Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-01T02:11:52.892Z Has data issue: false hasContentIssue false

A molecular perspective on the evolution of scleractinian corals

Published online by Cambridge University Press:  21 July 2017

Sandra L. Romano*
Affiliation:
Marine Laboratory, University of Guam, Mangilao, Guam 96923
Get access

Abstract

The evolutionary history of scleractinian corals, based on morphological taxonomy and inferences from the fossil record, has been poorly understood. Molecular techniques developed over the past ten years are now being used to gain a new perspective on scleractinian phylogeny. DNA sequences, mitochondrial genome structure, and morphological characters support a basal position for the Anthozoa in the phylum Cnidaria. Mitochondrial and nuclear DNA sequences suggest a relatively derived position of the order Scleractinia within the class Anthozoa. Mitochondrial and nuclear DNA sequences have provided a new hypothesis for evolution within the Scleractinia that is different from hypotheses based on morphological characters of extant and fossil taxa. Groupings within the two major lineages defined by molecular data do not correspond to morphological suborder groupings although groupings of genera within families do correspond to traditional taxonomy. This new molecular hypothesis suggests that the Scleractinia are represented by two major lineages that diverged from each other before the appearance of the scleractinian skeleton in the fossil record. This divergence time supports the hypotheses that the Scleractinia are not related to the Rugosa of the Paleozoic and that the scleractinian skeleton has evolved more than once. These two major lineages may represent two architectural strategies within the Scleractinia that have led to their great morphological diversity.

