Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T12:36:15.707Z Has data issue: false hasContentIssue false

Simulations of Large Scale Structure Formation: The Connection to Smaller Scales

Published online by Cambridge University Press:  23 September 2016

Matthias Steinmetz*
Affiliation:
Astrophysical Institute Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Maps of the cosmos, in particular maps of the cosmic microwave background and of the large scale distribution of galaxies have been crucial ingredients in the development of the standard model of structure formation, sometimes also labeled “concordance model”. This model has proven to be remarkably successful in explaining an impressive array of observations on scales of hundreds of kpc to thousands of Mpc. In this contribution I will attempt to extend those studies to smaller, (sub)galactic scales and will confront detailed gas-dynamical simulations of the formation of individual galaxies with observational data on these scales, reporting some successes and failures of this endeavor. Ongoing surveys that are mapping the distribution of stars in the Milky Way should be able to clearly identify the imprints of the hierarchical galaxy formation process providing an independent check of the validity of the structure formation paradigm.

Type
Session II: Formation of Large-Scale Structure 75
Copyright
Copyright © Astronomical Society of the Pacific 2005 

References

Abadi, M. G., Navarro, J. F., Steinmetz, M., & Eke, V. R. 2003a, ApJ, 591, 499 CrossRefGoogle Scholar
Abadi, M. G., Navarro, J. F., Steinmetz, M., & Eke, V. R. 2003b, ApJ, 597, 21 Google Scholar
Bottema, R. 1997, A&A, 328, 517 Google Scholar
Courteau, S. 1997, AJ, 114, 2402 Google Scholar
Giovanelli, R., et al. 1997, AJ, 113, 2 Google Scholar
Han, M., & Mould, J. R. 1992, ApJ, 396, 453 Google Scholar
Helmi, A., Navarro, J. F., Meza, A., Steinmetz, M., & Eke, V. R. 2003, ApJ, 592, L25 CrossRefGoogle Scholar
Helmi, A., White, S. D. M., de Zeeuw, P. T., & Zhao, H. 1999, Nature, 402, 53 CrossRefGoogle Scholar
Ibata, R. A., Gilmore, G., & Irwin, M. J. 1994, Nature, 370, 194 Google Scholar
Ibata, R., Irwin, M. J., Lewis, G. F., Ferguson, A. M. N., & Tanvir, N. 2003, MNRAS, 340, 21 CrossRefGoogle Scholar
Kennicutt, R. C. 1998, ARA&A, 36, 189 Google Scholar
Majewski, S., Skrutskie, M. F, Weinberg, M. D., & Ostheimer, J. C. 2003, ApJ, 599, 1082 Google Scholar
Martin, N. F., et al. 2004, MNRAS, 348, 12 CrossRefGoogle Scholar
Mathewson, D. S., Ford, V. L., & Buchhorn, M. 1992, ApJS, 81, 413 Google Scholar
Navarro, J. F., & Benz, W. 1991, ApJ, 380, 320 Google Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1995, MNRAS, 275, 56 Google Scholar
Navarro, J. F., Helmi, A., & Freeman, K. C. 2004, ApJ, 601, L43 CrossRefGoogle Scholar
Navarro, J. F., & Steinmetz, M. 1997, ApJ, 478, 13 Google Scholar
Navarro, J. F., & Steinmetz, M. 2000a, ApJ, 528, 607 CrossRefGoogle Scholar
Navarro, J. F., & Steinmetz, M. 2000b, ApJ, 538, 477 Google Scholar
Steinmetz, M. 1996, MNRAS, 278, 1005 Google Scholar
Steinmetz, M., & Navarro, J. F. 1999, ApJ, 513, 555 Google Scholar
Steinmetz, M., & Navarro, J. F. 2002, New Astronomy, 7/4, 155 CrossRefGoogle Scholar
Yanny, B., et al. 2003, ApJ, 588, 824 Google Scholar