Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T06:00:34.075Z Has data issue: false hasContentIssue false

Design of a novel negative refractive index material based on numerical simulation

Published online by Cambridge University Press:  26 July 2013

Muhammad Rizwan
Affiliation:
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
Yan-Kun Dou
Affiliation:
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
Hai-Bo Jin*
Affiliation:
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
Zhi-Ling Hou
Affiliation:
School of Science, Beijing University of Chemical Technology, Beijing 100029, P.R. China
Ling-Bao Kong
Affiliation:
School of Science, Beijing University of Chemical Technology, Beijing 100029, P.R. China
Jing-Bo Li
Affiliation:
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
Faheem K. Butt
Affiliation:
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
Fida Rehman
Affiliation:
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
*
Get access

Abstract

This paper presents a novel metamaterial constructed with wires, spheres and hollow slabs (WSHS), which simultaneously exhibits negative permittivity and permeability. An electromagnetic wave simulation is performed based on the proposed metamaterial and shows that a negative refractive index is achieved for this metamaterial. Adjusting the lattice constant of the unit cell is an easy way to manipulate the frequency of negative index of this structure. A left-hand material prism is designed composed of metamaterial unit cells and the simulation on the proposed prism proves the left-hand behavior of the designed metamaterial.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Veselago, V.G., Sov. Phys., Usp. 10, 509 (1968)CrossRef
Veselago, V.G., Russ. Usp. Fiz. Nauk 92, 517 (1967)CrossRef
Ziolkowski, R.W., Heyman, E., Phys. Rev. E 64, 056625 (2001)CrossRef
Shelby, R.A., Smith, D.R., Schultz, S., Science 292, 5514 (2001)CrossRef
Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., IEEE Trans. Microwave Theor. Tech. 47, 2075 (1999)CrossRef
Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S., Phys. Rev. Lett. 4, 4184 (2000)CrossRef
Shelby, R.A., Smith, D.R., Nemat-Nasser, S.C., Schultz, S., Appl. Phys. Lett. 78, 489 (2001)CrossRef
Huangfu, J., Ran, L., Chen, H., Zhang, X., Chen, K., Grzegorczyk, T.M., Kong, J.A., Appl. Phys. Lett. 84, 1537 (2004)CrossRef
Baena, J.D., Marques, R., Medina, F., Phys. Rev. B 69, 014402 (2004)CrossRef
Zhou, J., Koschny, T., Zhang, L., Tuttle, G., Soukoulis, C.M., Appl. Phys. Lett. 88, 221103 (2006)CrossRef
Kafesaki, M., Tsiapa, I., Katsarakis, N., Koschny, Th., Soukoulis, C.M., Economou, E.N., Physica B 75, 235114 (2007)
Alici, K.B., Ozbay, E., Photon. Nanostruct. Fund. Appl. 6, 102 (2008)CrossRef
Isik, O., Esselle, K.P., Metamaterials 3, 33 (2009)CrossRef
Wang, J., Qu, S., Xu, Z., Zhang, J., Ma, H., Yang, Y., Gu, C., Photon. Nanostruct. Fund. Appl. 7, 108 (2009)CrossRef
Donzelli, G., Vallecchi, A., Capolino, F., Schuchinsky, A., Metamaterials 3, 10 (2009)CrossRef
Vallecchi, A., Capolino, F., Schuchinsky, A.G., Schuchinsky, A.G., IEEE Microw. Wirel. Compon. Lett. 19, 269 (2009)CrossRef
Wang, J., Qu, S., Zhang, J., Ma, H., Yang, Y., Gu, C., Wu, X., Progress Electromagn. Res. Lett. 6, 35 (2009)CrossRef
Tuz, V.R., Prosvirnin, S.L., Eur. Phys. J. Appl. Phys. 56, 30401 (2011)CrossRef
Ekmekci, E., Turhan-Sayan, G., Progress Electromagn. Res. B 12, 35 (2009)CrossRef
Zhou, X., Liu, Y., Zhao, X., Appl. Phys. A 98, 643 (2009)CrossRef
Sabah, C., Progress Electromagn. Res. B 22, 341 (2010)CrossRef
Nemer, S., Sauviac, B., Bayard, B., Nader, C., Bechara, J., Khoury, A., Progress Electromagn. Res. C 20, 31 (2011)CrossRef
Alhawari, A.R.H., Ismail, A., Mahdi, M.A., Abdullah, R.S.A.R., Electromagnetics 31, 404 (2011)CrossRef
Ikonen, P., Simovski, C., Tretyakov, S., Microw. Opt. Technol. Lett. 43, 467 (2004)CrossRef
Zhang, Z.G., Zheng, L.G., Xie, H., Liang, Y.J., Prog. Electromagn. Res. Lett. 6, 75 (2009)CrossRef
Pendry, J.B., Phys. Rev. Lett. 85, 3966 (2000)CrossRef
Wan, N.N., Huang, D., Cheng, Q., Eur. Phys. J. Appl. Phys. 48, 21101 (2009)CrossRef
Cheng, Y.Z., Nie, Y., Gong, R.Z., Yang, H.L., Eur. Phys. J. Appl. Phys. 56, 31301 (2011)CrossRef
Smith, D.R., Schultz, S., Markoš, P., Soukoulis, C.M., Phys. Rev. 65, 195104 (2002)CrossRef
Starr, A.F., Rye, P.M., Smith, D.R., Nemat-Nasser, S., Phys. Rev. B 70, 115113 (2004)CrossRef
Koschny, T., Markoš, P., Smith, D.R., Soukoulis, C.M., Phys. Rev. E 58, 065602 (2003)CrossRef
Chen, X., Grzegorczyk, T.M., Wu, B.-I., Pacheco, J., Kong, J.A., Phys. Rev. E 70, 016608 (2004)CrossRef
Hou, Z.L., Kong, L.B., Jin, H.B., Cao, M.S., Li, X., Qi, X., Chin. Phys. Lett. 29, 017701 (2012)CrossRef
Grzegorczyk, T.M., Nikku, M., Chen, X., Wu, B.I., Kong, J.A., IEEE Trans. Microwave Theor. Tech. 53, 1443 (2005)CrossRef
Wu, Q., Pan, P., Meng, F.Y., Li, L.W., Wu, J., Appl. Phys. A 87, 151 (2007)CrossRef
Burokur, S.N., Sellier, A., Kanté, B., de Lustrac, A., Appl. Phys. Lett. 94, 201111 (2009)CrossRef