Type
Research Article
Copyright
Copyright © 1996 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avise, J. C. 1986. Mitochondrial DNA and the evolutionary genetics of higher animals. Philosophical Transactions of the Royal Society London B, 312:325342.Google ScholarPubMed
Birley, A. J., and Croft, J. H. 1986. Mitochondrial DNA and phylogenetic relationships, p. 107137. In Dutta, S. K. (ed.), DNA Systematics. CRC Press, Florida.Google Scholar
Brakel, W. H. 1977. Corallite variation in Porites and the species problem in corals. Proceedings of the Third International Symposium on Coral Reefs, 2:459462.Google Scholar
Bridge, D., Cunningham, C. W., Desalle, R., and Buss, L. W. 1995. Class-level relationships in the phylum Cnidaria: molecular and morphological evidence. Molecular Biology and Evolution, 12:679689.Google Scholar
Bridge, D., Cunningham, C. W., Schierwater, B., Desalle, R., and Buss, L. W. 1992. Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proceedings of the National Academy of Sciences of the USA, 89:87508753.CrossRefGoogle ScholarPubMed
Budd, A. F., Johnson, K. G., and Potts, D. C. 1994. Recognizing morphospecies in colonial reef corals: 1. Landmark-based methods. Paleobiology, 20:484505.Google Scholar
Chen, C. A., Odorico, D. M., Lohuis, M. T., Veron, J. E. N., and Miller, D. J. 1995. Systematic relationships within the Anthozoa (Cnidaria: Anthozoa) using the 5′-end of the 28S rDNA. Molecular Phylogenetics and Evolution, 4:175183.Google Scholar
Chevalier, J.-P., and Beauvais, L. 1987. Ordre des scleractiniaires: Systématique. p. 679753. In Grassé, P.-P. (ed.), Traité de Zoologie. Anatomie, Systématique, Biologie. Masson, Paris.Google Scholar
Christen, R., Ratto, A., Baroin, A., Perasso, R., Grell, K. G., and Adoutte, A. 1991. An analysis of the origin of metazoans, using comparisons of partial sequences of the 28s RNA, reveals an early emergence of triploblasts. EMBO Journal, 10:499503.Google Scholar
Felsenstein, J. 1993. Phylogeny Inference Package (PHYLIP). Version 5.3c. Department of Genetics, University of Washington, Seattle.Google Scholar
Foster, A. B. 1985. Variation within coral colonies and its importance for interpreting fossil species. Journal of Paleontology, 59:13591381.Google Scholar
France, S. C., Rosel, P. E., Agenbroad, J. E., Mullineaux, L. S., and Kocher, T. D. 1996. DNA sequence variation of mitochondrial large-subunit rRNA provides support for a two subclass organization of the Anthozoa (Cnidaria). Molecular Marine Biology and Biotechnology, 5:1528.Google Scholar
Hillis, D. M. 1987. Molecular versus morphological approaches to systematics. Annual Review of Ecology and Systematics, 18:2342.Google Scholar
Hillis, D. M., and Bull, J. J. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42:182192.CrossRefGoogle Scholar
Hori, H., and Satow, Y. 1991. Dead-end evolution of the Cnidaria as deduced from 5S ribosomal RNA sequences. Hydrobiologia, 216/217:505508.Google Scholar
Lang, J. C. 1984. Whatever works: the variable importance of skeletal and of non-skeletal characters in scleractinina taxonomy. Palaeontographica Americana, 54:1844.Google Scholar
McMillan, J., Mahony, T., Veron, J. E. N., and Miller, D. J. 1991. Nucleotide sequencing of highly repetitive DNA from seven species in the coral genus Acropora (Cnidaria: Scleractinia) implies a division contrary to morphological criteria. Marine Biology, 110:323327.Google Scholar
McMillan, J., and Miller, D. J. 1989. Nucleotide sequences of highly repetitive DNA from scleractinian corals. Gene, 83:185186.CrossRefGoogle ScholarPubMed
McMillan, J., and Miller, D. J. 1990. Highly repeated DNA sequences in the scleractinian coral genus Acropora: Evaluation of cloned repeats as taxonomic probes. Marine Biology, 104:483487.Google Scholar
McMillan, J., Yellowlees, D., Heyward, A., Harrison, P., and Miller, D. J. 1988. Preparation of high molecular weight DNA from hermatypic corals and its use for DNA hybridization and cloning. Marine Biology, 98:271276.Google Scholar
Novacek, M. J. 1994. Morphological and molecular inroads to phylogeny, p. 85131. In Grande, L. and Rieppel, O. (eds), Interpreting the Hierarchy of Nature. Academic Press, San Diego.Google Scholar
Patterson, C. 1987. Introduction, p. 122. In Patterson, C. (ed.), Molecules and morphology in evolution: conflict or compromise? Cambridge University Press, Cambridge.Google Scholar
Pont-Kingdon, G. A., Okada, N. A., Macfarlane, J. L., Beagley, C. T., Wolstenholme, D. R., Cavalier-Smith, T., and Clark-Walker, G. D. 1995. A coral mitochondrial mutS gene. Nature, 375:109111.Google Scholar
Powers, D. 1970. A numerical taxonomic study of Hawaiian reef corals. Pacific Science, 24:180186.Google Scholar
Powers, D., and Rohlf, F. J. 1972. A numerical taxonomic study of Caribbean and Hawaiian reef corals. Systematic Zoology, 21:5364.Google Scholar
Romano, S. L. 1995. A molecular phylogenetic analysis of reef-building corals. Unpublished Ph.D. dissertation, University of Hawaii at Manoa, Honolulu, 199 p.Google Scholar
Romano, S. L., and Palumbi, S. R. 1996. Evolution of scleractinian corals inferred from molecular systematics. Science, 271:640642.Google Scholar
Roniewicz, E., and Morycowa, E. 1993. Evolution of the Scleractinia in the light of microstructural data. Courier Forschungsinstitut Senckenberg, 164:233240.Google Scholar
Swofford, D. L. 1993. Phylogenetic Analysis Using Parsimony (PAUP). Version 3.1.1. Illinois Natural History Survey, Champaign, Illinois.Google Scholar
Vaughan, T. W., and Wells, J. W. 1943. Revision of the suborders, families and genera of the Scleractinia. Geological Society of America Special Paper, 44, 363 p.Google Scholar
Veron, J. E. N. 1986. Corals of Australia and the Indo-Pacific. Australian Institute of Marine Science and the University of Hawaii Press, Honolulu, Hawaii, 644 p.Google Scholar
Veron, J. E. N. 1993. A Biogeographic Database of Hermatypic Corals. Australian Institute of Marine Science, Townsville, Australia, 433 p.Google Scholar
Veron, J. E. N. 1995. Corals in Space and Time: the Biogeography and Evolution of the Scleractinia. University of New South Wales Press, Sydney, Australia, 321 p.Google Scholar
Veron, J. E. N., Odorico, D. M., Chen, C. A., and Miller, D. J. 1996. Reassessing evolutionary relationships of scleractinian corals. Coral Reefs, 15:19.Google Scholar
Veron, J. E. N., and Pichon, M. 1976. Scleractinia of eastern Australia, Part 1. Australian Institute of Marine Science, Monograph Series, 1:186.Google Scholar
Veron, J. E. N., and Pichon, M. 1980. Scleractinia of Eastern Australia, Part III. Australian National University Press, Canberra, Australia, 443 p.Google Scholar
Veron, J. E. N., and Pichon, M. 1982. Scleractinia of Eastern Australia, Part IV. Australian National University Press, Canberra, Australia, 159 p.Google Scholar
Veron, J. E. N., and Wijsman-Best, M. 1977. Scleractinia of Australia Part II. Australian Government Publishing Service, Canberra, Australia, 233 p.Google Scholar
Veron, J. E. N. and Wallace, C. C. 1984. Scleractinia of Australia, Part V. Australian National University Press, Canberra, Australia, 485 p.Google Scholar
Wainright, P. O., Hinkle, G., Sogin, M. L., and Stickel, S. K. 1993. Monophyletic origins of the Metazoa: an evolutionary link with Fungi. Science, 260:340342.Google Scholar
Warrior, R., and Gall, J. 1985. The mitochondrial DNA of Hydra attenuata and Hydra littoralis consists of two linear molecules. Archives des Sciences, Geneve, 38:439445.Google Scholar
Wells, J. W. 1956. Scleractinia, p. F328F443. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part F, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Wijsman-Best, M. 1974. Habitat-induced modification of reef corals (Faviidae) and its consequences for taxonomy. Proceedings of the Second International Coral Reef Symposium, 2:217228.Google Scholar
Willis, B. L. 1985. Phenotypic plasticity versus phenotypic stability in the reef corals Turbinaria mesenterina and Pavona cactus. Proceedings of the 5th International Coral Reef Congress, p. 107112.Google Scholar
Wilson, A. C., Cann, R. L., Carr, S. M., George, M., Gyllensten, U. B., Helm-Bychowski, K. M., Higuchi, R. G., Palumbi, S. R., Prager, E. M., Sage, R. D., and Stoneking, M. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of the Linnean Society, 26:375400.Google Scholar
Wolstenholme, D. R. 1992. Animal mitochondrial DNA: structure and evolution. International Review of Cytology, 141:173216.Google Scholar