Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T16:44:37.398Z Has data issue: false hasContentIssue false

Infrared Spectral Identification of Complex Organic Molecules in Interstellar Grains

Published online by Cambridge University Press:  04 August 2017

J. Mayo Greenberg
Affiliation:
Laboratory Astrophysics, University of Leiden, P.O. Box 9504, 2300 RA Leiden, The Netherlands
Willem Schutte
Affiliation:
Laboratory Astrophysics, University of Leiden, P.O. Box 9504, 2300 RA Leiden, The Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chemical evolution of interstellar grains leads ultimately to a composition consisting largely of complex organic molecules. Comparison of infrared absorption spectra of laboratory produced analogue materials with astronomical observations confirm the presence of similar molecules in interstellar space. The abundance of this complex organic matter derived from the strength of the absorption bands is of the order of ten million solar masses and is almost certainly as large or larger than all conceivable planets.

Type
Section III. Planetary, Interplanetary and Interstellar Organic Matter
Copyright
Copyright © Reidel 1985 

References

[1] Greenberg, J.M., Astron. Astrophys., 12, 240 (1971).Google Scholar
Greeberg, J.M. and Shah, G.A., Astron. Astrophys, 12, 250 (1971).Google Scholar
[2] Baas, F., Allamandola, L.J., Geballe, T.R., Persson, S.E. and Lacy, L.H., Astrophys. J., 265, 290 (1983).CrossRefGoogle Scholar
Lacy, L.H., Baas, F., Allamandola, L.J., van de Bult, C.E.P.M., Persson, S.E., McGregor, P.J., Lonsdale, C.J. and Geballe, T.R., Astrophys. J., 276, 533 (1984).Google Scholar
Geballe, T., Baas, F., Greenberg, J.M. and Schutte, W., Astron. Astrophys. in preparation.Google Scholar
[3] Miller, S.L., Science, 117, 528 (1953).Google Scholar
[4] Moore, M.H. and Donn, B., Astrophys. J., 257, L47 (1982)Google Scholar
Strazzula, G., Cacagno, L. and Foti, G., M.N.R.A.S., 204 59P.CrossRefGoogle Scholar
[5] Khare, B. and Sagan, C., Icarus, 20, 311 (1973).CrossRefGoogle Scholar
[6] Hagen, W., Allamandola, L.J. and Greenberg, J.M., Astrophys. Space Sci., 65, 215 (1979).Google Scholar
[7] Spitzer, L. Jr., “Physical Process in the Interstellar Medium” (Wiley, N.Y.) (1978).Google Scholar
[8] Whittet, D.C.B., Bode, M.F., Longmore, A.J., Baines, D.W.T., Evans, A., Nature, 303, 218 (1983).Google Scholar
[9] Greenberg, J.M., van de Bult, C.E.P.M., Allamandola, L.J., J. Phys. Chem., 87, 4243 (1983).Google Scholar
[10] Greenberg, J.M., in “Submillimetre Wave Astronomy”, ed. Beckman, J.E. and Phillips, J.P., Cambridge Univ. Press, 261 (1982).Google Scholar
[11] Hoyle, F., Wickramasinghe, N.C., Olavesen, A.H., Mufti, S.A.L. and Wickramasinghe, D.C., Astrophys. Sp. Sci., 83, 405 (1982).Google Scholar
[12] Greenberg, J.M., in “Comets”, ed. Wilkening, L., U. of Arizona Press, 131 (1982).Google Scholar
[13] Whitmire, D.P. and Jackson, A.A., Nature, 308, 713 (1984).Google Scholar
Davis, M., Hut, P. and Muller, R.A., Nature, 308, 715 (1984).CrossRefGoogle Scholar