Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T17:07:31.269Z Has data issue: false hasContentIssue false

Rising early warning signals in affect associated with future changes in depression: a dynamical systems approach

Published online by Cambridge University Press:  23 December 2021

Joshua E. Curtiss*
Affiliation:
Depression Clinical and Research Program at Massachusetts General Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
David Mischoulon
Affiliation:
Depression Clinical and Research Program at Massachusetts General Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
Lauren B. Fisher
Affiliation:
Depression Clinical and Research Program at Massachusetts General Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
Cristina Cusin
Affiliation:
Depression Clinical and Research Program at Massachusetts General Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
Szymon Fedor
Affiliation:
The Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
Rosalind W. Picard
Affiliation:
The Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
Paola Pedrelli
Affiliation:
Depression Clinical and Research Program at Massachusetts General Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
*
Author for correspondence: Joshua E. Curtiss, E-mail: jcurtiss@mgh.harvard.edu

Abstract

Background

Predicting future states of psychopathology such as depressive episodes has been a hallmark initiative in mental health research. Dynamical systems theory has proposed that rises in certain ‘early warning signals’ (EWSs) in time-series data (e.g. auto-correlation, temporal variance, network connectivity) may precede impending changes in disorder severity. The current study investigates whether rises in these EWSs over time are associated with future changes in disorder severity among a group of patients with major depressive disorder (MDD).

Methods

Thirty-one patients with MDD completed the study, which consisted of daily smartphone-delivered surveys over 8 weeks. Daily positive and negative affect were collected for the time-series analyses. A rolling window approach was used to determine whether rises in auto-correlation of total affect, temporal standard deviation of total affect, and overall network connectivity in individual affect items were predictive of increases in depression symptoms.

Results

Results suggested that rises in auto-correlation were significantly associated with worsening in depression symptoms (r = 0.41, p = 0.02). Results indicated that neither rises in temporal standard deviation (r = −0.23, p = 0.23) nor in network connectivity (r = −0.12, p = 0.59) were associated with changes in depression symptoms.

