to a suspected resistant (R) biotype from Griffin, GA to prodiamine, and (2) evaluate efficacy of various PRE herbicides for control. Prodiamine rates required for 50% control and 50% shoot reductions after 6 wk for R-goosegrass measured > 13.44 and 3.2 kg ai ha−1, respectively, whereas rates for the S-population measured 0.45 and < 0.42 kg ha−1, respectively. In field experiments, sequential applications of dithiopyr and prodiamine provided < 20% control of R-goosegrass over 2 yr. Single applications of dimethenamid-P at 1.68 kg ai ha−1 provided < 50% goosegrass control in 2011 but provided excellent control (≥ 90%) at 7 mo after initial treatments (MAIT) in 2012. Single and sequential applications of indaziflam provided excellent control of goosegrass in both years, and oxadiazon controlled goosegrass > 85% at 7 MAIT in 2011 and ≥ 90% in 2012. Single and sequential PRE sulfentrazone applications controlled goosegrass < 60% in 2011 but averaged 94% control in 2012. Overall, indaziflam and oxadiazon provided good (80 to 89%) to excellent control of dna-resistant goosegrass in both years, but dimethenamid and sulfentrazone were inconsistent.

Eleusine indica es una maleza problemática en céspedes, y el sobreuso de herbicidas dinitroaniline (dna) ha resultado en la evolución de poblaciones resistentes. Los objetivos de esta investigación fueron (1) evaluar la respuesta a prodiamine de un biotipo de E. indica susceptible (S) y un biotipo supuestamente resistente (R) proveniente de Griffin, GA, y (2) evaluar la eficacia de varios herbicidas PRE para su control. Las dosis de prodiamine requeridas para alcanzar 50% de control y reducciones del 50% del tejido aéreo después de 6 semanas para E. indica-R fueron >13.44 y 3.2 kg ai ha−1, respectivamente, mientras que para E. indica-S fueron 0.45 y <0.42 kg ha−1, respectivamente. En experimentos de campo, las aplicaciones secuenciales de dithiopyr y prodiamine brindaron <20% de control de E. indica-R durante 2 años. Aplicaciones de solo dimethenamid-P a 1.68 kg ai ha−1 brindaron <50% de control de E. indica en 2011, pero en 2012, brindaron control excelente (≥90%) a 7 meses del tratamiento inicial (MAIT). Aplicaciones solas y secuenciales de indaziflam brindaron un control excelente de E. indica en ambos años, y oxadiazon controló >85% a 7 MAIT en 2011 y ≥90% en 2012. Aplicaciones PRE solas y secuenciales de sulfentrazone controlaron <60% en 2011, pero promediaron 94% de control en 2012. En general, indaziflam y oxadiazon brindaron un control de bueno (80 a 89%) a excelente de E. indica resistente a dna en ambos años, mientras el control con dimethenamid y sulfentrazone fue inconsistente.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, 2007. Ronstar Flo® herbicide label. Bayer Environmental Science, 2. T. W. Alexander Drive, Research Triangle Park, NC 27709. 7 p.Google Scholar
Anthony, R. G., Waldin, T. R., Ray, J. A., Bright, S.W.J., and Hussey, P. J. 1998. Herbicide resistance caused by spontaneous mutation of the cytoskeletal proteain tubulin. Nature. 393:260263.CrossRefGoogle ScholarPubMed
Brecke, B. J., Stephenson, D. O. IV, and Unruh, J. B. 2010. Timing of oxadiazon and quinclorac application on newly sprigged turfgrass species. Weed Technol. 24:2832.CrossRefGoogle Scholar
Brosnan, J. T., Nishimoto, R. K., and DeFrank, J. 2008. Metribuzin-resistant goosegrass (Eleusine indica) in bermudagrass turf. Weed Technol. 22:675678.Google Scholar
Chin, H. F. 1979. Weed seed—a potential source of danger. Pages 115119 in Kwee, L. T., ed. Proceedings of the Plant Protection Seminar. Kuala Lumpur, Malaysia Malaysian Plant Protection Society.Google Scholar
Cutulle, M. A., McElroy, J. S., Millwood, R. W., Sorochan, J. C., and Stewart, C. N. Jr. 2009. Selection of bioassay method influences detection of annual bluegrass resistance to mitotic-inhibiting herbicides. Crop Sci. 49:10881095.CrossRefGoogle Scholar
Darmency, H., Picard, J. C., and Wang, T. 2011. Fitness costs linked to dinitroanilines resistance to mutations in Setaria. Heredity. 107:8086.Google Scholar
