Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T05:50:45.009Z Has data issue: false hasContentIssue false

Gamma-Ray Spectrometry in the Energy Range 0.5–5 MeV

Published online by Cambridge University Press:  14 August 2015

F. Albernhe
Affiliation:
Centre d'étude Spatiale des Rayonnements, Toulouse, France
C. Doulade
Affiliation:
Centre d'étude Spatiale des Rayonnements, Toulouse, France
I. M. Martin
Affiliation:
Centre d'étude Spatiale des Rayonnements, Toulouse, France
R. Talon
Affiliation:
Centre d'étude Spatiale des Rayonnements, Toulouse, France
G. Vedrenne
Affiliation:
Centre d'étude Spatiale des Rayonnements, Toulouse, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A stilbene scintillator detector allowing gamma-ray spectrometry in the range 0.5–5 MeV is presented. A complete elimination of charged particles is obtained by a plastic scintillator anticoïncidence jacket. Separation of gamma rays from neutrons is made by pulse shape discrimination technique with over 99% efficiency. This detector which has a 4 π field of view has been made as light as possible to avoid perturbation due to secondary production in the apparatus. The correction of the edge effects and the method of conversion from experimental Compton electron spectrum to gamma-ray spectrum are explained.

Results from balloon launchings at three latitudes (Kourou Guyana: 10 N, Aire sur l'Adour: 46°N and Oboziersky U.S.S.R.: 62 °N) are briefly presented. The detection possibility with balloons of galactic gamma rays at equatorial latitude is shown. The atmospheric part of the flux at the equator is deduced from the measurements at higher latitudes, (46 °N and 62 °N) where the galactic component is of negligible importance. Assuming a power law spectrum and after correction of the atmospheric absorption we obtain for the galactic spectrum the expression dN/dE = 1.1 × 10−5E−1, 2 photons/cm2 s sr keV. This spectrum agrees with the results of ERS 18 satellite given by Vette et al. showing an excess of flux for energies higher than 1 MeV.

Type
Part I: Gamma-Ray Astronomy
Copyright
Copyright © Reidel 1971 

References

Bibliographie

Anderson, K. A.: 1961, Phys. Rev. 123, 4.Google Scholar
Bleeker, J. A. M. et Deerenberg, J. M.: 1970, Astrophys. J. 159, 215.Google Scholar
Carlson, A. G., Hooper, J. E., et King, T. D.: 1950, Phil. Mag. 41, 707.Google Scholar
Chapmann, G. T., Mac Klin, R. L., et Gibbons, J. H.: 1968, Bull. An. Phys. Soc. 615, Sessions J.D. et J.F. Google Scholar
Cline, T. L.: 1961, Phys. Rev. Letters 7, 109.Google Scholar
Ducros, S., Ducros, R., Rocchia, R., et Tarnius, A.: 1969, (preprint submitted Astrophys. J.).Google Scholar
Fichtel, C. E., Kniffen, D. A., et Ogelman, H. B.: 1969, Astrophys. J. 158, 193.Google Scholar
Gorenstein, P., Kellog, E. M., et Gursky, H.: 1969, Astrophys. J. 156, 315.Google Scholar
Green, D. W., Wilson, B. S., et Baxter, A. J.: 1968, Space Res. IX, 222.Google Scholar
Kasturirangan, K., Bhavsar, P. D., et Nerurkar, N. W.: 1969, Eleventh International Conference on Cosmic Rays, Août-Septembre.Google Scholar
Matsuoka, M., Oda, M., Ogawara, Y., Hayakawa, S., et Kato, T.: 1968, Can. J. Phys. 46, 446.Google Scholar
Metzger, A. E., Anderson, E. C., Van Dilla, M. A., et Arnold, J. R.: 1964, Nature 204, 766.Google Scholar
Peterson, L. E.: 1963, J. Geophys. Res. 68, 979.Google Scholar
Peterson, L. E.: 1967, UC SD-SP 68-1, July.Google Scholar
Rao, U. R., Ivengar, U. S. et Prakasarao, A. S.: 1967, Proceedings of the Tenth Symposium on Cosmic Rays, Elementary Particle Physics and Astrophysics, Aligarh, India.Google Scholar
Rocchia, R., Rothenflung, R., Boclet, D., Ducros, D. et Labeyrie, J.: 1966, Space Res. VII, 1327.Google Scholar
Seward, F., Chodil, G., Mark, H., Swift, C. et Toor, A.: 1967, Astrophys. J. 150, 845.Google Scholar
Vette, J. I., Matteson, J. L., Gruber, D., et Peterson, L. E.: in Gratton, L. (ed.) ‘Non-Solar X- and Gamma-Ray Astronomy’, IAU Symp. 37, 335.Google Scholar