Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-08T09:39:20.028Z Has data issue: false hasContentIssue false

Study of active superlens and evanescent wave amplification using an active metamaterial model

Published online by Cambridge University Press:  17 September 2009

N. N. Wan
Affiliation:
State Key Laboratory of Millimeter Waves and Institute of Target Characteristics and Identification, Southeast University, 210096 Nanjing, P.R. China
D. Huang
Affiliation:
State Key Laboratory of Millimeter Waves and Institute of Target Characteristics and Identification, Southeast University, 210096 Nanjing, P.R. China
Q. Cheng
Affiliation:
State Key Laboratory of Millimeter Waves and Institute of Target Characteristics and Identification, Southeast University, 210096 Nanjing, P.R. China
W. X. Jiang*
Affiliation:
State Key Laboratory of Millimeter Waves and Institute of Target Characteristics and Identification, Southeast University, 210096 Nanjing, P.R. China
R. Liu
Affiliation:
State Key Laboratory of Millimeter Waves and Institute of Target Characteristics and Identification, Southeast University, 210096 Nanjing, P.R. China
T. J. Cui
Affiliation:
State Key Laboratory of Millimeter Waves and Institute of Target Characteristics and Identification, Southeast University, 210096 Nanjing, P.R. China
Get access

Abstract

We propose a Π-shaped circuit model for active metamaterials using periodic circuit structures with series inductors and shunt capacitors (LC) and series capacitors and shunt inductors (CL). Using the circuit model, we develop a general theory for active metamaterials, revealing the role of active components and demonstrating the principle for metamaterials to be active. By inserting negative and positive resistances in the LC and CL structures, we first attain the active superlens using three slabs of effective media made by such metamaterial circuit structures and show that the amplitude of voltage will be augmented on two interfaces after adding the active/lossy components. Then we realize the active amplification of evanescent waves and show that the transmission coefficient will be larger than 0 dB near the resonant frequency, which evidently illustrates the active feature of the medium. Both of these two applications have to satisfy the anti-matching conditions to fulfill the resonance and tunneling effect.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Veselago, V.G., Sov. Phys. Usp. 10, 509 (1968) CrossRef
Pendry, J.B., Phys. Rev. Lett. 85, 3966 (2000) CrossRef
Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I., Phys. Rev. Lett. 76, 4773 (1996) CrossRef
Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., IEEE Trans. Microw. Theo. Tech. 47, 2075 (1999) CrossRef
Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S., Phys. Rev. Lett. 84, 4184 (2000) CrossRef
Shelby, R.A., Smith, D.R., Schultz, S., Science 292, 77 (2001) CrossRef
Grbic, A., Eleftheriades, G.V., Appl. Phys. Lett. 82, 1815 (2003) CrossRef
Grbic, A., Eleftheriades, G.V., IEEE Ant. Wireless Prop. Lett. 2, 186 (2003)
Grbic, A., Eleftheriades, G.V., Phys. Rev. Lett. 92, 117403 (2004) CrossRef
Popa, B.-I., Cummer, S.A., Phys. Rev. E 73, 016617 (2006) CrossRef
Liu, R., Zhao, B., Lin, X.Q., Cheng, Q., Cui, T.J., Phys. Rev. B 75, 125118 (2007) CrossRef
Liu, R., Cui, T.J., Zhao, B., Lin, X.Q., Ma, H.F., Huang, D., Smith, D.R., Appl. Phys. Lett. 90, 091912 (2007) CrossRef
Casares-Miranda, F., Camacho-Penalosa, C., Calos, C., IEEE Trans. Ant. Prop. 54, 2292 (2006) CrossRef
Chen, H., Padilla, W.J., Zide, J.M.O., Goddard, A.C., Taylor, A.J., Averitt, R.D., Nature 444, 597 (2006) CrossRef
Popa, B.-I., Cummer, S.A., Microw. Opt. Tech. Lett. 49, 2574 (2007) CrossRef
Lai, A., Itoh, T., Caloz, C., IEEE Microw. Mag. 5, 34 (2004) CrossRef
Alu, A., Engheta, N., IEEE Trans. Ant. Prop. 51, 2558 (2003) CrossRef
G.W.'t Hooft, Phys. Rev. Lett. 87, 249701 (2001) CrossRef
Garcia, N., Nieto-Vesperinas, M., Phys. Rev. Lett. 88, 207403 (2002) CrossRef
Grbic, A., Eleftheriades, G.V., IEEE Trans. Ant. Prop. (Special Issue: Metamaterials) 51, 2604 (2003) CrossRef
Cui, T.J., Cheng, Q., Huang, Z.Z., Feng, Y., Phys. Rev. B 72, 035112 (2005) CrossRef
Ma, H.F., Cui, T.J., Chin, J.Y., Cheng, Q., PMC Phys. B 1, 1 (2008) CrossRef
I. Bahl, P. Bhartia, Microwave solid state circuit design (WiLey, New York, 1988)
Padilla, W.J., Taylor, A.J., Highstrete, C., Lee, M., Averitt, R.D., Phys. Rev. Lett. 96, 107401 (2006) CrossRef
O'Hara, J.F., Singh, R., Brener, I., Smirnova, E., Han, J., Taylor, A.J., Zhang, W., Opt. Expr. 16, 1786 (2008) CrossRef
Singh, R., Azad, A.K., O'Hara, J.F., Taylor, A.J., Zhang, W., Opt. Lett. 33, 1506 (2008) CrossRef
Singh, R., Smirnova, E., Taylor, A.J., O'Hara, J.F., Zhang, W., Opt. Expr. 16, 6537 (2008) CrossRef
Chen, H.-T., O'Hara, J.F., Azad, A.K., Taylor, A.J., Averitt, R.D., Shrekenhamer, D.B., Padilla, W.J., Nat. Photon. 2, 295 (2008) CrossRef