Dayan, F. E. and Duke, S. O. 1997. Phytotoxicity of protoporphyrinogen oxidase inhibitors: phenomenology, mode of action and mechanisms of resistance. Pages 1136 in Roe, R. M., Burton, J. D., and Kuhr, R. J., eds. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Burke, VA IOS Press.Google Scholar
Dernoeden, P. H., Watschke, T. L., and Mathias, J. K. 1984. Goosegrass (Eleusine indica) control in turf in the transition zone. Weed Sci. 32:47.Google Scholar
Dirks, J. T., Johnson, W. G., Smeda, R. J., Wiebold, W. J., and Massey, R. E. 2000. Use of preplant sulfentrazone in no-till, narrow-row, glyphosate-resistant Glycine max . Weed Sci. 48:628639.Google Scholar
Ferrell, J. A., Murphy, T. R., and Vencill, W. K. 2003. Tolerance of winter-installed tall fescue (Festuca arundinacea) and hybrid bermudagrass (Cynodon transvaalensis × C. dactylon) sod to herbicides. Weed Technol. 17:521525.Google Scholar
Grey, T. L., Bridges, D. C., Hancock, H. G., and Davis, J. W. 2004. Influence of sulfentrazone rate and application method on peanut weed control. Weed Technol. 18:619625.CrossRefGoogle Scholar
Harris, J. R., Gossett, B. J., and Toler, J. E. 1995. Growth characteristics of selected dinitroaniline-resistant and -susceptible goosegrass (Eleusine indica) population. Weed Technol. 9:561567.Google Scholar
Isgrigg, J. III., Yelverton, F. H., Brownie, C., and Warren, L. S. 2002. Dinitroaniline resistant annual bluegrass in North Carolina. Weed Sci. 50:8690.Google Scholar
Johnson, B. J. 1976. Dates of herbicide application for summer weed control in turf. Weed Sci. 24:422424.Google Scholar
Johnson, B. J. 1977. Sequential herbicide treatments for large crabgrass and goosegrass control in bermudagrass. Agron. J. 69:10121014.Google Scholar
Johnson, B. J. 1980a. Root growth of southern turf cultivars as affected by herbicides. Weed Sci. 28:526528.CrossRefGoogle Scholar
Johnson, B. J. 1980b. Goosegrass (Eleusine indica) control in bermudagrass (Cynodon dactylon) turf. Weed Technol. 28:378384.Google Scholar
Jones, P. A., Brosnan, J. T., Kopsell, D. A., and Breeden, G. K. 2013. Effect of reed–sedge peat moss on hybrid bermudagrass injury with indaziflam and prodiamine in sand-based rootzones. Weed Technol. 27:547551.Google Scholar
Lowe, D. B., Swire-Clark, G. A., McCarty, L. B., Whitwell, T., and Baird, W. V. 2001. Biology and molecular analysis of dinitroaniline-resistant Poa annua L. Int. Turfgrass Soc. Res. J. 9:10191025.Google Scholar
McCullough, P. E., Gomez de Barreda, D., and Raymer, P. 2012a. Nicosulfuron use with foramsulfuron and sulfentrazone for late summer goosegrass control in bermudagrass and seashore paspalum. Weed Technol. 26:376381.Google Scholar
McCullough, P. E., Schwartz, B. M., Grey, T., and Webster, T. 2012b. Preemergence herbicides influence sprig establishment of TifEagle bermudagrass. Weed Technol. 26:300303.Google Scholar
Mudge, L. C., Gossett, B. J., and Murphy, T. R. 1984. Resistance of goosegrass (Eleusine indica) to dinitroaniline herbicides. Weed Sci. 32:591594.Google Scholar
Murphy, T. R., Gossett, B. J., and Toler, J. E. 1986. Growth and development of dinitroaniline-susceptible and -resistant goosegrass (Eleusine indica) biotypes under noncompetitive conditions. Weed Sci. 34:704710.Google Scholar
Myers, D. F., Hanrahan, R, Michel, J., Monke, B., Mudge, L, Norton, L., Olsen, C., Parker, A., Smith, J., and Spak, D. 2009. Indaziflam/BCS-AA10717: a new herbicide for pre-emergent control of grasses and broadleaf weeds for turf and ornamentals. Proc. South. Weed Sci. Soc. 62:393. [Abstract]Google Scholar
Parka, S. J. and Soper, G. F. 1977. The physiology and mode of action of the dinitroaniline herbicides. Weed Sci. 25:7986.Google Scholar
Perry, D. H., McElroy, J. S., Doroh, M. C., and Walker, R. H. 2011. Indaziflam utilization for controlling problematic turfgrass weeds. Appl. Turf Sci. DOI: Google Scholar
Senseman, S. A. 2007. Herbicide Handbook. 9th ed. Weed Science Society of America, Lawrence, KS. 458 p.Google Scholar
Vaughn, K. C., Vaughn, M. A., and Gossett, B. J. 1990. A biotype of goosegrass (Eleusine indica) with an intermediate level of dinitroaniline herbicide resistance. Weed Technol. 4:157162.Google Scholar