Conclusions

This study more rigorously examines whether rises in EWSs were associated with future depression symptoms in a larger group of patients with MDD. Results indicated that rises in auto-correlation were the only EWS that was associated with worsening future changes in depression.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders (4th ed). Washington, DC: American Psychiatric Association.Google Scholar
Bernardini, F., Attademo, L., Cleary, S. D., Luther, C., Shim, R., Quartesan, R., & Compton, M. T. (2017). Risk prediction models in psychiatry: Toward a new frontier for the prevention of mental illnesses. Journal of Clinical Psychiatry, 78, 572583.CrossRefGoogle Scholar
Cramer, A. O., Van Borkulo, C. D., Giltay, E. J., Van Der Maas, H. L., Kendler, K. S., Scheffer, M., & Borsboom, D. (2016). Major depression as a complex dynamic system. PLoS ONE, 11(12), e0167490.CrossRefGoogle ScholarPubMed
Curtiss, J., Fulford, D., Hofmann, S. G., & Gershon, A. (2019). Network dynamics of positive and negative affect in bipolar disorder. Journal of Affective Disorders, 249, 270277.CrossRefGoogle ScholarPubMed
Dablander, F., Pichler, A., Cika, A., & Bacilieri, A. (2020). Anticipating critical transitions in psychological systems using early warning signals: Theoretical and practical considerations. Psycharxiv, 120.Google Scholar
Dakos, V., Carpenter, S. R., Brock, W. A., Ellison, A. M., Guttal, V., Ives, A. R., … Scheffer, M. (2012). Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE, 7(7), e41010.CrossRefGoogle ScholarPubMed
Davies, S. E., Neufeld, S. A., van Sprang, E., Schweren, L., Keivit, R., Fonagy, P., … Goodyer, I. M. (2020). Trajectories of depression symptom change during and following treatment in adolescents with unipolar major depression. Journal of Child Psychology and Psychiatry, 61, 565574.CrossRefGoogle ScholarPubMed
Fisher, A. J., & Boswell, J. F. (2016). Enhancing the personalization of psychotherapy with dynamic assessment and modeling. Assessment, 23, 496506.CrossRefGoogle ScholarPubMed
Frässle, S., Marquand, A. F., Schmaal, L., Dinga, R., Veltman, D. J., Van der Wee, N. J., … Stephan, K. E. (2020). Predicting individual clinical trajectories of depression with generative embedding. NeuroImage: Clinical, 26, 102213.CrossRefGoogle ScholarPubMed
Gueorguieva, R., Chekroud, A. M., & Krystal, J. H. (2017). Trajectories of relapse in randomised, placebo-controlled trials of treatment discontinuation in major depressive disorder: An individual patient-level data meta-analysis. The Lancet Psychiatry, 4, 230237.CrossRefGoogle ScholarPubMed
Guy, W. (1976). ECDEU Assessment Manual for Psychopharmacology. Rockville, MD: U.S. Dept. of Health, Education, and Welfare, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, National Institute of Mental Health, Psychopharmacology Research Branch, Division of Extramural Research Programs in Rockville, MD, 217222.Google Scholar
Hamilton, M. (1960). The Hamilton Depression Scale – accelerator or break on antidepressant drug discovery. Psychiatry, 23, 5662.Google Scholar
Hayes, A. M., Laurenceau, J. P., Feldman, G., Strauss, J. L., & Cardaciotto, L. (2007). Change is not always linear: The study of nonlinear and discontinuous patterns of change in psychotherapy. Clinical Psychology Review, 27(6), 715723.CrossRefGoogle ScholarPubMed
Hayes, S. C., Hofmann, S. G., Stanton, C. E., Carpenter, J. K., Sanford, B. T., Curtiss, J. E., & Ciarrochi, J. (2019). The role of the individual in the coming era of process-based therapy. Behaviour Research and Therapy, 117, 4053.CrossRefGoogle ScholarPubMed
Helmich, M. A., Wichers, M., Olthof, M., Strunk, G., Aas, B., Aichhorn, W., … Snippe, E. (2020). Sudden gains in day-to-day change: Revealing nonlinear patterns of individual improvement in depression. Journal of Consulting and Clinical Psychology, 88(2), 119127.CrossRefGoogle ScholarPubMed
Hofmann, S. G., Curtiss, J., & McNally, R. J. (2016). A complex network perspective on clinical science. Perspectives on Psychological Science, 11, 597605.CrossRefGoogle ScholarPubMed
Hofmann, S. G., Curtiss, J. E., & Hayes, S. C. (2020). Beyond linear mediation: Toward a dynamic network approach to study treatment processes. Clinical Psychology Review, 76, 101824.CrossRefGoogle Scholar
Hofmann, S. G., Sawyer, A. T., Fang, A., & Asnaani, A. (2012). Emotion dysregulation model of mood and anxiety disorders. Depression and Anxiety, 29, 409416.CrossRefGoogle ScholarPubMed
Kendler, K. S., Thornton, L. M., & Gardner, C. O. (2000). Stressful life events and previous episodes in the etiology of major depression in women: An evaluation of the ‘kindling’ hypothesis. American Journal of Psychiatry, 157, 12431251.CrossRefGoogle ScholarPubMed
