Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-21T02:45:30.687Z Has data issue: false hasContentIssue false

Erratum to: Within-Person Variability Score-Based Causal Inference: A Two-Step Estimation for Joint Effects of Time-Varying Treatments

Published online by Cambridge University Press:  01 January 2025

Satoshi Usami*
Affiliation:
University of Tokyo
*
Correspondence should be made to Satoshi Usami, Department of Education, University of Tokyo, Tokyo, Japan. Email: usami_s@p.u-tokyo.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Type
Erratum
Creative Commons
Creative Common License - CCCreative Common License - BY
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Copyright
Copyright © 2022 The Author(s)

Correction to: Psychometrika https://doi.org/10.1007/s11336-022-09879-1

The original version of the article contains the below listed errors. The following transcription errors have been corrected:

  1. 1. Second line in Eq. (15): “ A ¯ i ( k - 1 ) a ¯ i ( k - 1 ) + 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{A}^*_{i(k-1)}}\bar{a}^*_{i(k-1)}+1$$\end{document} ” has been changed to “ A ¯ i ( k - 1 ) = a ¯ i ( k - 1 ) + 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{A}^*_{i(k-1)}}=\bar{a}^*_{i(k-1)}\,{+}\,1$$\end{document} ”.

  2. 2. below Eq. (23): “ τ = ( β k 0 , β k 1 , , β K ( K - 1 ) ) t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =(\beta _{k0}, \beta _{k1}, \dots , \beta _{K(K-1)})^t$$\end{document} ” has been changed to “ τ = ( β k 0 , β k 1 , , β k ( k - 1 ) ) t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =(\beta _{k0}, \beta _{k1}, \dots , \beta _{k(k-1)})^t$$\end{document} ”.

  3. 3. Second line in Eq. (27): “ A ¯ i ( k - 2 ) a ¯ i ( k - 2 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{A}^*_{i(k-2)}\bar{a}^*_{i(k-2)}$$\end{document} ” has been changed to “ A ¯ i ( k - 2 ) = a ¯ i ( k - 2 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{A}^*_{i(k-2)}=\bar{a}^*_{i(k-2)}$$\end{document} ”. Also, the equation number “(27)” was moved to the second line.

Footnotes

The original article can be found online at https://doi.org/10.1007/s11336-022-09879-1.

References

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.