Kessler, R. C., Aguilar-Gaxiola, S., Alonso, J., Chatterji, S., Lee, S., Ormel, J., … Wang, P. S. (2009). The global burden of mental disorders: An update from the WHO World Mental Health (WMH) Surveys. Epidemiology and Psychiatric Sciences, 18, 2333.CrossRefGoogle ScholarPubMed
Lichtwarck-Aschoff, A., Hasselman, F., Cox, R., Pepler, D., & Granic, I. (2012). A characteristic destabilization profile in parent-child interactions associated with treatment efficacy for aggressive children. Nonlinear Dynamics, Psychology, and Life Sciences, 16, 353379.Google ScholarPubMed
Liu, R., Chen, P., Aihara, K., & Chen, L. (2015). Identifying early-warning signals of critical transitions with strong noise by dynamical network markers. Scientific Reports, 5, 113.Google ScholarPubMed
Nelson, B., McGorry, P. D., Wichers, M., Wigman, J. T., & Hartmann, J. A. (2017). Moving from static to dynamic models of the onset of mental disorder: A review. JAMA Psychiatry, 74, 528534.CrossRefGoogle ScholarPubMed
Olthof, M., Hasselman, F., Oude Maatman, F., Bosman, A. M. T., & Lichtwarck-Aschoff, A. (2021). Complexity theory of psychopathology [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/f68ej.Google Scholar
Olthof, M., Hasselman, F., Strunk, G., Aas, B., Schiepek, G., & Lichtwarck-Aschoff, A. (2020a). Destabilization in self-ratings of the psychotherapeutic process is associated with better treatment outcome in patients with mood disorders. Psychotherapy Research, 30, 520531.CrossRefGoogle ScholarPubMed
Olthof, M., Hasselman, F., Strunk, G., van Rooij, M., Aas, B., Helmich, M. A., … Lichtwarck-Aschoff, A. (2020b). Critical fluctuations as an early-warning signal for sudden gains and losses in patients receiving psychotherapy for mood disorders. Clinical Psychological Science, 8, 2535.CrossRefGoogle Scholar
Pedrelli, P., Fedor, S., Ghandeharioun, A., Howe, E., Ionescu, D. F., Bhathena, D., … Picard, R. W. (2020). Monitoring changes in depression severity using wearable and mobile sensors. Frontiers in Psychiatry, 11, 1413.CrossRefGoogle ScholarPubMed
Pfaff, B. (2008). VAR, SVAR and SVEC models: Implementation within R package vars. Journal of Statistical Software, 27, 132.CrossRefGoogle Scholar
Rush, A. J., Trivedi, M. H., Ibrahim, H. M., Carmody, T. J., Arnow, B., Klein, D. N., … Keller, M. B. (2003). The 16-item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): A psychometric evaluation in patients with chronic major depression. Biological Psychiatry, 54, 573583.CrossRefGoogle ScholarPubMed
Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., … Sugihara, G. (2009). Early-warning signals for critical transitions. Nature, 461, 5359.CrossRefGoogle ScholarPubMed
Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W., Dakos, V., … Pascual, M. (2012). Anticipating critical transitions. Science (New York, N.Y.), 338, 344348.CrossRefGoogle ScholarPubMed
Schiepek, G. K., Tominschek, I., & Heinzel, S. (2014). Self-organization in psychotherapy: Testing the synergetic model of change processes. Frontiers in Psychology, 5, 1089.CrossRefGoogle ScholarPubMed
Thompson, E. R. (2007). Development and validation of an internationally reliable short-form of the positive and negative affect schedule (PANAS). Journal of Cross-Cultural Psychology, 38, 227242.CrossRefGoogle Scholar
van de Leemput, I. A., Wichers, M., Cramer, A. O., Borsboom, D., Tuerlinckx, F., Kuppens, P., … Scheffer, M. (2014). Critical slowing down as early warning for the onset and termination of depression. Proceedings of the National Academy of Sciences, 111, 8792.CrossRefGoogle ScholarPubMed
Wakefield, S., Delgadillo, J., Kellett, S., White, S., & Hepple, J. (2021). The effectiveness of brief cognitive analytic therapy for anxiety and depression: A quasi-experimental case–control study. British Journal of Clinical Psychology, 60(2), 194211.CrossRefGoogle ScholarPubMed
Wang, R., Dearing, J. A., Langdon, P. G., Zhang, E., Yang, X., Dakos, V., & Scheffer, M. (2012). Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature, 492(7429), 419422.CrossRefGoogle ScholarPubMed
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of Personality and Social Psychology, 54(6), 10631070.CrossRefGoogle ScholarPubMed
Wichers, M., Groot, P. C., Psychosystems, E. S. M., & Group, E. W. S. (2016). Critical slowing down as a personalized early warning signal for depression. Psychotherapy and Psychosomatics, 85, 114116.CrossRefGoogle ScholarPubMed
Wichers, M., Smit, A. C., & Snippe, E. (2020). Early warning signals based on momentary affect dynamics can expose nearby transitions in depression: A confirmatory single-subject time-series study. Journal for Person-Oriented Research, 6, 115.CrossRefGoogle ScholarPubMed